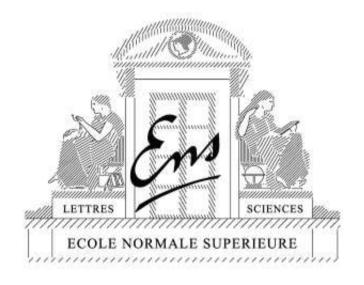
Hierarchical kernel learning

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure



May 2010

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection

Supervised learning and regularization

- ullet Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, $i = 1, \ldots, n$
- Minimize with respect to function $f: \mathcal{X} \to \mathcal{Y}$:

$$\sum_{i=1}^{n} \ell(y_i, f(x_i)) \\ + \frac{\lambda}{2} ||f||^2$$
 Error on data + Regularization

Loss & function space ? Norm ?

- Two theoretical/algorithmic issues:
 - 1. Loss
 - 2. Function space / norm

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear predictors
 - Non parametric supervised learning and kernel methods
 - Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

Regularizations

- Main goal: avoid overfitting
- Two main lines of work:
 - 1. Euclidean and Hilbertian norms (i.e., ℓ^2 -norms)
 - Non linear predictors
 - Non parametric supervised learning and kernel methods
 - Well developped theory (see, e.g., Wahba, 1990; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)
 - 2. Sparsity-inducing norms
 - Usually restricted to linear predictors on vectors $f(x) = w^{\top}x$
 - Main example: ℓ_1 -norm $||w||_1 = \sum_{i=1}^p |w_i|$
 - Perform model selection as well as regularization
 - Theory "in the making"

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, i = 1, ..., n, with **features** $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
 - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features

- Data: $x_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$, i = 1, ..., n, with **features** $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$
 - Predictor $f(x) = w^{\top} \Phi(x)$ linear in the features

• Optimization problem:
$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n \ell(y_i, w^\top \Phi(x_i)) + \frac{\lambda}{2} \|w\|_2^2$$

- Representer theorem (Kimeldorf and Wahba, 1971): solution must be of the form $w = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$

- Equivalent to solving:
$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \ell(y_i, (K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K\alpha$$

- Kernel matrix $K_{ij} = k(x_i, x_j) = \Phi(x_i)^{\top} \Phi(x_j)$

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) **independent of** p
- **Kernel trick**: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1+x^{\top}y)^d \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x,y) = e^{-\alpha ||x-y||_2^2}$ $\Rightarrow \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

- Running time $O(n^2\kappa + n^3)$ where κ complexity of one kernel evaluation (often much less) **independent of** p
- Kernel trick: implicit mapping if $\kappa = o(p)$ by using only $k(x_i, x_j)$ instead of $\Phi(x_i)$
- Examples:
 - Polynomial kernel: $k(x,y) = (1+x^{T}y)^{d} \Rightarrow \mathcal{F} = \text{polynomials}$
 - Gaussian kernel: $k(x,y) = e^{-\alpha ||x-y||_2^2}$ $\Rightarrow \mathcal{F} = \text{smooth functions}$
 - Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)
- + : Implicit non linearities and high-dimensionality
- — : Problems of interpretability, dimension too high?

ℓ_1 -norm regularization (linear setting)

- Data: covariates $x_i \in \mathbb{R}^p$, responses $y_i \in \mathcal{Y}$, $i = 1, \ldots, n$
- Minimize with respect to loadings/weights $w \in \mathbb{R}^p$:

$$\sum_{i=1}^{n} \ell(y_i, w^{\top} x_i) + \lambda \|w\|_1$$

Error on data + Regularization

• square loss ⇒ basis pursuit (signal processing) (Chen et al., 2001),
 Lasso (statistics/machine learning) (Tibshirani, 1996)

ℓ^2 -norm vs. ℓ^1 -norm

- ullet ℓ^1 -norms lead to ${
 m sparse}/{
 m interpretable}$ models
- ullet ℓ^2 -norms can be run implicitly with very large feature spaces

ℓ^2 -norm vs. ℓ^1 -norm

- ullet ℓ^1 -norms lead to sparse/interpretable models
- ullet ℓ^2 -norms can be run implicitly with very large feature spaces

• Algorithms:

- Smooth convex optimization vs. nonsmooth convex optimization
- First-order methods (Fu, 1998; Wu and Lange, 2008)
- Homotopy methods (Markowitz, 1956; Efron et al., 2004)

• Theory:

- Advantages of parsimony?
- Consistent estimation of the support?

