Geometric properties of random matrices with independent log-concave rows/columns

Radosław Adamczak
University of Warsaw

Paris, May 2010

Based on joint work with
O. Guédon, A. Litvak, A. Pajor, N. Tomczak-Jaegermann

Isotropicity, the ψ_{α} condition

- A random vector X in \mathbb{R}^{n} is isotropic if

$$
\mathbb{E} X=0
$$

Isotropicity, the ψ_{α} condition

- A random vector X in \mathbb{R}^{n} is isotropic if

$$
\mathbb{E} X=0
$$

and

$$
\mathbb{E} X \otimes X=\mathrm{Id}
$$

Isotropicity, the ψ_{α} condition

- A random vector X in \mathbb{R}^{n} is isotropic if

$$
\mathbb{E} X=0
$$

and

$$
\mathbb{E} X \otimes X=\mathrm{Id}
$$

or equivalently for all $y \in \mathbb{R}^{n}$,

$$
\mathbb{E}\langle X, y\rangle^{2}=|y|^{2}
$$

Isotropicity, the ψ_{α} condition

- A random vector X in \mathbb{R}^{n} is isotropic if

$$
\mathbb{E} X=0
$$

and

$$
\mathbb{E} X \otimes X=\mathrm{Id}
$$

or equivalently for all $y \in \mathbb{R}^{n}$,

$$
\mathbb{E}\langle X, y\rangle^{2}=|y|^{2}
$$

- X is $\psi_{\alpha}(\alpha \in[1,2])$ with constant C if for all $y \in \mathbb{R}^{n}$,

$$
\|\langle X, y\rangle\|_{\psi_{\alpha}} \leq C|y|
$$

where

$$
\|Y\|_{\psi_{\alpha}}=\inf \left\{a>0: \mathbb{E} \exp \left((Y / a)^{\alpha}\right) \leq 2\right\}
$$

Consequences

Consequences

- $\mathbb{E}\left|X_{i}\right|^{2}=\sum_{j=1}^{n} \mathbb{E}\left\langle X_{i}, e_{j}\right\rangle^{2}=n$

Consequences

- $\mathbb{E}\left|X_{i}\right|^{2}=\sum_{j=1}^{n} \mathbb{E}\left\langle X_{i}, e_{j}\right\rangle^{2}=n$
- For any $y \in S^{n-1}$ and $t \geq 0$,

$$
\mathbb{P}\left(\left|\left\langle X_{i}, y\right\rangle\right| \geq t\right) \leq 2 \exp \left(-(t / C)^{\alpha}\right)
$$

Consequences

- $\mathbb{E}\left|X_{i}\right|^{2}=\sum_{j=1}^{n} \mathbb{E}\left\langle X_{i}, e_{j}\right\rangle^{2}=n$
- For any $y \in S^{n-1}$ and $t \geq 0$,

$$
\mathbb{P}\left(\left|\left\langle X_{i}, y\right\rangle\right| \geq t\right) \leq 2 \exp \left(-(t / C)^{\alpha}\right)
$$

Fact

For every random vector X not supported on any $n-1$ dimensional hyperplane, there exists an affine map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T X$ is isotropic.

Consequences

- $\mathbb{E}\left|X_{i}\right|^{2}=\sum_{j=1}^{n} \mathbb{E}\left\langle X_{i}, e_{j}\right\rangle^{2}=n$
- For any $y \in S^{n-1}$ and $t \geq 0$,

$$
\mathbb{P}\left(\left|\left\langle X_{i}, y\right\rangle\right| \geq t\right) \leq 2 \exp \left(-(t / C)^{\alpha}\right)
$$

Fact

For every random vector X not supported on any $n-1$ dimensional hyperplane, there exists an affine map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T X$ is isotropic.

If for a set $K \subseteq \mathbb{R}^{n}$ the random vector distributed uniformly on K is isotropic, we say that K is isotropic.

Log-concavity

A random vector X in \mathbb{R}^{n} is log-concave if its law μ satisfies a Brunn-Minkowski type inequality

$$
\mu(\theta A+(1-\theta) B) \geq \mu(A)^{\theta} \mu(B)^{1-\theta}
$$

Theorem (Borell)

A random vector not supported on any $(n-1)$ dimensional hyperplane is log-concave iff it has density of the form $\exp (-V(x))$, where $V: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex.

