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INTRODUCTION TO THE NON-ASYMPTOTIC ANALYSIS OF
RANDOM MATRICES

ROMAN VERSHYNIN

Spring-Summer School “Random matrices - Stochastic geometry - Compressed sensing”
[HP, Paris, June 20-22, 2011

This 9-hour course develops some non-asymptotic methods for the analysis of the extreme
singular values of random matrices with independent rows. Two applications are given, for
the problem of estimating covariance matrices in statistics, and for validating probabilistic
constructions of measurement matrices in compressed sensing. Much of the material is taken
from the tutorial [V]. Other references are given in the text.
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DAY 1

1. RANDOM MATRICES AND RANDOM VECTORS

References to classical random matrix theory: [Anderson, Guionnet, Zeitouni], [Bai, Silverstein].
The book [Anderson, Guionnet, Zeitouni| can be downloaded from Ofer Zeitouni’s webpage.

1.1. Marchenko-Pastur Law. See e.g. [Gotze, Tikhomirov].
Consider an N x n random matrix A whose entries are iid, mean zero, unit variance.

Waishart matriz: p X p symmetric random matrix
1
W = NATA.
This normalization by A — \/LNA is meant to make the columns of A unit norm on average.
W has p eigenvalues \;(W), which are non-negatibe real numbers.
Asymptotic, or limiting, regime: N,n — oo while n/N — y € (0, 1).
Theorem 1.1 (Marchenko-Pastur Law). Consider the counting function of the eigenvalues

Fw(m):% (i n) <z)|, zer
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It is called the empirical distribution function. Then for every x,
E Fw(z) — F(x)

where F(x) is the distribution function of a distribution on R with density

Fl(a) = — /= a)a—2) Lug@), a=(1—vi b=(1+i>

- 2y

Make a drawing.

Note: the spectrum is compactly supported. The spectral edges a, b have special meaning.

1.2. Singular values and operator norms. [V, Section 2.1]
Definition of singular values s;(A).
Extreme singular values: spin(A), Smax(A).
Extreme singular values and geometric distortion. Approximate isometries.

Extreme singular values and the operator norms: spax(A4) = || A, smin(A) = 1/||AT].

1.3. Bai-Yin Law. See [Bai-Yin].

Theorem 1.2 (Bai-Yin’s Law). Assume, in addition to Marchenko-Pastur, that the entries
of A have finite fourth moment. Then the singular values of the normalized matrix A = \/LNA

satisfy
Smin(A) —1- \/:Ua Smax(A) =1+ \/:U almost surely.

Thus: tall random matrices (y = n/N ~ 0) should be approximate isometries.
1.4. Goals, methods. Goals: study the extreme singular values of N x n random matrices

A.

a) In the non-asymptotic regime where N, n are fixed;

(a)
(b) A has just independent rows (or columns) rather than independent entries;

(c) the rows of A will be sampled from some distribution in R";

(d) the distribution may be highly non-Gaussian, perhaps discrete, and often heavy-tailed.

Distributions of interest:

1.5. Isotropic random vectors. [V, Section 2.5]
X: random vector in R™. Covariance matriz: ¥ =%(X) =EX @ X =EXXT.
X is isotropic if ¥(X) = I. Equivalently, E(X, z)? = ||z||3 for all z € R".
X arbitrary = 72X is isotropic.
X isotropic = E || X||3 = n.



Examples of isotropic random vectors: Gaussian, Bernoulli, product, coordinate, spherical,
uniform on a convex set

An extra example: random Fourier X = a row of an orthogonal n x n matrix chosen
uniformly at random. In particular, from DFT matrix with entries

2miwt

Ww,t:exp(— ), w,t€{0,...,n—1}.

X corresponds to a random frequency.

1.6. Gordon’s theorem. Time permitting. [V, Theorem 32, Corollary 35].

2. SUMS OF INDEPENDENT RANDOM VARIABLES

The material is from [V, Sections 2.3, 2.4]. See the book [Petrov]| for much more.

2.1. Sub-gaussian random variables. [V, Section 2.3]
Gaussian and sub-gaussian random variables. [V, Lemma 5.
Sub-gaussian norm ||X ||, .

Examples: Gaussian, Bernoulli, bounded.
Rotation invariance: [V, Lemma 9.

Hoeffding-type inequality: [V, Proposition 10]. CLT.

2.2. Sub-exponential random variables. [V, Section 2.4]
Sub-exponential random variables; norm || - ||,
Example: Sub-gaussian squared = sub-exponential: [V, Lemma 14].
MGF of sub-exponentials: [V, Lemma 15].
Bernstein-type inequality: [V, Proposition 16].