1. **Support recovery condition** (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$\|\mathbf{Q}_{\mathbf{J}^c\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leqslant 1,$$

where $\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$ and $\mathbf{J} = \operatorname{Supp}(\mathbf{w})$.

1. Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$\|\mathbf{Q}_{\mathbf{J}^c\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leqslant 1,$$

where
$$\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$$
 and $\mathbf{J} = \operatorname{Supp}(\mathbf{w})$.

- The Lasso alone cannot find in general the good model
- Two step-procedures
 - Adaptive Lasso (Zou, 2006; van de Geer et al., 2010) \Rightarrow penalize by $\sum_{j=1}^{p} \frac{|w_j|}{|\hat{w}_i|}$
 - Resampling (Bach, 2008a; Meinshausen and Bühlmann, 2008)
 ⇒ use the bootstrap to select the model

1. Support recovery condition (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2006; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and only if

$$\|\mathbf{Q}_{\mathbf{J}^c\mathbf{J}}\mathbf{Q}_{\mathbf{J}\mathbf{J}}^{-1}\operatorname{sign}(\mathbf{w}_{\mathbf{J}})\|_{\infty} \leqslant 1,$$

where
$$\mathbf{Q} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{p \times p}$$
 and $\mathbf{J} = \operatorname{Supp}(\mathbf{w})$.

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Sparse methods are most often linear
- Sparsity with non-linearities
 - replace $f(x) = \sum_{j=1}^p w_j^\top x_j$ with $x_j \in \mathbb{R}$ and $w_j \in \mathbb{R}$
 - by $f(x) = \sum_{j=1}^p w_j^{\top} \Phi_j(x)$ with $\Phi_j(x) \in \mathcal{F}_j$ an $w_j \in \mathcal{F}_j$
- ullet Replace the ℓ^1 -norm $\sum_{j=1}^p |w_j|$ by "block" ℓ^1 -norm $\sum_{j=1}^p \|w_j\|_2$
- Remarks
 - Hilbert space extension of the group Lasso (Yuan and Lin, 2006)
 - Alternative sparsity-inducing norms (Ravikumar et al., 2008)

Multiple kernel learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004a)

- Multiple feature maps / kernels on $x \in \mathcal{X}$:
 - p "feature maps" $\Phi_j: \mathcal{X} \mapsto \mathcal{F}_j$, $j = 1, \ldots, p$.
 - Minimization with respect to $w_1 \in \mathcal{F}_1, \ldots, w_p \in \mathcal{F}_p$
 - Predictor: $f(x) = \mathbf{w_1}^{\top} \Phi_1(x) + \dots + \mathbf{w_p}^{\top} \Phi_p(x)$

- Generalized additive models (Hastie and Tibshirani, 1990)
- Link between regularization and kernel matrices

Regularization for multiple features

- Regularization by $\sum_{j=1}^p \|w_j\|_2^2$ is equivalent to using $K = \sum_{j=1}^p K_j$
 - Summing kernels is equivalent to concatenating feature spaces

Regularization for multiple features

- Regularization by $\sum_{j=1}^p \|w_j\|_2^2$ is equivalent to using $K = \sum_{j=1}^p K_j$
- ullet Regularization by $\sum_{j=1}^{p} \|w_j\|_2$ imposes sparsity at the group level
- Main questions when regularizing by block ℓ^1 -norm:
 - 1. Algorithms (Bach et al., 2004a,b; Rakotomamonjy et al., 2008)
 - 2. Analysis of sparsity inducing properties (Bach, 2008b)
 - 3. Sparse kernel combinations $\sum_{j=1}^{p} \eta_j K_j$ (Bach et al., 2004a)
 - 4. Application to data fusion and hyperparameter learning

Outline

- Supervised learning and regularization
 - Kernel methods vs. sparse methods
- MKL: Multiple kernel learning
 - Non linear sparse methods
- HKL: Hierarchical kernel learning
 - Non linear variable selection

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

• Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?

1. Support recovery condition

2. (sub-)exponentially many irrelevant variables (Zhao and Yu, 2006; Wainwright, 2006; Bickel et al., 2008; Lounici, 2008; Meinshausen and Yu, 2009): under appropriate assumptions, consistency is possible as long as

$$\log p = O(n)$$

- Question: is it possible to build a sparse algorithm that can learn from more than 10^{80} features?
 - Some type of recursivity/factorization is needed!

