Hierarchical kernel learning

Francis Bach
Willow project, INRIA - Ecole Normale Supérieure

May 2010

Outline

- Supervised learning and regularization
- Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
- Non linear sparse methods
- HKL: Hierarchical kernel learning
- Non linear variable selection

Supervised learning and regularization

- Data: $x_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}, i=1, \ldots, n$
- Minimize with respect to function $f: \mathcal{X} \rightarrow \mathcal{Y}$:

$$
\begin{array}{cc}
\sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\frac{\lambda}{2}\|f\|^{2} \\
\text { Error on data } & +\quad \text { Regularization } \\
\text { Loss \& function space ? } & \text { Norm ? }
\end{array}
$$

- Two theoretical/algorithmic issues:

1. Loss
2. Function space / norm

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ^{2}-norms)

- Non linear predictors
- Non parametric supervised learning and kernel methods
- Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ^{2}-norms)

- Non linear predictors
- Non parametric supervised learning and kernel methods
- Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

- Usually restricted to linear predictors on vectors $f(x)=w^{\top} x$
- Main example: ℓ_{1}-norm $\|w\|_{1}=\sum_{i=1}^{p}\left|w_{i}\right|$
- Perform model selection as well as regularization
- Theory "in the making"

Kernel methods: regularization by ℓ^{2}-norm

- Data: $x_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}, i=1, \ldots, n$, with features $\Phi(x) \in \mathcal{F}=\mathbb{R}^{p}$
- Predictor $f(x)=w^{\top} \Phi(x)$ linear in the features
- Optimization problem: $\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|w\|_{2}^{2}$

Kernel methods: regularization by ℓ^{2}-norm

- Data: $x_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}, i=1, \ldots, n$, with features $\Phi(x) \in \mathcal{F}=\mathbb{R}^{p}$
- Predictor $f(x)=w^{\top} \Phi(x)$ linear in the features
- Optimization problem:

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} \Phi\left(x_{i}\right)\right)+\frac{\lambda}{2}\|w\|_{2}^{2}
$$

- Representer theorem (Kimeldorf and Wahba, 1971): solution must be of the form $w=\sum_{i=1}^{n} \alpha_{i} \Phi\left(x_{i}\right)$
- Equivalent to solving: $\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n} \ell\left(y_{i},(K \alpha)_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K \alpha$
- Kernel matrix $K_{i j}=k\left(x_{i}, x_{j}\right)=\Phi\left(x_{i}\right)^{\top} \Phi\left(x_{j}\right)$

Kernel methods: regularization by ℓ^{2}-norm

- Running time $O\left(n^{2} \kappa+n^{3}\right)$ where κ complexity of one kernel evaluation (often much less) - independent of p
- Kernel trick: implicit mapping if $\kappa=o(p)$ by using only $k\left(x_{i}, x_{j}\right)$ instead of $\Phi\left(x_{i}\right)$
- Examples:
- Polynomial kernel: $k(x, y)=\left(1+x^{\top} y\right)^{d} \Rightarrow \mathcal{F}=$ polynomials
- Gaussian kernel: $k(x, y)=e^{-\alpha\|x-y\|_{2}^{2}} \quad \Rightarrow \mathcal{F}=$ smooth functions
- Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

Kernel methods: regularization by ℓ^{2}-norm

- Running time $O\left(n^{2} \kappa+n^{3}\right)$ where κ complexity of one kernel evaluation (often much less) - independent of p
- Kernel trick: implicit mapping if $\kappa=o(p)$ by using only $k\left(x_{i}, x_{j}\right)$ instead of $\Phi\left(x_{i}\right)$
- Examples:
- Polynomial kernel: $k(x, y)=\left(1+x^{\top} y\right)^{d} \Rightarrow \mathcal{F}=$ polynomials
- Gaussian kernel: $k(x, y)=e^{-\alpha\|x-y\|_{2}^{2}} \quad \Rightarrow \mathcal{F}=$ smooth functions
- Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)
- + : Implicit non linearities and high-dimensionality
- - : Problems of interpretability, dimension too high?

