Capturing Functions in High Dimension

Ronald DeVore

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f
- Many reasonable settings that occur in applications

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f
- Many reasonable settings that occur in applications
- We are given a budget n and can ask for the value of f at n points of our choosing - Each question is costly

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f
- Many reasonable settings that occur in applications
- We are given a budget n and can ask for the value of f at n points of our choosing - Each question is costly
- From the answers we want to produce an accurate approximation to f : For any other value of x, we can cheaply produce an approximation to $f(x)$

Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f
- Many reasonable settings that occur in applications
- We are given a budget n and can ask for the value of f at n points of our choosing - Each question is costly
- From the answers we want to produce an accurate approximation to f : For any other value of x, we can cheaply produce an approximation to $f(x)$
- Where should we query f ?

The Challenge of the Problem

- We need to assume something about f

The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness

The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension

The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality

The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality
- If we only assume f has s orders of smoothness the best we can approximated is order $O\left(n^{-s / D}\right)$ where n is the number of parameters (dimension of approximation space) or number of queries of f or number of computations

The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality
- If we only assume f has s orders of smoothness the best we can approximated is order $O\left(n^{-s / D}\right)$ where n is the number of parameters (dimension of approximation space) or number of queries of f or number of computations
- When D is large s would have to be very large to overcome this.

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$
- Sparsity: small number k of coefficients are nonzero

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$
- Sparsity: small number k of coefficients are nonzero
- Compressibility: coefficients have some decay (when rearranged in decreasing size)

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$
- Sparsity: small number k of coefficients are nonzero
- Compressibility: coefficients have some decay (when rearranged in decreasing size)
- typical assumption is the coefficients are in some (weak) ℓ_{p} with p small

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$
- Sparsity: small number k of coefficients are nonzero
- Compressibility: coefficients have some decay (when rearranged in decreasing size)
- typical assumption is the coefficients are in some (weak) ℓ_{p} with p small
- May be useful but it also suffers curse of dimensionality

New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_{j} (orthonormal) basis: $f=\sum_{j} c_{j} \psi_{j}$
- Sparsity: small number k of coefficients are nonzero
- Compressibility: coefficients have some decay (when rearranged in decreasing size)
- typical assumption is the coefficients are in some (weak) ℓ_{p} with p small
- May be useful but it also suffers curse of dimensionality
- For example, for wavelet basis, such compressibility corresponds to some Besov smoothness $f \in B_{\tau}^{s}\left(L_{\tau}\right)$ and again approximation is limited by $O\left(n^{-s / D}\right)$

HD Models

- Smoothness/Sparsity alone are usually not sufficient

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction: $f(x)=g(\varphi(x))$

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
$f(x)=g(\varphi(x))$
- $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}, d \ll D$

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
$f(x)=g(\varphi(x))$
- $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}, d \ll D$
- Perhaps $\varphi(x)=A x$ where A is a $d \times D$ matrix

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
$f(x)=g(\varphi(x))$
- $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}, d \ll D$
- Perhaps $\varphi(x)=A x$ where A is a $d \times D$ matrix
- g is defined on \mathbb{R}^{d} has smoothness of order s

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
$f(x)=g(\varphi(x))$
- $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}, d \ll D$
- Perhaps $\varphi(x)=A x$ where A is a $d \times D$ matrix
- g is defined on \mathbb{R}^{d} has smoothness of order s
- Parameters: d, D, s, complexity of ϕ

HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
$f(x)=g(\varphi(x))$
- $\varphi: \mathbb{R}^{D} \rightarrow \mathbb{R}^{d}, d \ll D$
- Perhaps $\varphi(x)=A x$ where A is a $d \times D$ matrix
- g is defined on \mathbb{R}^{d} has smoothness of order s
- Parameters: d, D, s, complexity of ϕ
- How friendly are such functions to approximation?

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large
- We shall consider two models for f

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large
- We shall consider two models for f
- (i) f depends only on d variables: $f\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$, where d is small compared to D and g has some smoothness that may not be known

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large
- We shall consider two models for f
- (i) f depends only on d variables: $f\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$, where d is small compared to D and g has some smoothness that may not be known
- (ii) f can be approximated by functions of the type (i)

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large
- We shall consider two models for f
- (i) f depends only on d variables: $f\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$, where d is small compared to D and g has some smoothness that may not be known
- (ii) f can be approximated by functions of the type (i)
- For this talk, we shall use smoothness conditions like $g \in C^{s}$ for some $s>0$.