Non-linear variable selection

- Given $x=(x_1,\ldots,x_q)\in\mathbb{R}^q$, find function $f(x_1,\ldots,x_q)$ which depends only on a few variables
- Sparse generalized additive models (e.g., MKL):
 - restricted to $f(x_1,\ldots,x_q)=f_1(x_1)+\cdots+f_q(x_q)$
- Cosso (Lin and Zhang, 2006):
 - restricted to $f(x_1,\ldots,x_q)=\sum_{J\subset\{1,\ldots,q\},\ |J|\leqslant 2}f_J(x_J)$

Non-linear variable selection

- Given $x=(x_1,\ldots,x_q)\in\mathbb{R}^q$, find function $f(x_1,\ldots,x_q)$ which depends only on a few variables
- Sparse generalized additive models (e.g., MKL):
 - restricted to $f(x_1,\ldots,x_q)=f_1(x_1)+\cdots+f_q(x_q)$
- Cosso (Lin and Zhang, 2006):
 - restricted to $f(x_1,\ldots,x_q)=\sum_{\substack{J\subset\{1,\ldots,q\},\ |J|\leqslant 2}}f_J(x_J)$
- ullet Universally consistent non-linear selection requires all 2^q subsets

$$f(x_1, \dots, x_q) = \sum_{J \subset \{1, \dots, q\}} f_J(x_J)$$

Hierarchical kernel learning (Bach, 2008c)

- Many kernels can be decomposed as a sum of many "small" kernels indexed by a certain set V: $k(x,x') = \sum_{v \in V} k_v(x,x')$
- Example with $x = (x_1, \dots, x_q) \in \mathbb{R}^q \ (\Rightarrow \text{ non linear variable selection})$
 - Gaussian/ANOVA kernels: $p = \#(V) = 2^q$

$$\prod_{j=1}^{q} \left(1 + e^{-\alpha(x_j - x_j')^2} \right) = \sum_{J \subset \{1, \dots, q\}} \prod_{j \in J} e^{-\alpha(x_j - x_j')^2} = \sum_{J \subset \{1, \dots, q\}} e^{-\alpha ||x_J - x_J'||_2^2}$$

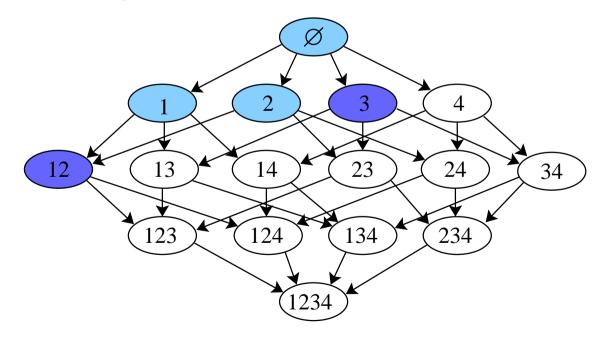
- Goal: learning sparse combination $\sum_{v \in V} \eta_v k_v(x, x')$
- Universally consistent non-linear variable selection requires all subsets

Restricting the set of active kernels

- ullet Assume one separate predictor w_v for each kernel k_v
 - Final prediction: $f(x) = \sum_{v \in V} w_v^{\top} \Phi_v(x)$
- With flat structure
 - Consider block ℓ_1 -norm: $\sum_{v \in V} \|w_v\|_2$
 - cannot avoid being linear in $p=\#(V)=2^q$
- Using the structure of the small kernels
 - 1. for computational reasons
 - 2. to allow more irrelevant variables

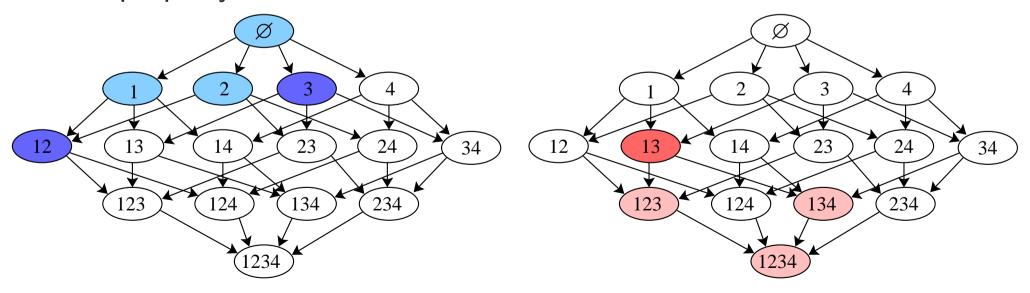
Restricting the set of active kernels

- V is endowed with a directed acyclic graph (DAG) structure:
 select a kernel only after all of its ancestors have been selected
- Gaussian kernels: $V = \text{power set of } \{1, \dots, q\}$ with inclusion DAG
 - Select a subset only after all its subsets have been selected



