Geometric properties of random matrices with independent log-concave rows/columns

Radosław Adamczak

University of Warsaw

Paris, May 2010

Based on joint work with O. Guédon, A. Litvak, A. Pajor, N. Tomczak-Jaegermann

• A random vector X in \mathbb{R}^n is **isotropic** if

$$\mathbb{E}X = 0$$

• A random vector X in \mathbb{R}^n is **isotropic** if

$$\mathbb{E}X = 0$$

and

 $\mathbb{E}X \otimes X = \mathrm{Id}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• A random vector X in \mathbb{R}^n is **isotropic** if

$$\mathbb{E}X = 0$$

and

$$\mathbb{E}X \otimes X = \mathrm{Id}$$

or equivalently for all $y \in \mathbb{R}^n$,

$$\mathbb{E}\langle X, y \rangle^2 = |y|^2.$$

• A random vector X in \mathbb{R}^n is **isotropic** if

$$\mathbb{E}X = 0$$

and

$$\mathbb{E}X \otimes X = \mathrm{Id}$$

or equivalently for all $y \in \mathbb{R}^n$,

$$\mathbb{E}\langle X, y \rangle^2 = |y|^2.$$

• *X* is ψ_{α} ($\alpha \in [1, 2]$) with constant *C* if for all $y \in \mathbb{R}^{n}$,

$$\|\langle X,y
angle \|_{\psi_lpha}\leq {\cal C}|y|,$$

where

$$\|Y\|_{\psi_{lpha}} = \inf\{a > 0 \colon \mathbb{E} \exp((Y/a)^{lpha}) \le 2\}$$

æ

イロト イヨト イヨト イヨト

•
$$\mathbb{E}|X_i|^2 = \sum_{j=1}^n \mathbb{E}\langle X_i, e_j \rangle^2 = n$$

æ

イロト イヨト イヨト イヨト

•
$$\mathbb{E}|X_i|^2 = \sum_{j=1}^n \mathbb{E}\langle X_i, e_j \rangle^2 = n$$

• For any $y \in S^{n-1}$ and $t \ge 0$,

$$\mathbb{P}(|\langle X_i, y \rangle| \ge t) \le 2 \exp(-(t/C)^{\alpha}).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

•
$$\mathbb{E}|X_i|^2 = \sum_{j=1}^n \mathbb{E}\langle X_i, e_j \rangle^2 = n$$

• For any $y \in S^{n-1}$ and $t \ge 0$,

$$\mathbb{P}(|\langle X_i, y \rangle| \geq t) \leq 2 \exp(-(t/C)^{\alpha}).$$

Fact

For every random vector X not supported on any n - 1 dimensional hyperplane, there exists an affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that TX is isotropic.

•
$$\mathbb{E}|X_i|^2 = \sum_{j=1}^n \mathbb{E}\langle X_i, e_j \rangle^2 = n$$

• For any $y \in S^{n-1}$ and $t \ge 0$,

$$\mathbb{P}(|\langle X_i, y \rangle| \geq t) \leq 2 \exp(-(t/C)^{\alpha}).$$

Fact

For every random vector X not supported on any n - 1 dimensional hyperplane, there exists an affine map $T : \mathbb{R}^n \to \mathbb{R}^n$ such that TX is isotropic.

If for a set $K \subseteq \mathbb{R}^n$ the random vector distributed uniformly on K is isotropic, we say that K is isotropic.

A random vector X in \mathbb{R}^n is log-concave if its law μ satisfies a Brunn-Minkowski type inequality

$$\mu(\theta A + (1 - \theta)B) \ge \mu(A)^{\theta}\mu(B)^{1-\theta}.$$

Theorem (Borell)

A random vector not supported on any (n - 1) dimensional hyperplane is log-concave iff it has density of the form $\exp(-V(x))$, where $V \colon \mathbb{R}^n \to (-\infty, \infty]$ is convex.

Lemma (Borell)

An isotropic log-concave random vector is ψ_1 with a universal constant *C*.