ℓ_{1}-norm regularization (linear setting)

- Data: covariates $x_{i} \in \mathbb{R}^{p}$, responses $y_{i} \in \mathcal{Y}, i=1, \ldots, n$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^{p}$:

$$
\begin{aligned}
\sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right) & +\quad \lambda\|w\|_{1} \\
\text { Error on data } & +\quad \text { Regularization }
\end{aligned}
$$

- square loss \Rightarrow basis pursuit (signal processing) (Chen et al., 2001), Lasso (statistics/machine learning) (Tibshirani, 1996)

ℓ^{2}-norm vs. ℓ^{1}-norm

- ℓ^{1}-norms lead to sparse/interpretable models
- ℓ^{2}-norms can be run implicitly with very large feature spaces

ℓ^{2}-norm vs. ℓ^{1}-norm

- ℓ^{1}-norms lead to sparse/interpretable models
- ℓ^{2}-norms can be run implicitly with very large feature spaces
- Algorithms:
- Smooth convex optimization vs. nonsmooth convex optimization
- First-order methods (Fu, 1998; Wu and Lange, 2008)
- Homotopy methods (Markowitz, 1956; Efron et al., 2004)
- Theory:
- Advantages of parsimony?
- Consistent estimation of the support?

Lasso - Two main recent theoretical results

1. Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1,
$$

where $\mathbf{Q}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$.

Lasso - Two main recent theoretical results

1. Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

where $\mathbf{Q}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$.

- The Lasso alone cannot find in general the good model
- Two step-procedures
- Adaptive Lasso (Zou, 2006; van de Geer et al., 2010)
\Rightarrow penalize by $\sum_{j=1}^{p} \frac{\left|w_{j}\right|}{\left|\hat{w}_{j}\right|}$
- Resampling (Bach, 2008a; Meinshausen and Bühlmann, 2008)
\Rightarrow use the bootstrap to select the model

Lasso - Two main recent theoretical results

1. Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$
\left\|\mathbf{Q}_{\mathbf{J}^{c} \mathbf{J}} \mathbf{Q}_{\mathbf{J J}}^{-1} \operatorname{sign}\left(\mathbf{w}_{\mathbf{J}}\right)\right\|_{\infty} \leqslant 1
$$

where $\mathbf{Q}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J}=\operatorname{Supp}(\mathbf{w})$.
2. (sub-)exponentially many irrelevant variables (Zhao and Yu , 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$
\log p=O(n)
$$

Outline

- Supervised learning and regularization
- Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
- Non linear sparse methods
- HKL: Hierarchical kernel learning
- Non linear variable selection

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Sparse methods are most often linear
- Sparsity with non-linearities
- replace $f(x)=\sum_{j=1}^{p} w_{j}^{\top} x_{j}$ with $x_{j} \in \mathbb{R}$ and $w_{j} \in \mathbb{R}$
- by $f(x)=\sum_{j=1}^{p} w_{j}^{\top} \Phi_{j}(x)$ with $\Phi_{j}(x) \in \mathcal{F}_{j}$ an $w_{j} \in \mathcal{F}_{j}$
- Replace the ℓ^{1}-norm $\sum_{j=1}^{p}\left|w_{j}\right|$ by "block" ℓ^{1}-norm $\sum_{j=1}^{p}\left\|w_{j}\right\|_{2}$
- Remarks
- Hilbert space extension of the group Lasso (Yuan and Lin, 2006)
- Alternative sparsity-inducing norms (Ravikumar et al., 2008)

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Multiple feature maps / kernels on $x \in \mathcal{X}$:
- p "feature maps" $\Phi_{j}: \mathcal{X} \mapsto \mathcal{F}_{j}, j=1, \ldots, p$.
- Minimization with respect to $w_{1} \in \mathcal{F}_{1}, \ldots, w_{p} \in \mathcal{F}_{p}$
- Predictor: $f(x)=w_{1}^{\top} \Phi_{1}(x)+\cdots+w_{p}^{\top} \Phi_{p}(x)$

- Generalized additive models (Hastie and Tibshirani, 1990)
- Link between regularization and kernel matrices

Regularization for multiple features

- Regularization by $\sum_{j=1}^{p}\left\|w_{j}\right\|_{2}^{2}$ is equivalent to using $K=\sum_{j=1}^{p} K_{j}$
- Summing kernels is equivalent to concatenating feature spaces

Regularization for multiple features

- Regularization by $\sum_{j=1}^{p}\left\|w_{j}\right\|_{2}^{2}$ is equivalent to using $K=\sum_{j=1}^{p} K_{j}$
- Regularization by $\sum_{j=1}^{p}\left\|w_{j}\right\|_{2}$ imposes sparsity at the group level
- Main questions when regularizing by block ℓ^{1}-norm:

1. Algorithms (Bach et al., 2004a,b; Rakotomamonjy et al., 2008)
2. Analysis of sparsity inducing properties (Bach, 2008b)
3. Sparse kernel combinations $\sum_{j=1}^{p} \eta_{j} K_{j}$ (Bach et al., 2004a)
4. Application to data fusion and hyperparameter learning

Outline

- Supervised learning and regularization
- Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
- Non linear sparse methods
- HKL: Hierarchical kernel learning
- Non linear variable selection

Lasso - Two main recent theoretical results

1. Support recovery condition
2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$
\log p=O(n)
$$

Lasso - Two main recent theoretical results

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$
\log p=O(n)
$$

- Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?