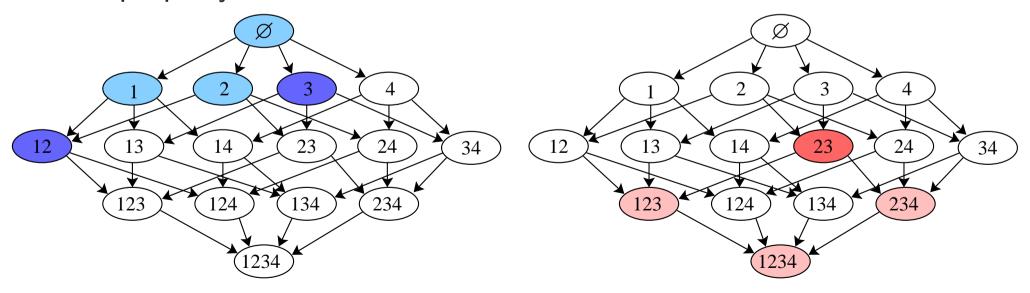
- Graph-based structured regularization
 - D(v) is the set of descendants of $v \in V$:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$



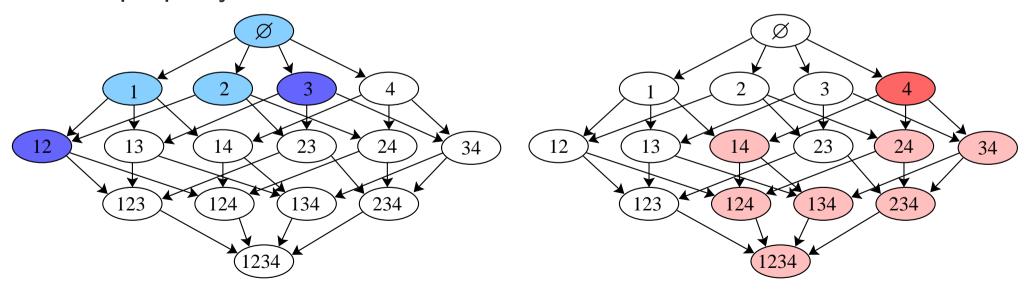
- Graph-based structured regularization
 - D(v) is the set of descendants of $v \in V$:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$



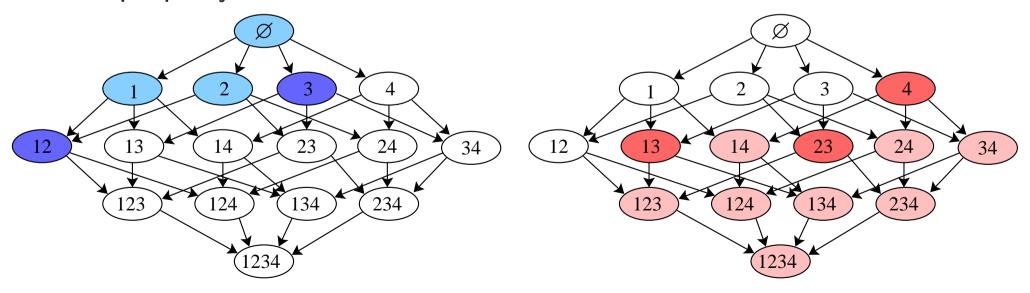
- Graph-based structured regularization
 - D(v) is the set of descendants of $v \in V$:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$



- Graph-based structured regularization
 - D(v) is the set of descendants of $v \in V$:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$



- Graph-based structured regularization
 - D(v) is the set of descendants of $v \in V$:

$$\sum_{v \in V} \|w_{D(v)}\|_2 = \sum_{v \in V} \left(\sum_{t \in D(v)} \|w_t\|_2^2 \right)^{1/2}$$