The following distributions are log-concave:

- Gaussian measures
- Uniform distributions on convex bodies
- Measures with density of the form $C \exp(-||x||)$, where ||x|| is a norm.
- Products, affine images and convolutions of the above distributions.

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N , where X_i 's are independent isotropic log-concave random vectors in \mathbb{R}^n

Questions

< ロ > < 同 > < 回 > < 回 >

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N , where X_i 's are independent isotropic log-concave random vectors in \mathbb{R}^n

Questions

• What is the operator norm of $\Gamma: \ell_2^N \to \ell_2^n$?

< ロ > < 同 > < 回 > < 回 >

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N , where X_i 's are independent isotropic log-concave random vectors in \mathbb{R}^n

Questions

- What is the operator norm of $\Gamma: \ell_2^N \to \ell_2^n$?
- When is Γ^{T} close to a multiple of isometry?

.

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N , where X_i 's are independent isotropic log-concave random vectors in \mathbb{R}^n

Questions

- What is the operator norm of $\Gamma: \ell_2^N \to \ell_2^n$?
- When is Γ^{T} close to a multiple of isometry?
- How does Γ act on sparse vectors?

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N , where X_i 's are independent isotropic log-concave random vectors in \mathbb{R}^n

Questions

- What is the operator norm of $\Gamma: \ell_2^N \to \ell_2^n$?
- When is Γ^{T} close to a multiple of isometry?
- How does Γ act on sparse vectors?
- What is the smallest singular value of Γ?

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_2^n \subseteq K \subseteq RB_2^n$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_2^n \subseteq K \subseteq RB_2^n$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K? How to compute the volume of K?

Problem

Let $K \subseteq \mathbb{R}^n$ be a convex body, s.t. $B_2^n \subseteq K \subseteq RB_2^n$. Assume we have access to an oracle (a black box), which given $x \in \mathbb{R}^n$ tells us whether $x \in K$.

How to generate random points uniformly distributed in K? How to compute the volume of K?

- This can be done by using Markov chains.
- Their speed of convergence depends on the position of the convex body.
- Preprocessing: First put *K* in the isotropic position (again by randomized algorithms).

- Centering the body is not comp. difficult takes O(n) steps.
- The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$\frac{1}{N}\sum_{i=1}^N X_i\otimes X_i.$$

or (after a linear transformation)

- Centering the body is not comp. difficult takes O(n) steps.
- The question boils down to:

How to approximate the covariance matrix of X - uniformly distributed on K by the empirical covariance matrix

$$\frac{1}{N}\sum_{i=1}^N X_i\otimes X_i.$$

or (after a linear transformation)

Given an isotropic convex body in \mathbb{R}^n , how large *N* should we take so that

$$\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}\otimes X_{i}-Id\right\|_{\ell_{2}\to\ell_{2}}\leq\varepsilon$$

with high probability?

We have

$$\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}\otimes X_{i}-Id\right\|_{\ell_{2}\to\ell_{2}}=\sup_{y\in S^{n-1}}\left|\frac{1}{N}\sum_{i=1}^{N}\langle X_{i},y\rangle^{2}-1\right|$$
$$=\sup_{y\in S^{n-1}}\left|\frac{1}{N}|\Gamma^{T}y|^{2}-1\right|$$

2

We have

$$\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}\otimes X_{i}-Id\right\|_{\ell_{2}\to\ell_{2}}=\sup_{y\in S^{n-1}}\left|\frac{1}{N}\sum_{i=1}^{N}\langle X_{i},y\rangle^{2}-1\right|$$
$$=\sup_{y\in S^{n-1}}\left|\frac{1}{N}|\Gamma^{T}y|^{2}-1\right|$$

So the (geometric) question is

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

We have

$$\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}\otimes X_{i}-Id\right\|_{\ell_{2}\to\ell_{2}}=\sup_{y\in S^{n-1}}\left|\frac{1}{N}\sum_{i=1}^{N}\langle X_{i},y\rangle^{2}-1\right|$$
$$=\sup_{y\in S^{n-1}}\left|\frac{1}{N}|\Gamma^{T}y|^{2}-1\right|$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_1, \ldots, X_N drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^n .