Sums of iid random variables: [V, Corollary 17].

3. SUMS OF SUB-EXPONENTIAL RANDOM MATRICES

[V, Section 2.6]. We study

N
Sy = Z X
=1

where X; are n X n independent random matrices, self-adjoint, zero mean. We seek “non-

commutative” versions of deviation inequalities.
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3.1. Ahlswede-Winter’s method. Imitate arguments for scalar-valued case. [Ahlswede-Winter].
Matrix calculus. Order: A = B if A — B is positive semi-definite.
Matrix exponential: e4 = S | AF/k!
Caveat: eATPB £ e4eB. Two ways around:
1. Golden-Thompson inequality:

tretB < tr(ee?)

2. Lieb’s theorem: For every self-adjoint H, the function
A trexp(H + log A)
is concave on the positive-semidefinite cone.

Let’s see how Lieb’s theorem works, following [Tropp]. One can use Golden-Thompson
instead, see [Oliveira]. Since ||Sy|| <t is equivalent to —tI < Sy < tI, we have

P{||Sn|| >t} =P{Sy A tl or Sy # —tI}.
Repeat Bernstein’s trick:
P{Sy £ tI} = P{e**V £ M} < P{tre™y > M} < e MEtrev,
Etre*y = Ey tr exp(ASy_1 + AXy) = Ey trexp(ASy_; + log V).

Condition on X,..., Xy_;. Using Lieb’s theorem, we can apply Jensen’s inequality to move
the exectation w.r.to Xy inside:

< Eyn_; trexp(ASy_; + log E ).
Repeat this for Xy_1, Xy_o etc. Eventually

N N
< trexp (ZlogEe)‘Xi) <n- H exp (Zlog]Ee’\Xi)
i=1

=1

)

N
’ =n-exp (H ZlogEe)‘Xi
i=1

The last identity holds because the eigenvalues of e are e(4),

The MGF of each matrix E e*Xi is easy to estimate. Finish as in the proof of Bernstein’s
inequality, optimizing \.
Working out this argument yields the following non-comutative versions of Hoeffding and

Bernstein:

Theorem 3.1 (Non-commutative Hoeffding, see [Tropp|). Consider n x n self-adjoint ma-
trices A; and independent standard normal (or Bernoulli) r.v.’s g;. Then

| Sot

N
t2
zt}gn‘exp(——), where JQZHZA?
i=1

202

Compare with classical Hoeffding: note (a) o ~ ||al|2, (b) dimension factor n appears.
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Theorem 3.2 (Non-commutative Bernstein, see [Tropp|). Consider independent self-adjoint
mean zero n X n random matrices X;, and assume that | X;|| < K. Then

IP’{HZV;XZ zt} §n-exp[—cmin<t2 i)}

o2’ K

3.2. Rudelson’s inequality. See [V, Section 2.6]

Go back to non-commutative Hoeffding. Even the ezpected value of || ). ¢g;A;| is non-
triviall

The expected value ~ median = the value of ¢ such that n - exp(—t?/20?) = 1/2. Solving
for t yields t ~ /logn - 0. Hence

1/2

N
(3.1) E| Y g
=1

N
~ y/logn - H ZAZQ
i=1

Exercise: deduce (3.1) from Theorem 3.2 rigorously.

Example: rank-one matrices A; = z;x7 where x; € R" are some vectors. A quick compu-
tation of RHS of (3.1) yields:

Corollary 3.3 (Rudelson’s inequality). Let z; € R™ be vectors and g; be independent stan-
dard normal (or Bernoulli) random variables. Then

N N
EHZQZZEZZL‘ZT SOVIQg”'I}E}g{HxiHT HZQZ@?
i=1 = i=1

1/2

Remarks:
(a) logn is needed in general; will come back to this later.

(b) Non-commutative Hoeffding, (3.1), and thus Rudelson’s inequality can also be derived
from a non-commutative form of Khintchine inequality, see [V, Section 2.6].

DAY 2

4. MATRICES WITH INDEPENDENT SUB-GAUSSIAN ROWS

[V, Section 4.1]. We study the extreme singular values of N x n matrices A with inde-
pendent rows. The rows are random vectors chosen from some distribution in R™. First we

consider very regular distributions: sub-gaussian.
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4.1. Sub-gaussian random vectors. [V, end of Section 2.5]

[V, Definition 22].

Example: product of scalar sub-gaussian distributions, [V, Lemma 24].