Lemma (Borell)

An isotropic log-concave random vector is ψ_{1} with a universal constant C.

Examples

The following distributions are log-concave:

- Gaussian measures
- Uniform distributions on convex bodies
- Measures with density of the form $C \exp (-\|x\|)$, where $\|x\|$ is a norm.
- Products, affine images and convolutions of the above distributions.

The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}, where X_{i} 's are independent isotropic log-concave random vectors in \mathbb{R}^{n}

Questions

The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}, where X_{i} 's are independent isotropic log-concave random vectors in \mathbb{R}^{n}

Questions

- What is the operator norm of $\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}$?

The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}, where X_{i} 's are independent isotropic log-concave random vectors in \mathbb{R}^{n}

Questions

- What is the operator norm of $\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}$?
- When is Γ^{T} close to a multiple of isometry?

The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}, where X_{i} 's are independent isotropic log-concave random vectors in \mathbb{R}^{n}

Questions

- What is the operator norm of $\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}$?
- When is Γ^{T} close to a multiple of isometry?
- How does Γ act on sparse vectors?

The basic model

Definition

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}, where X_{i} 's are independent isotropic log-concave random vectors in \mathbb{R}^{n}

Questions

- What is the operator norm of $\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}$?
- When is Γ^{T} close to a multiple of isometry?
- How does Γ act on sparse vectors?
- What is the smallest singular value of Γ ?

Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^{n}$ be a convex body, s.t. $B_{2}^{n} \subseteq K \subseteq R B_{2}^{n}$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^{n}$ tells us whether $x \in K$.

Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^{n}$ be a convex body, s.t. $B_{2}^{n} \subseteq K \subseteq R B_{2}^{n}$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^{n}$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K ? How to compute the volume of K ?

Motivations: sampling convex bodies

Problem

Let $K \subseteq \mathbb{R}^{n}$ be a convex body, s.t. $B_{2}^{n} \subseteq K \subseteq R B_{2}^{n}$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^{n}$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K ?
How to compute the volume of K ?

- This can be done by using Markov chains.
- Their speed of convergence depends on the position of the convex body.
- Preprocessing: First put K in the isotropic position (again by randomized algorithms).
- Centering the body is not comp. difficult - takes $\mathcal{O}(n)$ steps.
- The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}
$$

or (after a linear transformation)

- Centering the body is not comp. difficult - takes $\mathcal{O}(n)$ steps.
- The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}
$$

or (after a linear transformation)
Given an isotropic convex body in \mathbb{R}^{n}, how large N should we take so that

$$
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\|_{\ell_{2} \rightarrow \ell_{2}} \leq \varepsilon
$$

with high probability?

Interpretation in terms of Γ.

We have

$$
\begin{aligned}
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\|_{\ell_{2} \rightarrow \ell_{2}} & =\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, y\right\rangle^{2}-1\right| \\
& \left.=\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N}\right| \Gamma^{T} y\right|^{2}-1 \right\rvert\,
\end{aligned}
$$

Interpretation in terms of Γ.

We have

$$
\begin{aligned}
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\|_{\ell_{2} \rightarrow \ell_{2}} & =\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, y\right\rangle^{2}-1\right| \\
& \left.=\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N}\right| \Gamma^{T} y\right|^{2}-1 \right\rvert\,
\end{aligned}
$$

So the (geometric) question is

Interpretation in terms of Γ.

We have

$$
\begin{aligned}
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\|_{\ell_{2} \rightarrow \ell_{2}} & =\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, y\right\rangle^{2}-1\right| \\
& \left.=\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N}\right| \Gamma^{T} y\right|^{2}-1 \right\rvert\,
\end{aligned}
$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_{1}, \ldots, X_{N} drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^{n}.

Interpretation in terms of Γ.

We have

$$
\begin{aligned}
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\|_{\ell_{2} \rightarrow \ell_{2}} & =\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, y\right\rangle^{2}-1\right| \\
& \left.=\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N}\right| \Gamma^{T} y\right|^{2}-1 \right\rvert\,
\end{aligned}
$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_{1}, \ldots, X_{N} drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^{n}.