Lasso - Two main recent theoretical results

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$
\log p=O(n)
$$

- Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?
- Some type of recursivity/factorization is needed!

Non-linear variable selection

- Given $x=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}^{q}$, find function $f\left(x_{1}, \ldots, x_{q}\right)$ which depends only on a few variables
- Sparse generalized additive models (e.g., MKL):
- restricted to $f\left(x_{1}, \ldots, x_{q}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{q}\left(x_{q}\right)$
- Cosso (Lin and Zhang, 2006):
- restricted to $f\left(x_{1}, \ldots, x_{q}\right)=\sum_{J \subset\{1, \ldots, q\},|J| \leqslant 2} f_{J}\left(x_{J}\right)$

Non-linear variable selection

- Given $x=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}^{q}$, find function $f\left(x_{1}, \ldots, x_{q}\right)$ which depends only on a few variables
- Sparse generalized additive models (e.g., MKL):
- restricted to $f\left(x_{1}, \ldots, x_{q}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{q}\left(x_{q}\right)$
- Cosso (Lin and Zhang, 2006):
- restricted to $f\left(x_{1}, \ldots, x_{q}\right)=\sum_{J \subset\{1, \ldots, q\},|J| \leqslant 2} f_{J}\left(x_{J}\right)$
- Universally consistent non-linear selection requires all 2^{q} subsets

$$
f\left(x_{1}, \ldots, x_{q}\right)=\sum_{J \subset\{1, \ldots, q\}} f_{J}\left(x_{J}\right)
$$

Hierarchical kernel learning (Bach, 2008c)

- Many kernels can be decomposed as a sum of many "small" kernels indexed by a certain set $V: \quad k\left(x, x^{\prime}\right)=\sum_{v \in V} k_{v}\left(x, x^{\prime}\right)$
- Example with $x=\left(x_{1}, \ldots, x_{q}\right) \in \mathbb{R}^{q}$ (\Rightarrow non linear variable selection)
- Gaussian/ANOVA kernels: $p=\#(V)=2^{q}$

$$
\prod_{j=1}^{q}\left(1+e^{-\alpha\left(x_{j}-x_{j}^{\prime}\right)^{2}}\right)=\sum_{J \subset\{1, \ldots, q\}} \prod_{j \in J} e^{-\alpha\left(x_{j}-x_{j}^{\prime}\right)^{2}}=\sum_{J \subset\{1, \ldots, q\}} e^{-\alpha\left\|x_{J}-x_{J}^{\prime}\right\|_{2}^{2}}
$$

- Goal: learning sparse combination $\sum_{v \in V} \eta_{v} k_{v}\left(x, x^{\prime}\right)$
- Universally consistent non-linear variable selection requires all subsets

Restricting the set of active kernels

- Assume one separate predictor w_{v} for each kernel k_{v}
- Final prediction: $f(x)=\sum_{v \in V} w_{v}^{\top} \Phi_{v}(x)$
- With flat structure
- Consider block ℓ_{1}-norm: $\sum_{v \in V}\left\|w_{v}\right\|_{2}$
- cannot avoid being linear in $p=\#(V)=2^{q}$
- Using the structure of the small kernels

1. for computational reasons
2. to allow more irrelevant variables

Restricting the set of active kernels

- V is endowed with a directed acyclic graph (DAG) structure: select a kernel only after all of its ancestors have been selected
- Gaussian kernels: $V=$ power set of $\{1, \ldots, q\}$ with inclusion DAG
- Select a subset only after all its subsets have been selected

DAG-adapted norm (Zhao \& Yu, 2008)

- Graph-based structured regularization
- $\mathrm{D}(v)$ is the set of descendants of $v \in V$:

$$
\sum_{v \in V}\left\|w_{\mathrm{D}(v)}\right\|_{2}=\sum_{v \in V}\left(\sum_{t \in \mathrm{D}(v)}\left\|w_{t}\right\|_{2}^{2}\right)^{1 / 2}
$$