Recovery from Point Queries

- Let assume that $f(x)=f\left(x_{1}, \ldots, x_{D}\right)$ is defined and continuous on the cube $\Omega:=[0,1]^{D}$ with D large
- We shall consider two models for f
- (i) f depends only on d variables: $f\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$, where d is small compared to D and g has some smoothness that may not be known
- (ii) f can be approximated by functions of the type (i)
- For this talk, we shall use smoothness conditions like $g \in C^{s}$ for some $s>0$.
- Our First Problem: Given a budget n of point values we can ask of f where should we take these samples and how well can we approximate f from these?

Benchmark

- If we know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$ then sampling f at $(L+1)^{d}$ equally spaced points in the d dimensional space spanned by the coordinate vectors $e_{j_{1}}, \ldots, e_{j_{d}}$ we can recover f to accuracy $C(s)\|g\|_{C^{s}} L^{-s}$

Benchmark

- If we know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$ then sampling f at $(L+1)^{d}$ equally spaced points in the d dimensional space spanned by the coordinate vectors $e_{j_{1}}, \ldots, e_{j_{d}}$ we can recover f to accuracy $C(s)\|g\|_{C^{s}} L^{-s}$
- Our problem is to sample at the fewest number of points in the case we do not know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$

Benchmark

- If we know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$ then sampling f at $(L+1)^{d}$ equally spaced points in the d dimensional space spanned by the coordinate vectors $e_{j_{1}}, \ldots, e_{j_{d}}$ we can recover f to accuracy $C(s)\|g\|_{C^{s}} L^{-s}$
- Our problem is to sample at the fewest number of points in the case we do not know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$
- Naively, we could consider all d dimensional subspaces, take L^{d} sample points in each.

Benchmark

- If we know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$ then sampling f at $(L+1)^{d}$ equally spaced points in the d dimensional space spanned by the coordinate vectors $e_{j_{1}}, \ldots, e_{j_{d}}$ we can recover f to accuracy $C(s)\|g\|_{C^{s}} L^{-s}$
- Our problem is to sample at the fewest number of points in the case we do not know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$
- Naively, we could consider all d dimensional subspaces, take L^{d} sample points in each.
- This would require $\binom{D}{d}(L+1)^{d}$ points

Benchmark

- If we know $\mathbf{j}:=\left(j_{1}, \ldots, j_{d}\right)$ then sampling f at $(L+1)^{d}$ equally spaced points in the d dimensional space spanned by the coordinate vectors $e_{j_{1}}, \ldots, e_{j_{d}}$ we can recover f to accuracy $C(s)\|g\|_{C^{s}} L^{-s}$
- Our problem is to sample at the fewest number of points in the case we do not know $\mathrm{j}:=\left(j_{1}, \ldots, j_{d}\right)$
- Naively, we could consider all d dimensional subspaces, take L^{d} sample points in each.
- This would require $\binom{D}{d}(L+1)^{d}$ points
- We want and can to do much better

First Results

- DeVore-Petrova-Wojtaszczyk

First Results

- DeVore-Petrova-Wojtaszczyk
- Theorem
(i) Assume $f\left(x_{1}, \ldots, x_{D}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$. By making $C(d, S) L^{d}\left(\log _{2} D\right)$ adaptive point queries we can recover f by \hat{f} with the following accuracy

$$
\|f-\hat{f}\|_{C(\Omega)} \leq C(S, d)\left\|g^{(s)}\right\|_{C\left([0,1]^{d}\right)} L^{-s}
$$

(ii) Suppose we only know that there is a g and j_{1}, \ldots, j_{d} such that $\left\|f\left(x_{1}, \ldots, x_{D}\right)-g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)\right\|_{C(\Omega)} \leq \epsilon$. By making $C(d, S) L^{d}\left(\log _{2} D\right)$ adaptive point queries we can recover f by \hat{f} to the accuracy

$$
\|f-\hat{f}\|_{C(\Omega)} \leq C(S, d)\left\{\left\|g^{(s)}\right\|_{C\left([0,1]^{d}\right)} L^{-s}+\epsilon\right\}
$$