Examples: Gaussian, Bernoulli, spherical, not coordinate, uniform on some convex sets
— [V, Example 25].
4.2. Nets. [V, Section 2.2

| Al| = sup,cgn-1 ||Az||2. Need a uniform estimate on all ||Az|| for all z € S"~!. Individual
estimate on each [|Ax||y will follow from concentration, then union bound. Difficult to take
union bound over infinite set S*!. So we discretize the sphere.

[V, Definition 1].
Nets of a sphere [V, Lemma 2].
Computing the operator norm on a net [V, Lemma 3].

Exercise: for symmetric operators, [V, Lemma 4].

4.3. Extreme singular values. [V, Section 4.1].

Main theorem, see [V, Theorem 39]:

Theorem 4.1 (Sub-gaussian rows). Let A be an N X n matriz whose rows are independent
sub-gaussian isotropic random vectors in R". Then for every t > 0, with probability at least
1 — 2exp(—ct?) one has

\/N_ C\/ﬁ_t S Smin(A) S SmaX(A) S \/N‘i‘ C\/ﬁ"_ l.

The constants ¢,C' > 0 depend only on the mazimal sub-gaussian norm of the rows.

Divide by v/N. Theorem states that all singular values of A = ﬁA are

si(A)=1+C4/ % with high probability.
So A is an approximate isometry if N > n. In other words, “tall random matrices are

approximate isometries”.

Compare to Bai-Yin Law: non-asymptotic, no independence of entries required, but C' is
present.

Proof. Follows from Bernstein and a covering argument. We want to show an equivalent

statement:
_ n
|si(A) | <e small, ¢ ”N

In terms of eigenvalues, s;(A)? = \;(ATA) = A\(F AT A). So we want to show:

1
|yATA- 1) <.
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(i.e. that Wishart matrix is close to identity).
Now follow the argument in [V, Theorem 39] ... O

Remark: a similar result holds for matrices with independent sub-gaussian columns, [V,
Theorem 58]. The argument in this case is different, it uses decoupling. Study it.

5. MATRICES WITH INDEPENDENT HEAVY-TAILED ROWS
[V, Section 4.2]

5.1. Heavy-tailed distributions. We want to do away with all regularity assumptions like
sub-gaussian, sub-exponential etc.

Why? Discrete distributions in R™ are usually heavy-tailed.

Example: an isotropic distribution uniformly distributed on a set of polynomial number of
points {z;} in R", say n'® points. Since E || X||2 = n, there is a point with ||z;|]s > \/n, and
with probability mass n~'°. Then this is a bad direction for X: the random variable (X, z;)
takes value (z;,r;) > n with probability n='°, so it is not sub-gaussian or sub-exponential.
It has a polynomially heavy tail.

Example of heavy-tailed random vectors: coordinate, Fourier.

5.2. Extreme singular values. Remarkably general main theorem, see [V, Theorem 41]:

Theorem 5.1 (Heavy-tailed rows). Let A be an N X n matriz whose rows A; are independent
isotropic random vectors in R"™. Suppose ||A;illa < /m almost surely, for some number m.
Then for every t > 0, one has

(5.1) VN — ty/m < $min(A) < s$max(4) < VN + tv/m

with probability at least 1 — 2n - exp(—ct?). Here ¢ > 0 is an absolute constant.

Since E||4;||3 = n, the theorem is usually applied with m ~ n. Then the theorem may be
compared with Bai-Yin law and the Theorem 4.1 for sub-gaussian rows.

Proof (with m ~ n). Follows from non-commutative Bernstein. We again want to show

1
HNATA—IHSS small, ENQ/%.

Now follow the argument in [V, Theorem 41] ... O

A version of Theorem 5.1 can also be derived from Rudelson’s inequality, Corollary 3.3,
see [V, Section 4.2].

The main price for heavy-tailed rows, compared with sub-gaussian rows (Theorem 4.1) is
the dimensional factor n that appears in the probability estimate 1 — 2n - exp(—ct?). For
this to be, say, 1/2, one needs to take t ~ logn. So in reality Theorem 5.1 says that

VN — Cv/nlogn < spmin(A) < Spax(A4) < VN + C+/nlogn w.h.p.
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The lower bound is only non-trivial for N = nlogn, i.e. for logarithmically tall matries.

The logarithmic factor is generally needed. Example: coordinate distribution (coupon
collector’s problem), see [V, Remark 43]. However, this is about the only example when log
is needed for the lower bound; see the last lecture.