We have

$$\left\|\frac{1}{N}\sum_{i=1}^{N}X_{i}\otimes X_{i}-Id\right\|_{\ell_{2}\to\ell_{2}}=\sup_{y\in S^{n-1}}\left|\frac{1}{N}\sum_{i=1}^{N}\langle X_{i},y\rangle^{2}-1\right|$$
$$=\sup_{y\in S^{n-1}}\left|\frac{1}{N}|\Gamma^{T}y|^{2}-1\right|$$

So the (geometric) question is

Let Γ be a matrix with independent columns X_1, \ldots, X_N drawn from an isotropic convex body (log-concave measure) in \mathbb{R}^n .

How large should *N* be so that $N^{-1/2}\Gamma^T \colon \mathbb{R}^n \to \mathbb{R}^N$ was an almost isometry?

• Kannan, Lovasz, Simonovits (1995) – $N = O(n^2)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$

∃ >

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) unconditional bodies: N = O(n log n)

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) unconditional bodies: N = O(n log n)
- Aubrun (2006) unconditional bodies: N = O(n)

イロト イポト イラト イラ

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) unconditional bodies: N = O(n log n)
- Aubrun (2006) unconditional bodies: N = O(n)
- Paouris (2006) $N = \mathcal{O}(n \log n)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10/22

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) unconditional bodies: N = O(n log n)
- Aubrun (2006) unconditional bodies: N = O(n)
- Paouris (2006) $N = \mathcal{O}(n \log n)$
- Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) N = O(n)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10/22

- Kannan, Lovasz, Simonovits (1995) $N = O(n^2)$
- Bourgain (1996) $N = \mathcal{O}(n \log^3 n)$
- Rudelson (1999) $N = \mathcal{O}(n \log^2 n)$
- Giannopoulos, Hartzoulaki, Tsolomitis (2005) unconditional bodies: N = O(n log n)
- Aubrun (2006) unconditional bodies: N = O(n)
- Paouris (2006) $N = \mathcal{O}(n \log n)$
- Litvak, Pajor, Tomczak-Jaegermann, R.A. (2008) N = O(n)

For arbitrary isotropic random vectors, if you do not assume any uniform bound on $\langle X_i, y \rangle$, $y \in S^{n-1}$, you cannot remove the logarithm (the optimal bound $N = O(n \log^{\beta} n)$ is due to M. Rudelson). Recently $N = O(n \log \log n)$ was proven under a uniform bound on $(4 + \varepsilon)$ -th moments of $\langle X_i, y \rangle$ (R. Vershynin).

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

10/22

Remark

If $\frac{1}{\sqrt{N}}\Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C\sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

< 6 b

Remark

If $\frac{1}{\sqrt{N}}\Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C\sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

It turns out that to answer KLS it is enough to have good bounds on

$$A_m := \sup_{\substack{z \in S^{N-1} \\ |\text{supp } z| \le m}} |\Gamma z|$$

< 回 > < 三 > < 三 >

Remark

If $\frac{1}{\sqrt{N}}\Gamma^{T}$ is an almost isometry then obviously $\|\Gamma\| \leq C\sqrt{N}$, so the KLS question and the question about $\|\Gamma\|$ are related.

It turns out that to answer KLS it is enough to have good bounds on

$$A_m := \sup_{\substack{z \in S^{N-1} \\ |\operatorname{supp} z| \le m}} |\Gamma z|$$

Theorem (Litvak, Pajor, Tomczak-Jaegermann, R.A.)

If $N \le \exp(c\sqrt{n})$ and the vectors X_i are log-concave then for t > 1, with probability at least $1 - \exp(-ct\sqrt{n})$,

$$\forall_{m \leq N} A_m \leq Ct \Big(\sqrt{n} + \sqrt{m} \log \Big(\frac{2N}{m} \Big) \Big).$$

In particular, with high probability $\|\Gamma\| \leq C(\sqrt{n} + \sqrt{N})$.