Partitions

- We shall describe the points at which we query f

Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right)$ of $\Lambda:=\{1,2, \ldots, D\}$ satisfy the Partition Assumption if

Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right)$ of $\Lambda:=\{1,2, \ldots, D\}$ satisfy the Partition Assumption if
- (i) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$, there is an $A \in \mathbf{A}$ such that no two j_{ν} lie in the same cell A_{i}

Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right)$ of $\Lambda:=\{1,2, \ldots, D\}$ satisfy the Partition Assumption if
- (i) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$, there is an $A \in \mathbf{A}$ such that no two j_{ν} lie in the same cell A_{i}
- (ii) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{k}\right)$ and $j \neq j_{\nu}, \nu=1, \ldots, d$, there is an A such that the cell A_{i} which contains j contains none of the $j_{\nu}, \nu=1, \ldots, d$

Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right)$ of $\Lambda:=\{1,2, \ldots, D\}$ satisfy the Partition Assumption if
- (i) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$, there is an $A \in \mathbf{A}$ such that no two j_{ν} lie in the same cell A_{i}
- (ii) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{k}\right)$ and $j \neq j_{\nu}, \nu=1, \ldots, d$, there is an A such that the cell A_{i} which contains j contains none of the $j_{\nu}, \nu=1, \ldots, d$
- A family of partitions which satisfy (i) are called Perfect Hashing in combinatorics

Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathbf{A}=\left(A_{1}, \ldots, A_{d}\right)$ of $\Lambda:=\{1,2, \ldots, D\}$ satisfy the Partition Assumption if
- (i) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$, there is an $A \in \mathbf{A}$ such that no two j_{ν} lie in the same cell A_{i}
- (ii) For each $\mathbf{j}=\left(j_{1}, \ldots, j_{k}\right)$ and $j \neq j_{\nu}, \nu=1, \ldots, d$, there is an A such that the cell A_{i} which contains j contains none of the $j_{\nu}, \nu=1, \ldots, d$
- A family of partitions which satisfy (i) are called Perfect Hashing in combinatorics
- We will use these partitions to construct query points so we want \mathcal{A} that satisfy the Partition Assumption with the smallest cardinality

Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\# \mathcal{A} \leq C d e^{d} \log _{2} D$

Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\# \mathcal{A} \leq C d e^{d} \log _{2} D$
- For small d one can do this constructively, e.g. $d=2$ use binary partitions

Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\# \mathcal{A} \leq C d e^{d} \log _{2} D$
- For small d one can do this constructively, e.g. $d=2$ use binary partitions
- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$

Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\# \mathcal{A} \leq C d e^{d} \log _{2} D$
- For small d one can do this constructively, e.g. $d=2$ use binary partitions
- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$
- To satisfy (ii) of the Partition Assumption we have to enlarge Perfect Hashing constructions. Our current constructions give $\# \mathcal{A} \leq d^{2} e^{2 d} \ln D$

Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\# \mathcal{A} \leq C d e^{d} \log _{2} D$
- For small d one can do this constructively, e.g. $d=2$ use binary partitions
- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$
- To satisfy (ii) of the Partition Assumption we have to enlarge Perfect Hashing constructions. Our current constructions give $\# \mathcal{A} \leq d^{2} e^{2 d} \ln D$
- Probably this could be improved

Base points \mathcal{P}

- The first points at which we query f are what we call base points

Base points \mathcal{P}

- The first points at which we query f are what we call base points
- The set \mathcal{P} of base points is defined as
$P=P_{\mathbf{A}}:=\sum_{i=1}^{d} \alpha_{i} \chi_{A_{i}}, \quad \alpha_{i} \in\{0,1 / L, \ldots, 1\}, \quad \mathbf{A} \in \mathcal{A}$

Base points \mathcal{P}

- The first points at which we query f are what we call base points
- The set \mathcal{P} of base points is defined as $P=P_{\mathbf{A}}:=\sum_{i=1}^{d} \alpha_{i} \chi_{A_{i}}, \quad \alpha_{i} \in\{0,1 / L, \ldots, 1\}, \quad \mathbf{A} \in \mathcal{A}$
- There are $(L+1)^{d} \# \mathcal{A}$ points in \mathcal{P}

Base points \mathcal{P}

- The first points at which we query f are what we call base points
- The set \mathcal{P} of base points is defined as

$$
P=P_{\mathbf{A}}:=\sum_{i=1}^{d} \alpha_{i} \chi_{A_{i}}, \quad \alpha_{i} \in\{0,1 / L, \ldots, 1\}, \quad \mathbf{A} \in \mathcal{A}
$$

