
Capturing Functions in High
Dimension

Ronald DeVore

Marne2010 – p. 1/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Many reasonable settings that occur in applications

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Many reasonable settings that occur in applications

We are given a budget n and can ask for the value of f
at n points of our choosing - Each question is costly

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Many reasonable settings that occur in applications

We are given a budget n and can ask for the value of f
at n points of our choosing - Each question is costly

From the answers we want to produce an accurate
approximation to f : For any other value of x, we can
cheaply produce an approximation to f(x)

Marne2010 – p. 2/21

Capturing Functions in High Dimensions

This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Many reasonable settings that occur in applications

We are given a budget n and can ask for the value of f
at n points of our choosing - Each question is costly

From the answers we want to produce an accurate
approximation to f : For any other value of x, we can
cheaply produce an approximation to f(x)

Where should we query f?

Marne2010 – p. 2/21

The Challenge of the Problem

We need to assume something about f

Marne2010 – p. 3/21

The Challenge of the Problem

We need to assume something about f

Usual Model for functions is based on smoothness

Marne2010 – p. 3/21

The Challenge of the Problem

We need to assume something about f

Usual Model for functions is based on smoothness

This model is not sufficient in high dimension

Marne2010 – p. 3/21

The Challenge of the Problem

We need to assume something about f

Usual Model for functions is based on smoothness

This model is not sufficient in high dimension

Curse of Dimensionality

Marne2010 – p. 3/21

The Challenge of the Problem

We need to assume something about f

Usual Model for functions is based on smoothness

This model is not sufficient in high dimension

Curse of Dimensionality

If we only assume f has s orders of smoothness the
best we can approximated is order O(n−s/D) where n is
the number of parameters (dimension of approximation
space) or number of queries of f or number of
computations

Marne2010 – p. 3/21

The Challenge of the Problem

We need to assume something about f

Usual Model for functions is based on smoothness

This model is not sufficient in high dimension

Curse of Dimensionality

If we only assume f has s orders of smoothness the
best we can approximated is order O(n−s/D) where n is
the number of parameters (dimension of approximation
space) or number of queries of f or number of
computations

When D is large s would have to be very large to
overcome this.

Marne2010 – p. 3/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Compressibility: coefficients have some decay (when
rearranged in decreasing size)

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Compressibility: coefficients have some decay (when
rearranged in decreasing size)

typical assumption is the coefficients are in some
(weak) ℓp with p small

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Compressibility: coefficients have some decay (when
rearranged in decreasing size)

typical assumption is the coefficients are in some
(weak) ℓp with p small

May be useful but it also suffers curse of dimensionality

Marne2010 – p. 4/21

New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Compressibility: coefficients have some decay (when
rearranged in decreasing size)

typical assumption is the coefficients are in some
(weak) ℓp with p small

May be useful but it also suffers curse of dimensionality

For example, for wavelet basis, such compressibility
corresponds to some Besov smoothness f ∈ Bs

τ (Lτ)

and again approximation is limited by O(n−s/D)
Marne2010 – p. 4/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Perhaps ϕ(x) = Ax where A is a d×D matrix

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Perhaps ϕ(x) = Ax where A is a d×D matrix

g is defined on IRd has smoothness of order s

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Perhaps ϕ(x) = Ax where A is a d×D matrix

g is defined on IRd has smoothness of order s

Parameters: d,D, s, complexity of φ

Marne2010 – p. 5/21

HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Perhaps ϕ(x) = Ax where A is a d×D matrix

g is defined on IRd has smoothness of order s

Parameters: d,D, s, complexity of φ

How friendly are such functions to approximation?
Marne2010 – p. 5/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

Marne2010 – p. 6/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f

Marne2010 – p. 6/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f
(i) f depends only on d variables:
f(x1, . . . , xD) = g(xj1 , . . . , xjd

), where d is small
compared to D and g has some smoothness that
may not be known

Marne2010 – p. 6/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f
(i) f depends only on d variables:
f(x1, . . . , xD) = g(xj1 , . . . , xjd

), where d is small
compared to D and g has some smoothness that
may not be known
(ii) f can be approximated by functions of the type (i)

Marne2010 – p. 6/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f
(i) f depends only on d variables:
f(x1, . . . , xD) = g(xj1 , . . . , xjd

), where d is small
compared to D and g has some smoothness that
may not be known
(ii) f can be approximated by functions of the type (i)

For this talk, we shall use smoothness conditions like
g ∈ Cs for some s > 0.