A modification of Bourgain's approach. One approximates an arbitrary vector *z* with $|\text{supp } z| \le m$ by $x_0 + x_1 + \ldots + x_l$ ($l < \log_2 m$), where

$$\begin{aligned} |\text{supp } x_i| \simeq m/2^i, \ ||x_i||_{\infty} \simeq \sqrt{2^i/m}, \ i \ge 1 \\ |\text{supp } x_0| \simeq m/2^l, \ ||x_0||_{\infty} \le 1 \end{aligned}$$

and x_i comes from a 2⁻ⁱ-net in the set of sparse vectors of support at most $m/2^i$.

A modification of Bourgain's approach. One approximates an arbitrary vector *z* with $|\text{supp } z| \le m$ by $x_0 + x_1 + \ldots + x_l$ ($l < \log_2 m$), where

$$\begin{aligned} \text{supp } x_i | \simeq m/2^i, \ \|x_i\|_{\infty} \simeq \sqrt{2^i/m}, \ i \ge 1 \\ |\text{supp } x_0| \simeq m/2^l, \ \|x_0\|_{\infty} \le 1 \end{aligned}$$

and x_i comes from a 2⁻ⁱ-net in the set of sparse vectors of support at most $m/2^i$.

Then using the ψ_1 condition one shows that with high probability

$$A_m^2 \lesssim \max_i |X_i|^2 + A_m(\sqrt{n} + \sqrt{m}\log(2N/m)).$$

A modification of Bourgain's approach. One approximates an arbitrary vector *z* with $|\text{supp } z| \le m$ by $x_0 + x_1 + \ldots + x_l$ ($l < \log_2 m$), where

$$\begin{aligned} \text{supp } x_i | \simeq m/2^i, \ \|x_i\|_{\infty} \simeq \sqrt{2^i/m}, \ i \ge 1 \\ |\text{supp } x_0| \simeq m/2^l, \ \|x_0\|_{\infty} \le 1 \end{aligned}$$

and x_i comes from a 2⁻ⁱ-net in the set of sparse vectors of support at most $m/2^i$.

Then using the ψ_1 condition one shows that with high probability

$$A_m^2 \lesssim \max_i |X_i|^2 + A_m(\sqrt{n} + \sqrt{m}\log(2N/m)).$$

Theorem (G. Paouris)

$$\mathbb{P}(|X_i| \ge Ct\sqrt{n}) \le \exp(-ct\sqrt{n})$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A modification of Bourgain's approach. One approximates an arbitrary vector *z* with $|\text{supp } z| \le m$ by $x_0 + x_1 + \ldots + x_l$ ($l < \log_2 m$), where

$$\begin{aligned} \text{supp } x_i | \simeq m/2^i, \ \|x_i\|_{\infty} \simeq \sqrt{2^i/m}, \ i \ge 1 \\ |\text{supp } x_0| \simeq m/2^l, \ \|x_0\|_{\infty} \le 1 \end{aligned}$$

and x_i comes from a 2⁻ⁱ-net in the set of sparse vectors of support at most $m/2^i$.

Then using the ψ_1 condition one shows that with high probability

$$A_m^2 \lesssim \max_i |X_i|^2 + A_m(\sqrt{n} + \sqrt{m}\log(2N/m)).$$

Theorem (G. Paouris)

$$\mathbb{P}(|X_i| \geq Ct\sqrt{n}) \leq \exp(-ct\sqrt{n})$$

Thus $\max_i |X_i| \le C\sqrt{n}$ with high probability and we can solve the inequality for A_m .

Radosław Adamczak (MIM UW)

Compressed sensing and neighbourly polytopes

Imagine we have a vector $x \in \mathbb{R}^N$ (*N* large), which is supported on a small number of coordinates (say |supp x| = *m* << *N*).

.

A D b 4 A b

Imagine we have a vector $x \in \mathbb{R}^N$ (*N* large), which is supported on a small number of coordinates (say |supp x| = *m* << *N*).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

Imagine we have a vector $x \in \mathbb{R}^N$ (*N* large), which is supported on a small number of coordinates (say |supp x| = *m* << *N*).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

What if we don't know the support?

Imagine we have a vector $x \in \mathbb{R}^N$ (*N* large), which is supported on a small number of coordinates (say |supp x| = *m* << *N*).