- There are $(L+1)^{d} \# \mathcal{A}$ points in \mathcal{P}
- Projection Property: The important property of this set is that for any $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right), 1 \leq j_{1}<j_{2}<\cdots<j_{d} \leq D$ the projection of \mathcal{P} onto the d-dimensional space spanned by $e_{j_{1}}, \ldots, e_{j_{d}}$ contains a uniform grid of the cube $[0,1]^{d}$ with spacing $h:=1 / L$

Base points \mathcal{P}

- The first points at which we query f are what we call base points
- The set \mathcal{P} of base points is defined as

$$
P=P_{\mathbf{A}}:=\sum_{i=1}^{d} \alpha_{i} \chi_{A_{i}}, \quad \alpha_{i} \in\{0,1 / L, \ldots, 1\}, \quad \mathbf{A} \in \mathcal{A}
$$

- There are $(L+1)^{d} \# \mathcal{A}$ points in \mathcal{P}
- Projection Property: The important property of this set is that for any $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right), 1 \leq j_{1}<j_{2}<\cdots<j_{d} \leq D$ the projection of \mathcal{P} onto the d-dimensional space spanned by $e_{j_{1}}, \ldots, e_{j_{d}}$ contains a uniform grid of the cube $[0,1]^{d}$ with spacing $h:=1 / L$
- For any $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$ and any k - variate function g let $G_{\mathbf{j}}\left(x_{1}, \ldots, x_{D}\right):=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$

Base points \mathcal{P}

- The first points at which we query f are what we call base points
- The set \mathcal{P} of base points is defined as

$$
P=P_{\mathbf{A}}:=\sum_{i=1}^{d} \alpha_{i} \chi_{A_{i}}, \quad \alpha_{i} \in\{0,1 / L, \ldots, 1\}, \quad \mathbf{A} \in \mathcal{A}
$$

- There are $(L+1)^{d} \# \mathcal{A}$ points in \mathcal{P}
- Projection Property: The important property of this set is that for any $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right), 1 \leq j_{1}<j_{2}<\cdots<j_{d} \leq D$ the projection of \mathcal{P} onto the d-dimensional space spanned by $e_{j_{1}}, \ldots, e_{j_{d}}$ contains a uniform grid of the cube $[0,1]^{d}$ with spacing $h:=1 / L$
- For any $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$ and any k - variate function g let $G_{\mathbf{j}}\left(x_{1}, \ldots, x_{D}\right):=g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$
- If $f=G_{\mathbf{j}}$ for some \mathbf{j}, then knowing f on \mathcal{P} will determine g on a uniform arid with spacina h

Padding points \mathcal{Q}

- The base points are not sufficient to determine the change coordinates

Padding points \mathcal{Q}

- The base points are not sufficient to determine the change coordinates
- To determine the change coordinates we query f at certain padding points which are adaptively chosen

Padding points \mathcal{Q}

- The base points are not sufficient to determine the change coordinates
- To determine the change coordinates we query f at certain padding points which are adaptively chosen
- A pair of points $P, P^{\prime} \in \mathcal{P}$ is said to be admissible if they are subordinate to the same partition A and there is a cell A_{i} of A such that P and P^{\prime} agree on all cells A_{j}, $j \neq i$ and on A_{i}, P and P^{\prime} differ by $\pm 1 / L$

Padding points \mathcal{Q}

- The base points are not sufficient to determine the change coordinates
- To determine the change coordinates we query f at certain padding points which are adaptively chosen
- A pair of points $P, P^{\prime} \in \mathcal{P}$ is said to be admissible if they are subordinate to the same partition A and there is a cell A_{i} of A such that P and P^{\prime} agree on all cells A_{j}, $j \neq i$ and on A_{i}, P and P^{\prime} differ by $\pm 1 / L$
- There are $\leq 2 d \#(\mathcal{P})=2 d(L+1)^{d} \#(\mathcal{A})$ such admissible pairs