- ullet Main property: If v is selected, so are all its ancestors
- Hierarchical kernel learning (Bach, 2008c) :
 - polynomial-time algorithm for this norm
 - necessary/sufficient conditions for consistent kernel selection
 - Scaling between p, q, n for consistency
 - Applications to variable selection or other kernels

Scaling between p, n and other graph-related quantities

 $\begin{array}{lll} n & = & \text{number of observations} \\ p & = & \text{number of vertices in the DAG} \\ \deg(V) & = & \text{maximum out degree in the DAG} \\ \operatorname{num}(V) & = & \text{number of connected components in the DAG} \end{array}$

• **Proposition** (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

$$\log \deg(V) + \log \operatorname{num}(V) = O(n)$$

Scaling between p, n and other graph-related quantities

 $\begin{array}{lll} n & = & \text{number of observations} \\ p & = & \text{number of vertices in the DAG} \\ \deg(V) & = & \text{maximum out degree in the DAG} \\ \operatorname{num}(V) & = & \text{number of connected components in the DAG} \end{array}$

• **Proposition** (Bach, 2009): Assume consistency condition satisfied, Gaussian noise and data generated from a sparse function, then the support is recovered with high-probability as soon as:

$$\log \deg(V) + \log \operatorname{num}(V) = O(n)$$

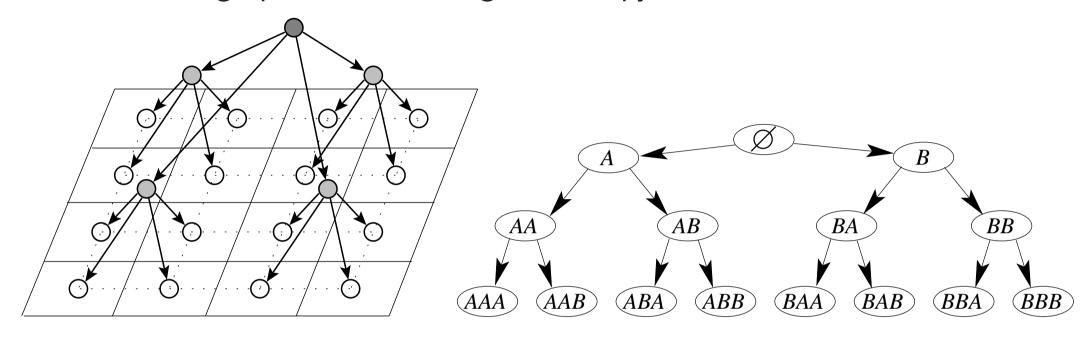
- Unstructured case: $num(V) = p \Rightarrow \log p = O(n)$
- Power set of q elements: $\deg(V) = q \Rightarrow \Big| \log q = \log \log p = O(n) \Big|$

Mean-square errors (regression)

dataset	\overline{n}	\overline{p}	k	#(V)	L2	greedy	MKL	HKL
abalone	4177	10	pol4	$\approx 10^7$	44.2±1.3	43.9 ± 1.4	$44.5{\pm}1.1$	43.3±1.0
abalone	4177	10	rbf	$\approx 10^{10}$	43.0±0.9	$45.0 {\pm} 1.7$	43.7 ± 1.0	43.0 ± 1.1
boston	506	13	pol4	$\approx 10^9$	17.1±3.6	24.7±10.8	22.2±2.2	18.1 ± 3.8
boston	506	13	rbf	$\approx 10^{12}$	$16.4 {\pm} 4.0$	32.4 ± 8.2	20.7 ± 2.1	$17.1 {\pm} 4.7$
pumadyn-32fh	8192	32	pol4	$\approx 10^{22}$	57.3 ± 0.7	56.4 ± 0.8	56.4±0.7	56.4 ± 0.8
pumadyn-32fh	8192	32	rbf	$\approx 10^{31}$	57.7 ± 0.6	72.2 ± 22.5	56.5 ± 0.8	$\textbf{55.7} \!\pm\! \textbf{0.7}$
pumadyn-32fm	8192	32	pol4	$\approx 10^{22}$	6.9 ± 0.1	$6.4{\pm}1.6$	7.0 ± 0.1	3.1 ± 0.0
pumadyn-32fm	8192	32	rbf	$\approx 10^{31}$	$5.0 {\pm} 0.1$	46.2 ± 51.6	$7.1{\pm}0.1$	$3.4{\pm}0.0$
pumadyn-32nh	8192	32	pol4	$\approx 10^{22}$	84.2±1.3	73.3±25.4	83.6 ± 1.3	36.7±0.4
pumadyn-32nh	8192	32	rbf	$\approx 10^{31}$	$56.5{\pm}1.1$	81.3 ± 25.0	83.7 ± 1.3	$35.5\!\pm\!0.5$
pumadyn-32nm	8192	32	pol4	$\approx 10^{22}$	60.1 ± 1.9	69.9 ± 32.8	77.5 ± 0.9	$5.5{\pm}0.1$
pumadyn-32nm	8192	32	rbf	$\approx 10^{31}$	15.7±0.4	67.3±42.4	77.6 ± 0.9	$\textbf{7.2} \!\pm\! \textbf{0.1}$