6. APPLICATION: COVARIANCE ESTIMATION

[V, Section 4.3]
6.1. Sub-gaussian distributions.

X: random vector in R", for simplicity E X = 0. Recall that the covariance matrix of X
is
Y=%(X)=EXXT.
Goal: estimate X in the operator norm from a sample of N independent points X, ..., Xy.

Sample covariance matrix:
| N
— YT
YN = I El X; X, .

By LLN,
Iy —%|| =0 as N — oo.

How large should the sample size N = N(n,¢) be for accurate estimation? Say, for

1By =X < el 7

Let’s start with sub-gaussian distributions. Form an N x n matrix A with rows A; =
»~1/2X;. Thus indepednent, isotropic rows. Apply Theorem 4.1 for A.

In its proof, we showed that w.h.p.

1
||NATA—I|| SS(), Ep ™~

==

Multiplying by /2 on the left and on the right, we obtain
|
|+ > X == = I=x - =il < <oll=
i=1

We need that ¢g < e. This holds when
N > e %n.

We have proved [V, Corollary 50]:



Corollary 6.1 (Covariance estimation for sub-gaussian distributions). Consider a sub-
gaussian distribution’ in R™ with covariance matriz 3, and let ¢ € (0,1), t > 1. Then
with probability at least 1 — 2 exp(—t*n) one has

If N> C(t/e)*n then ||y — 2| < €||Z]].
Here C' depends only on the sub-gaussian norm of the distribution.

In words: the sample size N = O(n) suffices for covariance estimation of sub-gaussian
distributions.

6.2. Heavy-tailed distributions.

Let us try a similar method for general (heavy-tailed) rows, using Theorem 5.1. Recall
that in its proof we showed that if A has independent isotropic rows A; with || 4;|| < m, then

1 /m
HNATA — I” < €0, €0 ~t N

with probability at least 1 — 2n - exp(—ct?).

If the rows are not isotropic but rather have covariance matrix ¥ then a straightforward
modification of the argument yields

1
I5ATA= Sl << IS 20~ ty/ 5

B

(exercise).

Let us apply this for A; = X, thus for Xy = %ATA. We choose t ~ logn so that the

probability is at least, say, 0.99. We again want the error to be g [|Z||'/? < e. Substituting
£o and solving for N shows that

N 2 5_2\|Z|\_1mlogn.
Such sample size N guarantees the accurate covariance estimation:
[Xn =2l < el X
See [V, Corollary 52] for a full statement of this result.

How large is m = max || X||; in practice? Since ¥ = E XX,
E [ X3 = te(2) < n[Z].
So for “most of the distribution”,
m S n|[X].

To make this rigorous, we can truncate the distribution to make sure that || X |2 < n||X|| a.s.
In practice, we can estimate E || X||3 and reject the larger points.

1Technically, we assume that the isotropic vector ¥~1/2X is sub-gaussian. If, instead, one insists on X
itself being sub-gaussian, then one gets |Xy — X|| < ¢||X||, see [V, Corollary 50].
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Substituting such m, we have
N > e 2nlogn.
So the general result is the same as for sub-gaussian distributions, except there is a logarith-
mic oversampling.

In words, the sample size N = O(nlogn) suffices for covariance estimation of general
distributions.

This was first proved (for isotropic distributions) by Mark Rudelson.

6.3. Low-dimensional distributions: PCA.

Principal Component Analysis (PCA): determine the covariance structure of a distribu-
tion, i.e. the eigenvectors and eigenvalues of X. Typical assumption: few large eigenvalues,
i.e. the distribution is essentially low-dimensional.

The full covariance structure can be inferred within € error from Xy once
1En =X < ellZ])
As we know, this can be done with N = O(nlogn) samples. But if the distribution is
essentially low-dimensional, we can do better, possibly with N < n.
The intrinsic dimension = effective rank of the matrix X:
(%)
A

Example: suppose the distribution is supported on some r-dimensional subspace £ of R".
Then
r(X) <.
Moreover, if such distribution is isotropic in £ then r(X) = r.

The effective rank is stable compared with the usual rank. Approximately low-dimenional
= r(X) is small.

We can repeat the argument in the previous section, but now with r = r(3):
2
E X}z = tr(3) = r[=]l.
We recover the covariance estimation with N 2> e~?rlogn.

In words, the sample size N = O(rlogn) suffices for covariance estimation of approzi-
mately r-dimensional distributions.

So, we may have N < n.
Connections to compressed sensing.
Other structural models for which N < n may be possible:

(a) sparse covariance matrices [Levina-V],
11



(b) graphical models.