Padding points \mathcal{Q}

- The base points are not sufficient to determine the change coordinates
- To determine the change coordinates we query f at certain padding points which are adaptively chosen
- A pair of points $P, P^{\prime} \in \mathcal{P}$ is said to be admissible if they are subordinate to the same partition A and there is a cell A_{i} of A such that P and P^{\prime} agree on all cells A_{j}, $j \neq i$ and on A_{i}, P and P^{\prime} differ by $\pm 1 / L$
- There are $\leq 2 d \#(\mathcal{P})=2 d(L+1)^{d} \#(\mathcal{A})$ such admissible pairs
- Given an admissible pair P, P^{\prime} associated to A and A_{i} and given any $\mathrm{B} \in \mathcal{P}$ and $\nu \in\{1, \ldots, d\}$, we define
$\left[P, P^{\prime}\right]_{\mathbf{B}, \nu}:=\left\{\begin{array}{cl}P^{\prime}(j), & \text { if } j \in A_{i} \cap B_{\nu} \\ P(j)\end{array}\right.$

Algorithm 1

- Intended for the case where $f=G_{\mathbf{j}}$ for some $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$

Algorithm 1

- Intended for the case where $f=G_{\mathbf{j}}$ for some $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$
- Given f, we ask for the values of f at all points in $\mathcal{P} \cup \mathcal{Q}$

Algorithm 1

- Intended for the case where $f=G_{\mathbf{j}}$ for some $\mathbf{j}=\left(j_{1}, \ldots, j_{d}\right)$
- Given f, we ask for the values of f at all points in $\mathcal{P} \cup \mathcal{Q}$
- Given these values, from the Projection Property we can find g on the lattice

$$
h \mathcal{L}_{d}:=\left\{h\left(i_{1}, \ldots, i_{d}\right\}: 1 \leq i_{1}, \ldots, i_{d} \leq L\right\}
$$

Approximating g

- We construct a piecewise polynomial approximation $A_{r, h}(g)$ from these values as follows

Approximating g

- We construct a piecewise polynomial approximation $A_{r, h}(g)$ from these values as follows
- For each cell $I=h^{d}\left[i_{1}, i_{1}+1\right] \times \cdots \times\left[i_{d}, i_{d}+1\right]$, we choose a tensor product grid consisting of r^{d} points from $h \mathcal{L}_{d}$ closest to I

Approximating g

- We construct a piecewise polynomial approximation $A_{r, h}(g)$ from these values as follows
- For each cell $I=h^{d}\left[i_{1}, i_{1}+1\right] \times \cdots \times\left[i_{d}, i_{d}+1\right]$, we choose a tensor product grid consisting of r^{d} points from $h \mathcal{L}_{d}$ closest to I
- We define p_{I} as the tensor product polynomial of degree $r-1$ which interpolates g at these points

Approximating g

- We construct a piecewise polynomial approximation $A_{r, h}(g)$ from these values as follows
- For each cell $I=h^{d}\left[i_{1}, i_{1}+1\right] \times \cdots \times\left[i_{d}, i_{d}+1\right]$, we choose a tensor product grid consisting of r^{d} points from $h \mathcal{L}_{d}$ closest to I
- We define p_{I} as the tensor product polynomial of degree $r-1$ which interpolates g at these points
- Then $A_{r, h}(g)(x):=p_{I}(x), x \in I$, for all I gives an approximation to g satisfying

$$
\left\|g-A_{r, h} g\right\|_{C[0,1]^{k}} \leq C(s)\|g\|_{C^{s}} h^{s}
$$

as long as $s \leq r$

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values
- We examine the values of f at all the padding points Q associated to this pair.

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values
- We examine the values of f at all the padding points Q associated to this pair.
- We say the pair P, P^{\prime} is useful if for each $\mathrm{B} \in \mathcal{A}$, there is exactly one value $\nu=\nu(\mathbf{B})$ where $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \nu}\right)=f\left(P^{\prime}\right)$ and for all $\mu \neq \nu$, we have $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \mu}\right)=f(P)$

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values
- We examine the values of f at all the padding points Q associated to this pair.
- We say the pair P, P^{\prime} is useful if for each $\mathrm{B} \in \mathcal{A}$, there is exactly one value $\nu=\nu(\mathbf{B})$ where $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \nu}\right)=f\left(P^{\prime}\right)$ and for all $\mu \neq \nu$, we have $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \mu}\right)=f(P)$
- For each such admissible and useful pair, we define $J_{P, P^{\prime}}:=\bigcap_{\mathbf{B} \in \mathcal{A}} B_{\nu(\mathbf{B})} \cap A_{i}$