Marne2010 – p. 6/21

Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f
(i) f depends only on d variables:
f(x1, . . . , xD) = g(xj1 , . . . , xjd

), where d is small
compared to D and g has some smoothness that
may not be known
(ii) f can be approximated by functions of the type (i)

For this talk, we shall use smoothness conditions like
g ∈ Cs for some s > 0.

Our First Problem: Given a budget n of point values we
can ask of f where should we take these samples and
how well can we approximate f from these?

Marne2010 – p. 6/21

Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Marne2010 – p. 7/21

Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Marne2010 – p. 7/21

Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

Marne2010 – p. 7/21

Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

This would require
(D

d

)

(L+ 1)d points

Marne2010 – p. 7/21

Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

This would require
(D

d

)

(L+ 1)d points

We want and can to do much better

Marne2010 – p. 7/21

First Results

DeVore-Petrova-Wojtaszczyk

Marne2010 – p. 8/21

First Results

DeVore-Petrova-Wojtaszczyk

Theorem
(i) Assume f(x1, . . . , xD) = g(xj1 , . . . , xjd

). By making
C(d, S)Ld(log2D) adaptive point queries we can recover
f by f̂ with the following accuracy

‖f − f̂‖C(Ω) ≤ C(S, d)‖g(s)‖C([0,1]d)L
−s

(ii) Suppose we only know that there is a g and j1, . . . , jd
such that ‖f(x1, . . . , xD) − g(xj1 , . . . , xjd

)‖C(Ω) ≤ ǫ. By

making C(d, S)Ld(log2D) adaptive point queries we can
recover f by f̂ to the accuracy

‖f − f̂‖C(Ω) ≤ C(S, d){‖g(s)‖C([0,1]d)L
−s + ǫ}

Marne2010 – p. 8/21

Partitions

We shall describe the points at which we query f

Marne2010 – p. 9/21

Partitions

We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

Marne2010 – p. 9/21

Partitions

We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

(i) For each j = (j1, . . . , jd), there is an A ∈ A such
that no two jν lie in the same cell Ai

Marne2010 – p. 9/21

Partitions

We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

(i) For each j = (j1, . . . , jd), there is an A ∈ A such
that no two jν lie in the same cell Ai

(ii) For each j = (j1, . . . , jk) and j 6= jν, ν = 1, . . . , d,
there is an A such that the cell Ai which contains j
contains none of the jν , ν = 1, . . . , d

Marne2010 – p. 9/21

Partitions

We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

(i) For each j = (j1, . . . , jd), there is an A ∈ A such
that no two jν lie in the same cell Ai

(ii) For each j = (j1, . . . , jk) and j 6= jν, ν = 1, . . . , d,
there is an A such that the cell Ai which contains j
contains none of the jν , ν = 1, . . . , d

A family of partitions which satisfy (i) are called Perfect
Hashing in combinatorics

Marne2010 – p. 9/21

Partitions

We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

(i) For each j = (j1, . . . , jd), there is an A ∈ A such
that no two jν lie in the same cell Ai

(ii) For each j = (j1, . . . , jk) and j 6= jν, ν = 1, . . . , d,
there is an A such that the cell Ai which contains j
contains none of the jν , ν = 1, . . . , d

A family of partitions which satisfy (i) are called Perfect
Hashing in combinatorics

We will use these partitions to construct query points so
we want A that satisfy the Partition Assumption with the
smallest cardinality