If we knew the support of x, to determine x it would be enough to take m measurements along basis vectors.

What if we don't know the support?

Answer (Donoho, Candes, Tao, Romberg) Take measurements in random directions Y_1, \ldots, Y_n and set

$$\hat{\mathbf{x}} = \operatorname{argmin} \{ \|\mathbf{y}\|_1 \colon \langle \mathbf{Y}_i, \mathbf{y} \rangle = \langle \mathbf{Y}_i, \mathbf{x} \rangle \}$$

A polytope $K \subseteq \mathbb{R}^n$ is called *m*-neighbourly if any set of vertices of *K* of cardinality at most m + 1 is the vertex set of a face.

A (centraly symetric) polytope $K \subseteq \mathbb{R}^n$ is called *m*-(symmetric)-neighbourly if any set of vertices of K of cardinality at most m + 1 (containing no opposite pairs) is the vertex set of a face.

< ロ > < 同 > < 回 > < 回 >

A (centraly symetric) polytope $K \subseteq \mathbb{R}^n$ is called *m*-(symmetric)-neighbourly if any set of vertices of K of cardinality at most m + 1 (containing no opposite pairs) is the vertex set of a face.

Theorem (Donoho)

Let Γ be an $n \times N$ matrix with columns X_1, \ldots, X_N . The following conditions are equivalent

(i) For any $x \in \mathbb{R}^N$ with $|\text{supp } x| \le m$, x is the unique solution of the minimization problem

 $\min \|t\|_1, \quad \Gamma t = \Gamma x.$

(ii) The polytope $K(\Gamma) = conv(\pm X_1, \dots, \pm X_N)$ has 2N vertices and is *m*-symmetric-neighbourly.

Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an $n \times N$ matrix Γ define the **isometry constant** $\delta_m = \delta_m(\Gamma)$ as the smallest number such that

$$(1 - \delta_m)|x|^2 \le |\Gamma x|^2 \le (1 + \delta_m)|x|^2$$

for all *m*-sparse vectors $x \in \mathbb{R}^N$.

< ロ > < 同 > < 回 > < 回 >

Compressed sensing and neighbourly polytopes

Definition (Restricted Isometry Property (Candes, Tao))

For an $n \times N$ matrix Γ define the **isometry constant** $\delta_m = \delta_m(\Gamma)$ as the smallest number such that

$$(1 - \delta_m)|x|^2 \le |\Gamma x|^2 \le (1 + \delta_m)|x|^2$$

for all *m*-sparse vectors $x \in \mathbb{R}^N$.

Theorem (Candes)

If $\delta_{2m}(\Gamma) < \sqrt{2} - 1$ then for every m-sparse $x \in \mathbb{R}^n$, x is the unique solution to

 $\min \|t\|_1, \quad \Gamma t = \Gamma x.$

In consequence, the polytope $K(\Gamma)$ (resp. $K_+(\Gamma) = conv(X_1, ..., X_N)$) is *m*-symmetric-neighbourly (resp. *m*-neighbourly)

ъ

・ロト ・ 四ト ・ ヨト ・ ヨト …

The following matrices satisfy RIP

- Gaussian matrices (Candes, Tao), $m \simeq n/\log(2N/n)$
- Matrices with rows selected randomly from the Fourier matrix (Candes & Tao, Rudelson & Vershynin), $m \simeq n/\log^4(N)$
- Matrices with independent subgaussian isotropic rows (Mendelson, Pajor, Tomczak-Jaegermann), m ~ n/log(2N/n)
- Matrices with independent log-concave isotropic columns (LPTA), $m \simeq n/\log^2(2N/n)$

Neighbourly polytopes

Theorem (LPTA)

Assume that X'_i s are ψ_r . Let $\theta \in (0, 1/4)$ and assume that $N \leq \exp(c\theta^C n^c)$ and $m \log^{2/r} \left(\frac{2N}{\theta m}\right) \leq \theta^2 n$. Then, with probability at least $1 - \exp(-c\theta^C n^c)$ $\delta_m \left(\frac{1}{\sqrt{n}}\Gamma\right) \leq \theta$.