7. APPLICATION: RIP FOR SUB-GAUSSIAN MATRICES

7.1. Definition and spectral characterization. [V, Section 6]

Restricted Isometry Property (RIP) is a property of measurement matrices in compressed
sensing, see Jared’s course.

Definition (RIP). An m x n matrix A satisfies the restricted isometry property for sparsity
level £ > 1 if there exists § € (0,1) such that the inequality

(1= )lzllz < [Azfls < (1 +6)]|z[l

holds for all x € R™ with |supp(z)| < k. The smallest number § = §(A, k) is called the
restricted isometry constant of A.

In practice, § = 0.1 suffices.
Make a drawing.
Goal: construct a RIP matrix with small m (few “measurements”), e.g. with
m ~ klogn.
Only random constructions are known. Random matrices.

Spectral characterization of RIP. From the geometric meaning of the extreme singular
values, we see that §(A, k) < ¢ is equivalent to:

(71) ]- - 5 S Smin(AJ) S Smax(AJ) S 1 + 5

for all J C [n], |J| = k. Here A, stands for the minor of A formed by the columns indexed
by J.

7.2. Sub-gaussian RIP. Let’s show that sub-gaussian matrices satisfy RIP. So let A be a
matrix with independent, isotropic, sub-gaussian rows A;.

Fix J for a moment, and apply Theorem 4.1 for the m x k matrix A;. We get:

(7.2) Vi — CVE =t < smin(A)) < Smax(Ay) < vVm+ CVE + t
with probability 1 — 2 exp(—ct?).

Now take union bound over all subsets J C [n], |J| = k. There are

n en\k
<(%)
(1) =
such subsets. So 7.2 holds simultaneously for all J with probability
k
1-— <%> - 2exp(—ct®) 2 1 — exp (klog(n/k) — t*).

We want the probability to be, say 0.99, which holds if we choose ¢t ~ \/klog(n/k).
12



Putting this value of ¢ into (7.2), we see that

(1 =0)vm < smin(As) < Smax(Ay) < (1+6)vm

if we choose m > 02k log(n/k). Dividing both sides by+/m, we recover the spectral form of

RIP (7.1) for the normalized matrix \/LMA.

We have proved a version of a result of Mendelson, Pajor and Tomczak-Jaegermann, see
[V, Theorem 65]:

Theorem 7.1 (Sub-gaussian RIP). Let A be an m X n sub-gaussian random matriz whose
rows are independent sub-gaussian isotropic random vectors. Then the normalized matriz
A= \/LMA satisfies the following for every sparsity level k < n and every number § € (0,1):

if m > 0 %klog(en/k) then 6(A k) <9
with probability at least 1 — 2 exp(—cd*m).

In words, for every dimension n and sparsity level & the following holds. Random m x n
matrices with independent sub-gaussian rows satisfy RIP for the “number of measurements”

m ~ klog(n/k).
Optimal (see Jared).

A similar result holds for independent sub-gaussian columns [V, Theorem 65].
DAY 3

8. RIP FOR HEAVY-TAILED MATRICES

[V, Section 6.2]

RIP: Recall that an m x n matrix A satisfies RIP for sparsity level k£ > 1 if there exists
§ € (0,1) such that?
(1= 0)llzl3 < | Az]3 < (1 +9)]lzl2
holds for all x € R™ with |supp(z)| < k. The smallest number § = §(A, k) is called the
restricted isometry constant of A.

Goal: prove that random matrices with general independent rows (not just sub-gaussian
as on Day 2) satisfy RIP with
m ~ klog* n.

Motivation: Partial Fourier matrices. Rows of A are sampled uniformly from n x n DFT
matrix. Measurements Az consists of m random frequencies of the signal z.

2We now use a squared version of RIP. This is equivalent to the version given on Day 2 since (1+6)? ~ 1+2d
for small 6.
13



Implication in Compressed Sensing: one can effectively recover a k-sparse signal x from
m ~ klog*n random frequencies of x.

8.1. Statement and reduction to a uniform LLN.

Theorem 8.1 (Heavy-tailed RIP). Let A be an m xn matriz whose rows A; are independent
isotropic random vectors, and with uniformly bounded entries: |A;;| = O(1) a.s. Then the
normalized matriz A = \/LEA satisfies the following for every sparsity level k < n and every

number § € (0,1):
if m > C6 2klog*n then E6(A, k) <.

Here C' depends only on the bound on the entries.
Argument: the result won’t follow by union bound from Theorem 5.1 applied to every k-

column minor of A. The probability is too weak; this approach leads to m ~ k? ( “quadratic
bottleneck”).