How large should N be so that $N^{-1 / 2} \Gamma^{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ was an almost isometry?

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) - unconditional bodies: $N=\mathcal{O}(n \log n)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) - unconditional bodies: $N=\mathcal{O}(n \log n)$
- Aubrun (2006) - unconditional bodies: $N=\mathcal{O}(n)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) - unconditional bodies: $N=\mathcal{O}(n \log n)$
- Aubrun (2006) - unconditional bodies: $N=\mathcal{O}(n)$
- Paouris $(2006)-N=\mathcal{O}(n \log n)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) - unconditional bodies: $N=\mathcal{O}(n \log n)$
- Aubrun (2006) - unconditional bodies: $N=\mathcal{O}(n)$
- Paouris (2006) $-N=\mathcal{O}(n \log n)$
- Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) - $N=\mathcal{O}(n)$

History of the problem

- Kannan, Lovasz, Simonovits (1995) $-N=\mathcal{O}\left(n^{2}\right)$
- Bourgain (1996) $-N=\mathcal{O}\left(n \log ^{3} n\right)$
- Rudelson (1999) $-N=\mathcal{O}\left(n \log ^{2} n\right)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) - unconditional bodies: $N=\mathcal{O}(n \log n)$
- Aubrun (2006) - unconditional bodies: $N=\mathcal{O}(n)$
- Paouris (2006) $-N=\mathcal{O}(n \log n)$
- Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) - $N=\mathcal{O}(n)$

For arbitrary isotropic random vectors, if you do not assume any uniform bound on $\left\langle X_{i}, y\right\rangle, y \in S^{n-1}$, you cannot remove the logarithm (the optimal bound $N=\mathcal{O}\left(n \log ^{\beta} n\right)$ is due to M . Rudelson). Recently $N=O(n \log \log n)$ was proven under a uniform bound on $(4+\varepsilon)$-th moments of $\left\langle X_{i}, y\right\rangle$ (R. Vershynin).

Remark

If $\frac{1}{\sqrt{N}} \Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C \sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

Remark

If $\frac{1}{\sqrt{N}} \Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C \sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

It turns out that to answer KLS it is enough to have good bounds on

$$
A_{m}:=\sup _{\substack{z \in S^{N-1} \\|\operatorname{supp} z| \leq m}}|\Gamma z|
$$

Remark

If $\frac{1}{\sqrt{N}} \Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C \sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

It turns out that to answer KLS it is enough to have good bounds on

$$
A_{m}:=\sup _{\substack{z \in S N-1 \\|\sup p z| \leq m}}|\Gamma z|
$$

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A.)

If $N \leq \exp (c \sqrt{n})$ and the vectors X_{i} are log-concave then for $t>1$, with probability at least $1-\exp (-c t \sqrt{n})$,

$$
\forall_{m \leq N} A_{m} \leq C t\left(\sqrt{n}+\sqrt{m} \log \left(\frac{2 N}{m}\right)\right) .
$$

In particular, with high probability $\|\Gamma\| \leq C(\sqrt{n}+\sqrt{N})$.

Sketch of the proof

A modification of Bourgain's approach. One approximates an arbitrary vector z with $|\operatorname{supp} z| \leq m$ by $x_{0}+x_{1}+\ldots+x_{l}\left(l<\log _{2} m\right)$, where

$$
\begin{array}{r}
\left|\operatorname{supp} x_{i}\right| \simeq m / 2^{i},\left\|x_{i}\right\|_{\infty} \simeq \sqrt{2^{i} / m}, i \geq 1 \\
\left|\operatorname{supp} x_{0}\right| \simeq m / 2^{\prime},\left\|x_{0}\right\|_{\infty} \leq 1
\end{array}
$$

and x_{i} comes from a 2^{-i}-net in the set of sparse vectors of support at most $m / 2^{i}$.