Marne2010 – p. 9/21

Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

Marne2010 – p. 10/21

Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

For small d one can do this constructively, e.g. d = 2
use binary partitions

Marne2010 – p. 10/21

Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

For small d one can do this constructively, e.g. d = 2
use binary partitions

It is still an open problem to determine the asymptotic
behavior of the smallest perfect hashing collections
when d ≥ 3

Marne2010 – p. 10/21

Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

For small d one can do this constructively, e.g. d = 2
use binary partitions

It is still an open problem to determine the asymptotic
behavior of the smallest perfect hashing collections
when d ≥ 3

To satisfy (ii) of the Partition Assumption we have to
enlarge Perfect Hashing constructions. Our current
constructions give #A ≤ d2e2d lnD

Marne2010 – p. 10/21

Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

For small d one can do this constructively, e.g. d = 2
use binary partitions

It is still an open problem to determine the asymptotic
behavior of the smallest perfect hashing collections
when d ≥ 3

To satisfy (ii) of the Partition Assumption we have to
enlarge Perfect Hashing constructions. Our current
constructions give #A ≤ d2e2d lnD

Probably this could be improved

Marne2010 – p. 10/21

Base points P
The first points at which we query f are what we call
base points

Marne2010 – p. 11/21

Base points P
The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A

Marne2010 – p. 11/21

Base points P
The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A
There are (L+ 1)d#A points in P

Marne2010 – p. 11/21

Base points P
The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A
There are (L+ 1)d#A points in P
Projection Property: The important property of this set
is that for any j = (j1, . . . , jd), 1 ≤ j1 < j2 < · · · < jd ≤ D
the projection of P onto the d- dimensional space
spanned by ej1 , . . . , ejd

contains a uniform grid of the
cube [0, 1]d with spacing h := 1/L

Marne2010 – p. 11/21

Base points P
The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A
There are (L+ 1)d#A points in P
Projection Property: The important property of this set
is that for any j = (j1, . . . , jd), 1 ≤ j1 < j2 < · · · < jd ≤ D
the projection of P onto the d- dimensional space
spanned by ej1 , . . . , ejd

contains a uniform grid of the
cube [0, 1]d with spacing h := 1/L

For any j = (j1, . . . , jd) and any k- variate function g let
Gj(x1, . . . , xD) := g(xj1 , . . . , xjd

)

Marne2010 – p. 11/21

Base points P
The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A
There are (L+ 1)d#A points in P
Projection Property: The important property of this set
is that for any j = (j1, . . . , jd), 1 ≤ j1 < j2 < · · · < jd ≤ D
the projection of P onto the d- dimensional space
spanned by ej1 , . . . , ejd

contains a uniform grid of the
cube [0, 1]d with spacing h := 1/L

For any j = (j1, . . . , jd) and any k- variate function g let
Gj(x1, . . . , xD) := g(xj1 , . . . , xjd

)

If f = Gj for some j, then knowing f on P will determine
g on a uniform grid with spacing h Marne2010 – p. 11/21

Padding points Q
The base points are not sufficient to determine the
change coordinates

Marne2010 – p. 12/21

Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

Marne2010 – p. 12/21

Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

Marne2010 – p. 12/21

Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

There are ≤ 2d#(P) = 2d(L+ 1)d#(A) such admissible
pairs

Marne2010 – p. 12/21

Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

There are ≤ 2d#(P) = 2d(L+ 1)d#(A) such admissible
pairs

Given an admissible pair P, P ′ associated to A and Ai

and given any B ∈ P and ν ∈ {1, . . . , d}, we define

[P, P ′]B,ν :=

{

P ′(j), ifj ∈ Ai ∩ Bν

P (j), otherwise Marne2010 – p. 12/21

Algorithm 1

Intended for the case where f = Gj for some
j = (j1, . . . , jd)

Marne2010 – p. 13/21

Algorithm 1

Intended for the case where f = Gj for some
j = (j1, . . . , jd)

Given f , we ask for the values of f at all points in P ∪Q

Marne2010 – p. 13/21

Algorithm 1

Intended for the case where f = Gj for some
j = (j1, . . . , jd)