Reformulation of RIP for A:
|AYA; —I;]| <6 for everyJ C [n], |J| = k.

The conclusion of Theorem 5.1 is equivalent to:

E = Emax“l/ﬁAJ — ]JH <.
=k 'm

Since ALA; = > (A:) (47,

(8.1) E:E%a}g\\%émmmiﬁ—JJH.

For each J, the (A4;);(A;)% are independent random k& x k matrices with mean I; (by isotropy).

So “F is small” is a uniform version of LLN — uniform over the subsets J.

How to prove it?

8.2. Symmetrization.

Lemma 8.2 (Symmetrization). [V, Lemma 46| Let (X;) be a finite sequence of independent
random vectors valued in some Banach space, and (g;) and (g;) be independent symmetric
Bernoulli (resp. standard normal) random variables. Then

B[S G-Ex)| <28 Y ax| sE[ X0

Proof. Consider r.v’s X; = X; — X! where (X!) is an independent copy of (X;). Then X, are
independent symmetric random variables, i.e. the sequence (X;) is distributed identically
14



with (—X;) and thus also with (g,X;). Replacing E X; by E X/ and using Jensen’s inequality,
symmetry, and triangle inequality, we obtain the required inequality

E|Yxi-Ex)| <E| X %) -E| Xk

For the second part of the lemma, since E |g;| = const,

<E Z €ilgi| X

=E( > gX;

We apply symmetrization to the sum in F (Exercise: prove a uniform version of sym-
metrization with maxj<g, [V, Lemma 70].) This yields

(by Jensen)

(by symmetry of g;, €;|g:| = gi)- O

(8.2) E< iEmeixH igi (Ai)J(AiﬁH.

Now condition on A;; we have a Gaussian sum.

How to bound this?

8.3. Uniform Rudelson’s inequality. Without max, <, we would just apply Rudelson’s
inequality, Corollary 3.3: for vectors z; € R¥

& H > _giwiry || < Cy/logh - max |z, - H > ]
=1 - i=1

and would quickly finish the proof.

1/2

So now we know what we need — a uniform Rudelson’s inequality over subsets .J.
Proposition 8.3 (Uniform Rudelson’s inequality). [Rudelson-V], [V, Proposition 68] Let
x; € R™ be vectors such that ||z;||cc = O(1). Let g; be independent standard normal random
variables. Then for every k < n one has

E max H Zgi (mz)J(xZ)gH < Vk - max H Z(xz)(](xl)?;
i=1 i=1

1/2

|J|=k |J|=k

where * hides some logarithmic factors.

Compare with classical Rudelson’s inequality: by Holder and the assumption,

(@) glle < VE| ()]0 S VE.

So the uniform inequality contains the classical one (modulo log factors).
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Will discuss the proof of uniform Rudelson later. Now:

8.4. Uniform Rudelson’s inequality implies RIP. Apply uniform Rudelson to (8.2)
conditionally on A;, and then take the expectation w.r.to A;:

5 YE By | |’
max Z

Compare the RHS with the definition (8.1) of F; so make E appear there:

Lk [k
< = < JF 1/2.
E < EgleuéH E (A;) H < m(E—i—l)

Solving this quadratic equation yields
g<F
~Vm

m > 0%k

as required. (An accurate computation gives m > 6 2klog? n as proised in RIP.)

We need E < 9, this holds if

Theorem 8.1 is proved. O

We will now outline a proof of uniform Rudelson’s inequality following [Rudelson-V]. The
reader who wishes to understand this method may choose to study the proof of Lemma 3.2
in [Rudelson — early work] first, and then study the argument in [Rudelson-V].

8.5. Dudley’s inequality. The argument is based on stochastic processes. We shall realize
the LHS of uniform Rudelson as the maximum of a Gaussian process, and we use Dudley’s
inequality to estimate it.

Theorem 8.4 (Dudley’s inequality). See e.g. [Talagrand, (0.3), (1.18)] Let (Zi)ier be a
Gaussian process. Define a metric d on the set T by

d(s,t) = 120 = Zilleo = (E|Z, — Z2)"".
Then

Esup |Z;] < C’/ V1og N(T', d,u) du

teT

where N(T,d,u) is the covering number of T in metric d, which is the minimal number of
balls of radius u which cover T'.

log N(T',d,u) is called the metric entropy of T.

Example: ¢ is a standard normal vector in R", and
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(Essentially all Gaussian processes can be represented as in this example). Then

=E ‘ Zgi(si —t;)
i=1

So d = the Fuclidean distance in R™.

n

2
= (si—t:) = lls —t].