Sketch of the proof

A modification of Bourgain's approach. One approximates an arbitrary vector z with $|\operatorname{supp} z| \leq m$ by $x_{0}+x_{1}+\ldots+x_{l}\left(l<\log _{2} m\right)$, where

$$
\begin{array}{r}
\left|\operatorname{supp} x_{i}\right| \simeq m / 2^{i},\left\|x_{i}\right\|_{\infty} \simeq \sqrt{2^{i} / m}, i \geq 1 \\
\left|\operatorname{supp} x_{0}\right| \simeq m / 2^{\prime},\left\|x_{0}\right\|_{\infty} \leq 1
\end{array}
$$

and x_{i} comes from a 2^{-i}-net in the set of sparse vectors of support at most $m / 2^{i}$.
Then using the ψ_{1} condition one shows that with high probability

$$
A_{m}^{2} \lesssim \max _{i}\left|X_{i}\right|^{2}+A_{m}(\sqrt{n}+\sqrt{m} \log (2 N / m))
$$

Sketch of the proof

A modification of Bourgain's approach. One approximates an arbitrary vector z with $|\operatorname{supp} z| \leq m$ by $x_{0}+x_{1}+\ldots+x_{l}\left(I<\log _{2} m\right)$, where

$$
\begin{array}{r}
\left|\operatorname{supp} x_{i}\right| \simeq m / 2^{i},\left\|x_{i}\right\|_{\infty} \simeq \sqrt{2^{i} / m}, i \geq 1 \\
\left|\operatorname{supp} x_{0}\right| \simeq m / 2^{\prime},\left\|x_{0}\right\|_{\infty} \leq 1
\end{array}
$$

and x_{i} comes from a 2^{-i}-net in the set of sparse vectors of support at most $m / 2^{i}$.
Then using the ψ_{1} condition one shows that with high probability

$$
A_{m}^{2} \lesssim \max _{i}\left|X_{i}\right|^{2}+A_{m}(\sqrt{n}+\sqrt{m} \log (2 N / m))
$$

Theorem (G. Paouris)

$$
\mathbb{P}\left(\left|X_{i}\right| \geq C t \sqrt{n}\right) \leq \exp (-c t \sqrt{n})
$$

Sketch of the proof

A modification of Bourgain's approach. One approximates an arbitrary vector z with $|\operatorname{supp} z| \leq m$ by $x_{0}+x_{1}+\ldots+x_{l}\left(I<\log _{2} m\right)$, where

$$
\begin{array}{r}
\left|\operatorname{supp} x_{i}\right| \simeq m / 2^{i},\left\|x_{i}\right\|_{\infty} \simeq \sqrt{2^{i} / m}, i \geq 1 \\
\left|\operatorname{supp} x_{0}\right| \simeq m / 2^{\prime},\left\|x_{0}\right\|_{\infty} \leq 1
\end{array}
$$

and x_{i} comes from a 2^{-i}-net in the set of sparse vectors of support at most $m / 2^{i}$.
Then using the ψ_{1} condition one shows that with high probability

$$
A_{m}^{2} \lesssim \max _{i}\left|X_{i}\right|^{2}+A_{m}(\sqrt{n}+\sqrt{m} \log (2 N / m))
$$

Theorem (G. Paouris)

$$
\mathbb{P}\left(\left|X_{i}\right| \geq C t \sqrt{n}\right) \leq \exp (-c t \sqrt{n})
$$

Thus max $_{i}\left|X_{i}\right| \leq C \sqrt{n}$ with high probability and we can solve the inequality for A_{m}.

Compressed sensing and neighbourly polytopes

Imagine we have a vector $x \in \mathbb{R}^{N}$ (N large), which is supported on a small number of coordinates (say $|\operatorname{supp} \mathrm{x}|=m \ll N$).

Compressed sensing and neighbourly polytopes

Imagine we have a vector $x \in \mathbb{R}^{N}$ (N large), which is supported on a small number of coordinates (say $|\operatorname{supp} \mathrm{x}|=m \ll N$).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

Compressed sensing and neighbourly polytopes

Imagine we have a vector $x \in \mathbb{R}^{N}$ (N large), which is supported on a small number of coordinates (say $|\operatorname{supp} \mathrm{x}|=m \ll N$).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

What if we don't know the support?