Extensions to other kernels

• Extension to graph kernels, string kernels, pyramid match kernels



- Exploring large feature spaces with structured sparsity-inducing norms
 - Opposite view than traditional kernel methods
 - Interpretable models
- Other structures than hierarchies (Jenatton et al., 2009a)

Conclusion

Structured sparsity

- Sparsity-inducing norms
- Supervised learning: high-dimensional non-linear variable selection
- Unsupervised learning: sparse principal component analysis (Jenatton et al., 2009b) and dictionary learning (Mairal et al., 2009)

• Further/current work

- Universal consistency of non-linear variable selection
- Algorithms (Jenatton, Mairal, Obozinski, and Bach, 2010)
- Norm design, norms on matrices

References

- F. Bach. High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning. Technical Report 0909.0844, arXiv, 2009.
- F. Bach. Bolasso: model consistent lasso estimation through the bootstrap. In *Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML)*, 2008a.
- F. Bach. Consistency of the group Lasso and multiple kernel learning. *Journal of Machine Learning Research*, pages 1179–1225, 2008b.
- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008c.
- F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2004a.
- F. Bach, R. Thibaux, and M. I. Jordan. Computing regularization paths for learning multiple kernels. In *Advances in Neural Information Processing Systems* 17, 2004b.
- P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 2008. To appear.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Rev.*, 43(1):129–159, 2001. ISSN 0036-1445.
- B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32:407, 2004.
- W. Fu. Penalized regressions: the bridge vs. the Lasso. *Journal of Computational and Graphical Statistics*, 7(3):397–416, 1998).
- T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman & Hall, 1990.

- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. *J. Math. Anal. Applicat.*, 33:82–95, 1971.
- G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *Journal of Machine Learning Research*, 5:27–72, 2004.
- Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression. *Annals of Statistics*, 34(5):2272–2297, 2006.
- K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. *Electronic Journal of Statistics*, 2, 2008.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In *International Conference on Machine Learning (ICML)*, 2009.
- H. M. Markowitz. The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly*, 3:111–133, 1956.
- N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. *Annals of statistics*, 34(3):1436, 2006.
- N. Meinshausen and P. Bühlmann. Stability selection. Technical report, arXiv: 0809.2932, 2008.

- N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. *Ann. Stat.*, 2009. to appear.
- A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. *Journal of Machine Learning Research*, to appear, 2008.
- P. Ravikumar, H. Liu, J. Lafferty, and L. Wasserman. SpAM: Sparse additive models. In *Advances in Neural Information Processing Systems (NIPS)*, 2008.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Camb. U. P., 2004.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- S. van de Geer, P. Buhlmann, and S. Zhou. Prediction and variable selection with the adaptive lasso. Technical Report 1001.5176, ArXiv, 2010.
- G. Wahba. Spline Models for Observational Data. SIAM, 1990.
- M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 -constrained quadratic programming. Technical Report 709, Dpt. of Statistics, UC Berkeley, 2006.
- T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. *Ann. Appl. Stat.*, 2(1):224–244, 2008.
- M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. *Journal of The Royal Statistical Society Series B*, 68(1):49–67, 2006.
- M. Yuan and Y. Lin. On the non-negative garrotte estimator. *Journal of The Royal Statistical Society Series B*, 69(2):143–161, 2007.

- P. Zhao and B. Yu. On model selection consistency of Lasso. JMLR, 7:2541-2563, 2006.
- H. Zou. The adaptive Lasso and its oracle properties. JASA, 101:1418–1429, 2006.