=1

8.6. Proof of uniform Rudelson’s inequality. We want to bound

E ::EmaXH i () g (@ TH = Emax‘ (T, x ’
max ;9( Jo(@)j|| =Em ; Zz:g
= zeB] T

where By denotes the unit Euclidean ball in R7. The RHS is the maximum of a Gaussian
process, taken over

rel = U By
| J|=k

(the union of k-dimensional discs in R™.)

We apply Dudley’s inequality as in the example above with t; = (x;, )%

E < / V0og N(T',d,u) du
0
where
n 2
Z ( x'L? xl’ y>2> *
1=1
We simplify d(z,y) using the identity a* — b* = (a + b)(a — b):

()’ < Z ((wio ) + i) maoc | i, 2 = )

The first factor simplifies using Minkowski inequality:

m

S )+ ) < A S = | S50

which is the RHS in uniform Rudelson’s inequality, so that’s fine.

The second factor max;<,, |(z;,x — y)| looks like the {., distance in R™. If x; were the
coordinate basis vectors, that would be precisely the /., distance. In our case, x; are arbitrary
vectors with ||z;||. = O(1).

So the proof reduces to a geometric problem — estimate the covering number of the set T’
in the /. -type distance
d'(x,y) = max |(z;, z — y)|.

We skip this step, see [Rudelson-V]. One substitutes the estimate on the covering number

into Dudley’s inequality, and finishes the proof. 0]
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9. EXTREME EIGENVALUES VIA SPECTRAL SPARSIFIERS

The recent work [Batson-Spielman-Srivastava] on spectral sparsifiers: approximate a dense
graph by a sparse graph.

The argument in [Batson-Spielman-Srivastava] suggests a new method in RMT for the
extreme eigenvalues. This idea is pursued in [Srivastava-V].

9.1. Covariance estimation without logarithmic oversampling. Go back to covari-
ance estimation: X mean zero random vector in R”,

N
1

_ T _ T

Y=EXX", EN—NiEI X X;

are the covariance and sample covariance matrices.

By applying a linear transformation (X +— %7'/2X), we can assume that ¥ = I, i.e. the
distribution is isotropic.

Question: what is the minimal number of samples N = N(n, ¢) which guarantees
[Ev — I <e?
Let’s say, € = 0.01 fixed.
Answers:
(a) N ~ n for sub-gaussian distributions, see Section 6.1.
(b) N ~ nlogn for general distributions, see Section 6.2.
The logarithmic oversampling is needed in general:

Example: the coordinate random vector X, uniformly distributed in the set of 2n points
(£ex) where (eg)}_; is an orthonormal basis in R". In order that

)\min(En) >0

one needs Xy to have full rank, for which all n basis vectors e need be present in the sample
Xq,...,Xy. By the coupon collector’s problem, this can only happen if

N = nlogn.

Question: for what distributions is logarithmic oversampling needed?

It is quite difficult to weaken the sub-gaussian assumption while keeping N ~ n. Recent
solution to a problem of Kannan, Lovasz and Simonovits:

Theorem 9.1. [Adamczak, Litvak, Pajor, Tomczak| N ~ n for all sub-exponential distribu-

tions (supported in a ball of radius vV N.) In particular, N ~ n for the uniform distribution
on an arbitrary convexr body.
18



Goal: using the method of spectral sparsifiers, we show that N ~ n all regular dis-
tributions. The coordinate distribution is about the only “irregular” example when the
logarithmic oversampling is needed.

Theorem 9.2. [Srivastava-V] Assume X has 2 +n moments for some n > 0, i.e.

sup E|(X,,2)*" = O(1),

zesn—1
Then for N > cn,
>\min<EN) Z 1—e.

A similar upper bound Apax(Xn) < 1+ € holds under a somewhat stronger assumption (on
all marginals, not just one-dimensional).> Combining the upper and the lower bounds yields

12y —I|| <e.

The constant ¢ > 0 depends only on the moment bound, n and ¢.

9.2. Soft spectral edges and Stieltjes transform. The proof is based on a randomization
of the method of [Batson-Spielman-Srivastava]. We present the latter now.

Goal: Control the spectral edges Apin(W) and Apax (W) of the Wishart matrix

N
i=1

Method: Add X; X} one at a time, and keep track how the spectrum of W evolves.

Eigenvalues interlace (Cauchy interlacing theorem):

_—— e — — —

S A S Y " —

Difficulty: The spectral edges are not controlled by interlacing, they are free on one side.
Thus they are difficult to compute.