Compressed sensing and neighbourly polytopes

Imagine we have a vector $x \in \mathbb{R}^{N}$ (N large), which is supported on a small number of coordinates (say $|\operatorname{supp} \mathrm{x}|=m \ll N$).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

What if we don't know the support?
Answer (Donoho, Candes, Tao, Romberg) Take measurements in random directions Y_{1}, \ldots, Y_{n} and set

$$
\hat{x}=\operatorname{argmin}\left\{\|y\|_{1}:\left\langle Y_{i}, y\right\rangle=\left\langle Y_{i}, x\right\rangle\right\}
$$

Compressed sensing and neighbourly polytopes

Definition

A polytope $K \subseteq \mathbb{R}^{n}$ is called m-neighbourly if any set of vertices of K of cardinality at most $m+1$ is the vertex set of a face.

Compressed sensing and neighbourly polytopes

Definition

A (centraly symetric) polytope $K \subseteq \mathbb{R}^{n}$ is called
m-(symmetric)-neighbourly if any set of vertices of K of cardinality at most $m+1$ (containing no opposite pairs) is the vertex set of a face.

Compressed sensing and neighbourly polytopes

Definition

A (centraly symetric) polytope $K \subseteq \mathbb{R}^{n}$ is called m-(symmetric)-neighbourly if any set of vertices of K of cardinality at most $m+1$ (containing no opposite pairs) is the vertex set of a face.

Theorem (Donoho)

Let Γ be an $n \times N$ matrix with columns X_{1}, \ldots, X_{N}. The following conditions are equivalent
(i) For any $x \in \mathbb{R}^{N}$ with $|\operatorname{supp} x| \leq m, x$ is the unique solution of the minimization problem

$$
\min \|t\|_{1}, \quad \Gamma t=\lceil x .
$$

(ii) The polytope $K(\Gamma)=\operatorname{conv}\left(\pm X_{1}, \ldots, \pm X_{N}\right)$ has $2 N$ vertices and is m-symmetric-neighbourly.

Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an $n \times N$ matrix Γ define the isometry constant $\delta_{m}=\delta_{m}(\Gamma)$ as the smallest number such that

$$
\left(1-\delta_{m}\right)|x|^{2} \leq|\Gamma x|^{2} \leq\left(1+\delta_{m}\right)|x|^{2}
$$

for all m-sparse vectors $x \in \mathbb{R}^{N}$.

Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an $n \times N$ matrix Γ define the isometry constant $\delta_{m}=\delta_{m}(\Gamma)$ as the smallest number such that

$$
\left(1-\delta_{m}\right)|x|^{2} \leq|\Gamma x|^{2} \leq\left(1+\delta_{m}\right)|x|^{2}
$$

for all m-sparse vectors $x \in \mathbb{R}^{N}$.

Theorem (Candes)

If $\delta_{2 m}(\Gamma)<\sqrt{2}-1$ then for every m-sparse $x \in \mathbb{R}^{n}, x$ is the unique solution to

$$
\min \|t\|_{1}, \quad \Gamma t=\Gamma x
$$

In consequence, the polytope $K(\Gamma)\left(r e s p . K_{+}(\Gamma)=\operatorname{conv}\left(X_{1}, \ldots, X_{N}\right)\right)$ is m-symmetric-neighbourly (resp. m-neighbourly)

History

The following matrices satisfy RIP

- Gaussian matrices (Candes, Tao), $m \simeq n / \log (2 N / n)$
- Matrices with rows selected randomly from the Fourier matrix (Candes \& Tao, Rudelson \& Vershynin), $m \simeq n / \log ^{4}(N)$
- Matrices with independent subgaussian isotropic rows (Mendelson, Pajor, Tomczak-Jaegermann), $m \simeq n / \log (2 N / n)$
- Matrices with independent log-concave isotropic columns (LPTA), $m \simeq n / \log ^{2}(2 N / n)$

Neighbourly polytopes

Theorem (LPTA)

Assume that $X_{i}^{\prime} s$ are ψ_{r}. Let $\theta \in(0,1 / 4)$ and assume that $N \leq \exp \left(c \theta^{C} n^{c}\right)$ and $m \log ^{2 / r}\left(\frac{2 N}{\theta m}\right) \leq \theta^{2} n$. Then, with probability at least $1-\exp \left(-c \theta^{c} n^{c}\right)$

$$
\delta_{m}\left(\frac{1}{\sqrt{n}} \Gamma\right) \leq \theta .
$$

Corollary (LPTA)