Given f , we ask for the values of f at all points in P ∪Q
Given these values, from the Projection Property we
can find g on the lattice
hLd := {h(i1, . . . , id} : 1 ≤ i1, . . . , id ≤ L}

Marne2010 – p. 13/21

Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows

Marne2010 – p. 14/21

Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows

For each cell I = hd[i1, i1 + 1] × · · · × [id, id + 1], we
choose a tensor product grid consisting of rd points
from hLd closest to I

Marne2010 – p. 14/21

Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows

For each cell I = hd[i1, i1 + 1] × · · · × [id, id + 1], we
choose a tensor product grid consisting of rd points
from hLd closest to I
We define pI as the tensor product polynomial of
degree r − 1 which interpolates g at these points

Marne2010 – p. 14/21

Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows

For each cell I = hd[i1, i1 + 1] × · · · × [id, id + 1], we
choose a tensor product grid consisting of rd points
from hLd closest to I
We define pI as the tensor product polynomial of
degree r − 1 which interpolates g at these points

Then Ar,h(g)(x) := pI(x), x ∈ I, for all I gives an
approximation to g satisfying

‖g −Ar,hg‖C[0,1]k ≤ C(s)‖g‖Cshs

as long as s ≤ r

Marne2010 – p. 14/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

Marne2010 – p. 15/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

Marne2010 – p. 15/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

We say the pair P, P ′ is useful if for each B ∈ A, there is
exactly one value ν = ν(B) where f([P, P ′]B,ν) = f(P ′)
and for all µ 6= ν, we have f([P, P ′]B,µ) = f(P)

Marne2010 – p. 15/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

We say the pair P, P ′ is useful if for each B ∈ A, there is
exactly one value ν = ν(B) where f([P, P ′]B,ν) = f(P ′)
and for all µ 6= ν, we have f([P, P ′]B,µ) = f(P)

For each such admissible and useful pair, we define
JP,P ′ :=

⋂

B∈ABν(B) ∩Ai

Marne2010 – p. 15/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

We say the pair P, P ′ is useful if for each B ∈ A, there is
exactly one value ν = ν(B) where f([P, P ′]B,ν) = f(P ′)
and for all µ 6= ν, we have f([P, P ′]B,µ) = f(P)

For each such admissible and useful pair, we define
JP,P ′ :=

⋂

B∈ABν(B) ∩Ai

Either JP,P ′ = {j} with j a change coordinate or
JP,P ′ = ∅

Marne2010 – p. 15/21

Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

We say the pair P, P ′ is useful if for each B ∈ A, there is
exactly one value ν = ν(B) where f([P, P ′]B,ν) = f(P ′)
and for all µ 6= ν, we have f([P, P ′]B,µ) = f(P)

For each such admissible and useful pair, we define
JP,P ′ :=

⋂

B∈ABν(B) ∩Ai

Either JP,P ′ = {j} with j a change coordinate or
JP,P ′ = ∅
Every change coordinate which is visible on hLd

appears in some JP,P ′ Marne2010 – p. 15/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

Marne2010 – p. 16/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Marne2010 – p. 16/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

Marne2010 – p. 16/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

If f = Gj with g ∈ Cs, s ≤ r, then

‖f − f̂‖C(Ω) ≤ C(s, r)‖g‖Cshs

Marne2010 – p. 16/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

If f = Gj with g ∈ Cs, s ≤ r, then

‖f − f̂‖C(Ω) ≤ C(s, r)‖g‖Cshs

The number of point values used in Algorithm 1 is
≤ 2d2(L+ 1)d(#(A))2

Marne2010 – p. 16/21

Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

If f = Gj with g ∈ Cs, s ≤ r, then

‖f − f̂‖C(Ω) ≤ C(s, r)‖g‖Cshs

The number of point values used in Algorithm 1 is
≤ 2d2(L+ 1)d(#(A))2

There is a second algorithm (adaptive) for the case
when we only know f can be approximated by
g(xj1 , . . . , xjd

)