- Main property: If v is selected, so are all its ancestors

DAG-adapted norm (Zhao \& Yu, 2008)

- Graph-based structured regularization
- $\mathrm{D}(v)$ is the set of descendants of $v \in V$:

$$
\sum_{v \in V}\left\|w_{\mathrm{D}(v)}\right\|_{2}=\sum_{v \in V}\left(\sum_{t \in \mathrm{D}(v)}\left\|w_{t}\right\|_{2}^{2}\right)^{1 / 2}
$$

- Main property: If v is selected, so are all its ancestors

DAG-adapted norm (Zhao \& Yu, 2008)

- Graph-based structured regularization
- $\mathrm{D}(v)$ is the set of descendants of $v \in V$:

$$
\sum_{v \in V}\left\|w_{\mathrm{D}(v)}\right\|_{2}=\sum_{v \in V}\left(\sum_{t \in \mathrm{D}(v)}\left\|w_{t}\right\|_{2}^{2}\right)^{1 / 2}
$$

- Main property: If v is selected, so are all its ancestors

DAG-adapted norm (Zhao \& Yu, 2008)

- Graph-based structured regularization
- $\mathrm{D}(v)$ is the set of descendants of $v \in V$:

$$
\sum_{v \in V}\left\|w_{\mathrm{D}(v)}\right\|_{2}=\sum_{v \in V}\left(\sum_{t \in \mathrm{D}(v)}\left\|w_{t}\right\|_{2}^{2}\right)^{1 / 2}
$$

- Main property: If v is selected, so are all its ancestors

DAG-adapted norm (Zhao \& Yu, 2008)

- Graph-based structured regularization
$-\mathrm{D}(v)$ is the set of descendants of $v \in V$:

$$
\sum_{v \in V}\left\|w_{\mathrm{D}(v)}\right\|_{2}=\sum_{v \in V}\left(\sum_{t \in \mathrm{D}(v)}\left\|w_{t}\right\|_{2}^{2}\right)^{1 / 2}
$$

- Main property: If v is selected, so are all its ancestors
- Hierarchical kernel learning (Bach, 2008c) :
- polynomial-time algorithm for this norm
- necessary/sufficient conditions for consistent kernel selection
- Scaling between p, q, n for consistency
- Applications to variable selection or other kernels

Scaling between $\mathbf{p , n}$ and other graph-related quantities

$n \quad=$ number of observations
$p \quad=$ number of vertices in the DAG
$\operatorname{deg}(V)=$ maximum out degree in the DAG
$\operatorname{num}(V)=$ number of connected components in the DAG

- Proposition (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

$$
\log \operatorname{deg}(V)+\log \operatorname{num}(V)=O(n)
$$

Scaling between p, n

and other graph-related quantities

$n \quad=$ number of observations
$p \quad=$ number of vertices in the DAG
$\operatorname{deg}(V)=$ maximum out degree in the DAG
num $(V)=$ number of connected components in the DAG

- Proposition (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

$$
\log \operatorname{deg}(V)+\log \operatorname{num}(V)=O(n)
$$

- Unstructured case: $\operatorname{num}(V)=p \Rightarrow \log p=O(n)$
- Power set of q elements: $\operatorname{deg}(V)=q \Rightarrow \log q=\log \log p=O(n)$

Mean-square errors (regression)