Corollary (LPTA)

Let X_1, \ldots, X_N be random vectors drawn from an isotropic ψ_r ($r \in [1,2]$) convex body in \mathbb{R}^n . Then, for $N \leq \exp(cn^c)$, with probability at least $1 - \exp(-cn^c)$, the polytope $K(\Gamma)$ (resp. $K_+(\Gamma)$) is *m*-symmetric-neighbourly (resp. *m*-neighbourly) with

$$m = \lfloor c \frac{n}{\log^{2/r}(CN/n)} \rfloor.$$

We use the same approximation techniques as for the KLS problem to bound

$$B_{m} = \sup_{|\text{supp } z| \le m, |z|=1} \left| \left| \sum_{i \le N} z_{i} X_{i} \right|^{2} - \sum_{i \le N} z_{i}^{2} |X_{i}|^{2} \right|^{1/2}$$

Theorem (B. Klartag)

$$\mathbb{P}\left(\max_{i\leq N}\left|\frac{|X_i|^2}{n}-1\right|\geq \varepsilon\right)\leq C\exp(-c\varepsilon^C n^c).$$

Thus

$$\delta_n(n^{-1/2}\Gamma) \le n^{-1}B_m^2 + \varepsilon$$

with overwhelming probability.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For an $n \times n$ matrix Γ let $s_1(\Gamma) \ge s_2(\Gamma) \ge \ldots \ge s_n(\Gamma)$ be the singular values of Γ , i.e. eigenvalues of $\sqrt{\Gamma\Gamma^T}$. In particular

$$s_1(\Gamma) = \|A\|, \ s_n(\Gamma) = \inf_{x \in S^{n-1}} |\Gamma x| = \frac{1}{\|A^{-1}\|}$$

Theorem (Edelman, Szarek)

Let Γ be an $n \times n$ random matrix with independent $\mathcal{N}(0,1)$ entries. Let s_n denote the smallest singular values of Γ . Then, for every $\varepsilon > 0$,

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon,$$

where C is a universal constant.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Rudelson, Vershynin)

Let Γ be a random matrix with independent entries X_{ij} , satisfying $\mathbb{E}X_{ij} = 0$, $\mathbb{E}X_{ij}^2 = 1$, $\|X_{ij}\|_{\psi_2} \leq B$. Then for any $\varepsilon \in (0, 1)$,

$$\mathbb{P}(\boldsymbol{s}_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq \boldsymbol{C}\varepsilon + \boldsymbol{c}^n,$$

where $C > 0, c \in (0, 1)$ depend only on B.

Theorem (Guédon, Litvak, Pajor, Tomczak-Jaegermann, R.A.)

Let Γ be an $n \times n$ random matrix with independent isotropic log-concave rows. Then, for any $\varepsilon \in (0, 1)$,

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C\varepsilon + C \exp(-cn^c)$$

and

$$\mathbb{P}(s_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq C \varepsilon^{n/(n+2)} \log^C(2/\varepsilon).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corollary

For any $\delta \in (0, 1)$ there exists C_{δ} such that for any n and $\varepsilon \in (0, 1)$,

$$\mathbb{P}(\boldsymbol{s}_n(\Gamma) \leq \varepsilon n^{-1/2}) \leq \boldsymbol{C}_{\delta} \varepsilon^{1-\delta}.$$

Definition

For an $n \times n$ matrix Γ define the **condition number** $\kappa(\Gamma)$ as

$$\kappa(\Gamma) = \|\Gamma\| \cdot \|\Gamma^{-1}\| = \frac{s_1(\Gamma)}{s_n(\Gamma)}.$$

Corollary

If Γ has independent isotropic log-concave columns, then for any $\delta > 0, t > 0, d > 0$

$$\mathbb{P}(\kappa(\Gamma) \geq nt) \leq rac{C_{\delta}}{t^{1-\delta}}.$$

< ロ > < 同 > < 回 > < 回 >

Thank you

Radosław Adamczak (MIM UW) Geometric properties of random matrices with

Paris, May 2010 22 / 22

크