Let X_{1}, \ldots, X_{N} be random vectors drawn from an isotropic ψ_{r} ($r \in[1,2]$) convex body in \mathbb{R}^{n}. Then, for $N \leq \exp \left(c n^{c}\right)$, with probability at least $1-\exp \left(-c n^{c}\right)$, the polytope $K(\Gamma)\left(r e s p . K_{+}(\Gamma)\right)$ is m-symmetric-neighbourly (resp. m-neighbourly) with

$$
m=\left\lfloor c \frac{n}{\log ^{2 / r}(C N / n)}\right\rfloor
$$

Method of proof

We use the same approximation techniques as for the KLS problem to bound

$$
B_{m}=\sup _{|\operatorname{supp} z| \leq m,|z|=1} \|\left.\sum_{i \leq N} z_{i} X_{i}\right|^{2}-\left.\sum_{i \leq N} z_{i}^{2}\left|X_{i}\right|^{2}\right|^{1 / 2}
$$

Theorem (B. Klartag)

$$
\mathbb{P}\left(\max _{i \leq N}\left|\frac{\left|X_{i}\right|^{2}}{n}-1\right| \geq \varepsilon\right) \leq C \exp \left(-c \varepsilon^{c} n^{c}\right)
$$

Thus

$$
\delta_{n}\left(n^{-1 / 2} \Gamma\right) \leq n^{-1} B_{m}^{2}+\varepsilon
$$

with overwhelming probability.

Smallest singular value

Definition

For an $n \times n$ matrix Γ let $s_{1}(\Gamma) \geq s_{2}(\Gamma) \geq \ldots \geq s_{n}(\Gamma)$ be the singular values of Γ, i.e. eigenvalues of $\sqrt{\Gamma \Gamma^{\top}}$. In particular

$$
s_{1}(\Gamma)=\|A\|, s_{n}(\Gamma)=\inf _{x \in S^{n-1}}|\Gamma x|=\frac{1}{\left\|A^{-1}\right\|}
$$

Theorem (Edelman, Szarek)

Let Γ be an $n \times n$ random matrix with independent $\mathcal{N}(0,1)$ entries. Let s_{n} denote the smallest singular values of Γ. Then, for every $\varepsilon>0$,

$$
\mathbb{P}\left(s_{n}(\Gamma) \leq \varepsilon n^{-1 / 2}\right) \leq C \varepsilon
$$

where C is a universal constant.

Theorem (Rudelson, Vershynin)

Let Γ be a random matrix with independent entries $X_{i j}$, satisfying $\mathbb{E} X_{i j}=0, \mathbb{E} X_{i j}^{2}=1,\left\|X_{i j}\right\|_{\psi_{2}} \leq B$. Then for any $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left(s_{n}(\Gamma) \leq \varepsilon n^{-1 / 2}\right) \leq C \varepsilon+c^{n}
$$

where $C>0, c \in(0,1)$ depend only on B.

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.)

Let Γ be an $n \times n$ random matrix with independent isotropic \log-concave rows. Then, for any $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left(s_{n}(\Gamma) \leq \varepsilon n^{-1 / 2}\right) \leq C \varepsilon+C \exp \left(-c n^{c}\right)
$$

and

$$
\mathbb{P}\left(s_{n}(\Gamma) \leq \varepsilon n^{-1 / 2}\right) \leq C \varepsilon^{n /(n+2)} \log ^{C}(2 / \varepsilon) .
$$

Corollary

For any $\delta \in(0,1)$ there exists C_{δ} such that for any n and $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left(s_{n}(\Gamma) \leq \varepsilon n^{-1 / 2}\right) \leq C_{\delta} \varepsilon^{1-\delta}
$$

Definition

For an $n \times n$ matrix Γ define the condition number $\kappa(\Gamma)$ as

$$
\kappa(\Gamma)=\|\Gamma\| \cdot\left\|\Gamma^{-1}\right\|=\frac{s_{1}(\Gamma)}{s_{n}(\Gamma)} .
$$

Corollary

If Γ has independent isotropic log-concave columns, then for any $\delta>0, t>0$,

$$
\mathbb{P}(\kappa(\Gamma) \geq n t) \leq \frac{C_{\delta}}{t^{1-\delta}}
$$

Thank you