dataset	n	p	k	$\#(V)$	L 2	greedy	MKL	HKL
abalone	4177	10	pol4	$\approx 10^{7}$	44.2 ± 1.3	43.9 ± 1.4	44.5 ± 1.1	$\mathbf{4 3 . 3} \pm \mathbf{1 . 0}$
abalone	4177	10	rbf	$\approx 10^{10}$	$\mathbf{4 3 . 0} \pm \mathbf{0 . 9}$	45.0 ± 1.7	43.7 ± 1.0	43.0 ± 1.1
boston	506	13	pol4	$\approx 10^{9}$	$\mathbf{1 7 . 1} \pm \mathbf{3 . 6}$	24.7 ± 10.8	22.2 ± 2.2	18.1 ± 3.8
boston	506	13	rbf	$\approx 10^{12}$	$\mathbf{1 6 . 4} \pm \mathbf{4 . 0}$	32.4 ± 8.2	20.7 ± 2.1	17.1 ± 4.7
pumadyn-32fh	8192	32	pol4	$\approx 10^{22}$	57.3 ± 0.7	56.4 ± 0.8	$\mathbf{5 6 . 4} \pm \mathbf{0 . 7}$	56.4 ± 0.8
pumadyn-32fh	8192	32	rbf	$\approx 10^{31}$	57.7 ± 0.6	72.2 ± 22.5	56.5 ± 0.8	$\mathbf{5 5 . 7} \pm \mathbf{0 . 7}$
pumadyn-32fm	8192	32	pol4	$\approx 10^{22}$	6.9 ± 0.1	6.4 ± 1.6	7.0 ± 0.1	$\mathbf{3 . 1} \pm \mathbf{0 . 0}$
pumadyn-32fm	8192	32	rbf	$\approx 10^{31}$	5.0 ± 0.1	46.2 ± 51.6	7.1 ± 0.1	$\mathbf{3 . 4} \pm \mathbf{0 . 0}$
pumadyn-32nh	8192	32	pol4	$\approx 10^{22}$	84.2 ± 1.3	73.3 ± 25.4	83.6 ± 1.3	$\mathbf{3 6 . 7} \pm \mathbf{0 . 4}$
pumadyn-32nh	8192	32	rbf	$\approx 10^{31}$	56.5 ± 1.1	81.3 ± 25.0	83.7 ± 1.3	$\mathbf{3 5 . 5} \pm \mathbf{0 . 5}$
pumadyn-32nm	8192	32	pol4	$\approx 10^{22}$	60.1 ± 1.9	69.9 ± 32.8	77.5 ± 0.9	$\mathbf{5 . 5} \pm \mathbf{0 . 1}$
pumadyn-32nm 8192	32	rbf	$\approx 10^{31}$	15.7 ± 0.4	67.3 ± 42.4	77.6 ± 0.9	$\mathbf{7 . 2} \pm \mathbf{0 . 1}$	

Extensions to other kernels

- Extension to graph kernels, string kernels, pyramid match kernels

- Exploring large feature spaces with structured sparsity-inducing norms
- Opposite view than traditional kernel methods
- Interpretable models
- Other structures than hierarchies (Jenatton et al., 2009a)

Conclusion

- Structured sparsity
- Sparsity-inducing norms
- Supervised learning: high-dimensional non-linear variable selection
- Unsupervised learning: sparse principal component analysis (Jenatton et al., 2009b) and dictionary learning (Mairal et al., 2009)
- Further/current work
- Universal consistency of non-linear variable selection
- Algorithms (Jenatton, Mairal, Obozinski, and Bach, 2010)
- Norm design, norms on matrices

References

F. Bach. High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning. Technical Report 0909.0844, arXiv, 2009.
F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML), 2008a.
F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research, pages 1179-1225, 2008b.
F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008c.
F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the International Conference on Machine Learning (ICML), 2004a.
F. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In Advances in Neural Information Processing Systems 17, 2004b.
P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 2008. To appear.
S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Rev., 43(1):129-159, 2001. ISSN 0036-1445.
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.
W. Fu. Penalized regressions: the bridge vs. the Lasso. Journal of Computational and Graphical Statistics, 7(3):397-416, 1998).
T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman \& Hall, 1990.
R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In Submitted to ICML, 2010.
G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applicat., 33:82-95, 1971.
G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics, 34(5):2272-2297, 2006.
K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2, 2008.
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In International Conference on Machine Learning (ICML), 2009.
H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. Naval Research Logistics Quarterly, 3:111-133, 1956.
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. Annals of statistics, 34(3):1436, 2006.
N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.
N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat., 2009. to appear.
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. Journal of Machine Learning Research, to appear, 2008.
P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman. SpAM: Sparse additive models. In Advances in Neural Information Processing Systems (NIPS), 2008.
B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of The Royal Statistical Society Series B, 58(1):267-288, 1996.
S. van de Geer, P. Buhlmann, and S. Zhou. Prediction and variable selection with the adaptive lasso. Technical Report 1001.5176, ArXiv, 2010.
G. Wahba. Spline Models for Observational Data. SIAM, 1990.
M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_{1} constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.
T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat., 2(1):224-244, 2008.
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of The Royal Statistical Society Series B, 68(1):49-67, 2006.
M. Yuan and Y. Lin. On the non-negative garrotte estimator. Journal of The Royal Statistical Society Series B, 69(2):143-161, 2007.
P. Zhao and B. Yu. On model selection consistency of Lasso. JMLR, 7:2541-2563, 2006.
H. Zou. The adaptive Lasso and its oracle properties. JASA, 101:1418-1429, 2006.