Solution: soften the spectral edges as follows:

Stieltjes Transform of the spectrum of W is the function

N
my (u) = tr(ul — W)™ = Z " u e R.

i=1

Ignoring the sign, my (u) looks like this:

3 Assumtion for the upper bound: All k-dimensional marginals of X have uniformly bounded 247 moments
outside the ball of radius O(V/k).
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i

Physical interpretation: Put unit electric charges at points A;. Then my (u) is the electric
potential measured at u.

Find the leftmost/rightmost locations u = iy (W), Umax(W) where the electric potential
is some fixed constant ¢:

mw(u) = ¢ (say, ¢ = 120V or 220V).

These locations act as soft spectral edges. They “harden” as ¢ — oo and “soften” as

LI

umm(W) Ai IumaX(W)

9.3. Updating the soft spectral edges. As opposed to the usual spectral edges, the soft
edges Umin(W), Umax (W) are computable.

Why? They are determined by the Stieltjes transform of W = Zf\il X;XT. Tt can be
updated by adding one term X; X! at a time.

Sherman-Morrison formula for updating the inverse: for an invertible matrix A and a
vector x,

A gyt AL

TN-1 _ -1 _
(A+zy' ) =A T rTAL

Let’s see how this works, say for the upper soft edge. Suppose it is currently u = tyax (W),
SO

mw (u) = ¢.

Add a term zzT to W; how far will the soft edge move (to the right)? To answer this, we
need to find a shift ¢ for which

(9.1) My g (1 + 8) < mg () = 6.

(This will imply that the soft spectral edge has moved by at most d.)
20



By Sherman-Morrison:
My yger (U +6) = tr(u+ 6 — W — x2”) ™!
2 (u+6— W) 2z

et (u+0—W) 2z
l—aT(u+d—-W)lz

= my (u) — (mw (u) — mw (u +9)) +

Further,*
mw (u) —mw(u+0) =tr [(u—W)™"' = (u+d6—W) '] =6 tr(ut+6—W)™>
Substituting this and rearranging the terms, we see that if

T(u+6—-W)2z i
— T <
5tr(u—|—5—W)—2+$(u+6 W)z <1

then (9.1) holds, and therefore the shift of the soft edge is < 4.

(9.2)

9.4. Conclusion for the upper spectral edge. In our case, x = X is a random isotropic
vector. Take expectation in the sufficient condition (9.2). Since EXTAX = tr(A), the
average of (9.2) becomes

1
—ttr(u+d-W)t <1

4]
Now, tr(u +d — W)™' = my(u+ ) < my(u) = ¢, so the sufficient condition becomes
1 1
5 + ¢ <1, orequivalently: ¢ > s
This simply says that the shift of the soft edge is always at most
1
1—¢

Induction argument: start with N =0, W = 0, for which the initial soft spectral edge is

o
¢
because mg(u) = tr(ul)™' =n/u = ¢.

Add N terms X; X! to W one at a time, each time moving the soft spectral edge by at
most ﬁ At the end, the soft (and thus the hard) spectral edge of W = S X, X7 is at
most

n, N
6 1—¢

4Py 1 T s s
This follows from = — o5—- = G=Tre— = =2
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Divide by N, thus for sample covariance matrix Xy = %XiXiT ,

Y 1
maxE S_ ) h =
Amax(XnN) ¢+—1_¢ where y

==

Optimize in ¢:
)‘maX(EN) < (1 + \/E)Q

This is exactly the upper spectral edge b in Marchenko-Pastur Law (and Bai-Yin)! — see
Section 1.

9.5. The fault and its correction: regularity of the distribution. This argument
can’t be completely correct.” Otherwise the logarithmic oversampling is not needed for any
distribution, which is wrong.

The fault: the sufficient condition (9.2) has to be always satisfied, even for a random
vector x = X. One can’t take expectation there.

Correction: Define the shift 6 = d(z) to be the minimal number which makes (9.2) true.
For x = X a random vector, the shift §(X) is random.

Prove that

(9.3) Ed(X) < !

1—¢
or a similar upper bound.
This would correct the argument. But for (9.3) to hold, one needs a bit of regularity of

the distribution, like 2 47 moments. Otherwise there might be huge bursts of §, making the
expectation large.

See [Srivastava-V] for details.

5The argument can’t be correct for random vectors. But if one is allowed to choose a value of X; at every
step, this is a correct argument, due to [Batson-Spielman-Srivastava].
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