Marne2010 – p. 16/21

A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

Marne2010 – p. 17/21

A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD

Marne2010 – p. 17/21

A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD

We assume ai ≥ 0, i = 1, . . . , D, and WOLOG
D

∑

i=1

ai = 1

Marne2010 – p. 17/21

A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD

We assume ai ≥ 0, i = 1, . . . , D, and WOLOG
D

∑

i=1

ai = 1

More generally, one could consider
f(x1, . . . , xD) = g(Ax) with A a d×D Markov matrix

Marne2010 – p. 17/21

A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD

We assume ai ≥ 0, i = 1, . . . , D, and WOLOG
D

∑

i=1

ai = 1

More generally, one could consider
f(x1, . . . , xD) = g(Ax) with A a d×D Markov matrix

Theorem: Assume ‖g‖Cs ≤M0 and ‖a‖ℓq
≤M1. Then

using L point queries, we can recover f by an
approximant f̂ satisfying

‖f − f̂‖C ≤ C(S, s̄, d,M0,M1){L−s + { log min(D/L,1)
L }1/q−1}

Marne2010 – p. 17/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Choose i, j such that |g(ih)−g(jh)|
|ih−jh| =: A is largest

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Choose i, j such that |g(ih)−g(jh)|
|ih−jh| =: A is largest

We adaptively bisect [ih, jh] L times always choosing
the interval with largest divided difference to subdivide

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Choose i, j such that |g(ih)−g(jh)|
|ih−jh| =: A is largest

We adaptively bisect [ih, jh] L times always choosing
the interval with largest divided difference to subdivide

This gives an interval I = [α0, α1] with |I| ≤ 2−Land a
point ξ0 ∈ I where |g′(ξ0)| ≥ A

Marne2010 – p. 18/21

Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Choose i, j such that |g(ih)−g(jh)|
|ih−jh| =: A is largest

We adaptively bisect [ih, jh] L times always choosing
the interval with largest divided difference to subdivide

This gives an interval I = [α0, α1] with |I| ≤ 2−Land a
point ξ0 ∈ I where |g′(ξ0)| ≥ A

η the center of I
Marne2010 – p. 18/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

Marne2010 – p. 19/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

Marne2010 – p. 19/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

Marne2010 – p. 19/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

These queries in turn gives the values g(η + µbi · a),
i = 1, . . . , L. All of the points η + µbi · a are in I

Marne2010 – p. 19/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

These queries in turn gives the values g(η + µbi · a),
i = 1, . . . , L. All of the points η + µbi · a are in I

ŷi := 2√
L
[g(η+µbi·a)−g(η)

g(α0+δ)−g(α0)
] = 2√

L
[g

′(ξ1)µbi·a
g′(ξ0)δ

]

= bi · a[1 + g′(ξ1)−g′(ξ0)
g′(ξ0)

] = bi · a[1 + ǫi]

Marne2010 – p. 19/21

Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

These queries in turn gives the values g(η + µbi · a),
i = 1, . . . , L. All of the points η + µbi · a are in I

ŷi := 2√
L
[g(η+µbi·a)−g(η)

g(α0+δ)−g(α0)
] = 2√

L
[g

′(ξ1)µbi·a
g′(ξ0)δ

]

= bi · a[1 + g′(ξ1)−g′(ξ0)
g′(ξ0)

] = bi · a[1 + ǫi]

|ǫi| ≤ CA−12−LM0L
−s̄

Marne2010 – p. 19/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

Marne2010 – p. 20/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

Marne2010 – p. 20/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄

Marne2010 – p. 20/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄

f̂(x) := ĝ(â · x) satisfies Theorem

Marne2010 – p. 20/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄

f̂(x) := ĝ(â · x) satisfies Theorem

Case A ≤M0L
−s then g does not vary

Marne2010 – p. 20/21

Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄

f̂(x) := ĝ(â · x) satisfies Theorem

Case A ≤M0L
−s then g does not vary

Case A ≥M0L
−s then

|f(x) − f̂(x)| ≤ |g(a · x) − g(â · x)| + |g(â · x) − ĝ(â · x)| ≤
M0‖a− â‖ℓ1 + ‖g − ĝ‖C[0,1]

Marne2010 – p. 20/21

Final Remarks

The result cannot be improved (save for the constant)

Marne2010 – p. 21/21

Final Remarks

The result cannot be improved (save for the constant)

To achieve L−s we need O(L) points

Marne2010 – p. 21/21

Final Remarks

The result cannot be improved (save for the constant)

To achieve L−s we need O(L) points

By considering the functions a · x, ‖a‖ℓq
≤M1 and lower

bounds for Gelfand widths (Foucart, Rauhut, Pajor,
Ullrich) we need O(L) points for the second term
accuracy

Marne2010 – p. 21/21

Final Remarks

The result cannot be improved (save for the constant)

To achieve L−s we need O(L) points

By considering the functions a · x, ‖a‖ℓq
≤M1 and lower

bounds for Gelfand widths (Foucart, Rauhut, Pajor,
Ullrich) we need O(L) points for the second term
accuracy

Why s̄ > 1?

Marne2010 – p. 21/21

Final Remarks

The result cannot be improved (save for the constant)

To achieve L−s we need O(L) points

By considering the functions a · x, ‖a‖ℓq
≤M1 and lower

bounds for Gelfand widths (Foucart, Rauhut, Pajor,
Ullrich) we need O(L) points for the second term
accuracy

Why s̄ > 1?

We do not have the stability we had in the first setting

Marne2010 – p. 21/21

	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions
	Capturing Functions in High Dimensions

	The Challenge of the Problem
	The Challenge of the Problem
	The Challenge of the Problem
	The Challenge of the Problem
	The Challenge of the Problem
	The Challenge of the Problem

	New Models For Functions
	New Models For Functions
	New Models For Functions
	New Models For Functions
	New Models For Functions
	New Models For Functions
	New Models For Functions
	New Models For Functions

	HD Models
	HD Models
	HD Models
	HD Models
	HD Models
	HD Models
	HD Models
	HD Models
	HD Models

	Recovery from Point Queries
	Recovery from Point Queries
	Recovery from Point Queries
	Recovery from Point Queries
	Recovery from Point Queries
	Recovery from Point Queries

	Benchmark
	Benchmark
	Benchmark
	Benchmark
	Benchmark

	First Results
	First Results

	 Partitions
	 Partitions
	 Partitions
	 Partitions
	 Partitions
	 Partitions

	Controlling Cardinality of $cA $
	Controlling Cardinality of $cA $
	Controlling Cardinality of $cA $
	Controlling Cardinality of $cA $
	Controlling Cardinality of $cA $

	Base points $cP $
	Base points $cP $
	Base points $cP $
	Base points $cP $
	Base points $cP $
	Base points $cP $

	Padding points $cQ $
	Padding points $cQ $
	Padding points $cQ $
	Padding points $cQ $
	Padding points $cQ $

	Algorithm 1
	Algorithm 1
	Algorithm 1

	Approximating g
	Approximating g
	Approximating g
	Approximating g

	Finding change coordinates
	Finding change coordinates
	Finding change coordinates
	Finding change coordinates
	Finding change coordinates
	Finding change coordinates

	Performance of Algorithm 1
	Performance of Algorithm 1
	Performance of Algorithm 1
	Performance of Algorithm 1
	Performance of Algorithm 1
	Performance of Algorithm 1

	 A Second Model for {ed f}
	 A Second Model for {ed f}
	 A Second Model for {ed f}
	 A Second Model for {ed f}
	 A Second Model for {ed f}

	 Query Points
	 Query Points
	 Query Points
	 Query Points
	 Query Points
	 Query Points
	 Query Points

	 Approximating {ed a}
	 Approximating {ed a}
	 Approximating {ed a}
	 Approximating {ed a}
	 Approximating {ed a}
	 Approximating {ed a}

	 Decode
	 Decode
	 Decode
	 Decode
	 Decode
	 Decode

	 Final Remarks
	 Final Remarks
	 Final Remarks
	 Final Remarks
	 Final Remarks