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values
- We examine the values of f at all the padding points Q associated to this pair.
- We say the pair P, P^{\prime} is useful if for each $\mathrm{B} \in \mathcal{A}$, there is exactly one value $\nu=\nu(\mathbf{B})$ where $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \nu}\right)=f\left(P^{\prime}\right)$ and for all $\mu \neq \nu$, we have $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \mu}\right)=f(P)$
- For each such admissible and useful pair, we define $J_{P, P^{\prime}}:=\bigcap_{\mathbf{B} \in \mathcal{A}} B_{\nu(\mathbf{B})} \cap A_{i}$
- Either $J_{P, P^{\prime}}=\{j\}$ with j a change coordinate or $J_{P, P^{\prime}}=\emptyset$

Finding change coordinates

- Given any admissible pair P, P^{\prime}, let A be the subordinating partition of P and P^{\prime} and let A_{i} be the set in A where P and P^{\prime} take differing values
- We examine the values of f at all the padding points Q associated to this pair.
- We say the pair P, P^{\prime} is useful if for each $\mathrm{B} \in \mathcal{A}$, there is exactly one value $\nu=\nu(\mathbf{B})$ where $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \nu}\right)=f\left(P^{\prime}\right)$ and for all $\mu \neq \nu$, we have $f\left(\left[P, P^{\prime}\right]_{\mathbf{B}, \mu}\right)=f(P)$
- For each such admissible and useful pair, we define $J_{P, P^{\prime}}:=\bigcap_{\mathbf{B} \in \mathcal{A}} B_{\nu(\mathbf{B})} \cap A_{i}$
- Either $J_{P, P^{\prime}}=\{j\}$ with j a change coordinate or $J_{P, P^{\prime}}=\emptyset$
- Every change coordinate which is visible on $h \mathcal{L}_{d}$ appears in some $J_{P, P^{\prime}}$

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}
- The number of these may be $<d$. Complete this to a vector $j^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{d}^{\prime}\right)$ in an arbitrary way

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}
- The number of these may be $<d$. Complete this to a vector $j^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{d}^{\prime}\right)$ in an arbitrary way
- Define $\hat{f}:=A_{r, h}(g)\left(x_{j_{1}^{\prime}}, \ldots, x_{j_{d}^{\prime}}\right)$

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}
- The number of these may be $<d$. Complete this to a vector $j^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{d}^{\prime}\right)$ in an arbitrary way
- Define $\hat{f}:=A_{r, h}(g)\left(x_{j_{1}^{\prime}}, \ldots, x_{j_{d}^{\prime}}\right)$
- If $f=G_{\mathbf{j}}$ with $g \in C^{s}, s \leq r$, then
$\|f-\hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^{s}} h^{s}$

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}
- The number of these may be $<d$. Complete this to a vector $j^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{d}^{\prime}\right)$ in an arbitrary way
- Define $\hat{f}:=A_{r, h}(g)\left(x_{j_{1}^{\prime}}, \ldots, x_{j_{d}^{\prime}}\right)$
- If $f=G_{\mathbf{j}}$ with $g \in C^{s}, s \leq r$, then

$$
\|f-\hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^{s}} h^{s}
$$

- The number of point values used in Algorithm 1 is $\leq 2 d^{2}(L+1)^{d}(\#(\mathcal{A}))^{2}$

Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_{d}
- The number of these may be $<d$. Complete this to a vector $j^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{d}^{\prime}\right)$ in an arbitrary way
- Define $\hat{f}:=A_{r, h}(g)\left(x_{j_{1}^{\prime}}, \ldots, x_{j_{d}^{\prime}}\right)$
- If $f=G_{\mathbf{j}}$ with $g \in C^{s}, s \leq r$, then
$\|f-\hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^{s}} h^{s}$
- The number of point values used in Algorithm 1 is $\leq 2 d^{2}(L+1)^{d}(\#(\mathcal{A}))^{2}$
- There is a second algorithm (adaptive) for the case when we only know f can be approximated by $g\left(x_{j_{1}}, \ldots, x_{j_{d}}\right)$

A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard

A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard
- We shall assume that $f\left(x_{1}, \ldots, x_{D}\right)=g(a \cdot x)$,
$x \in \Omega:=[0,1]^{D}$ where $g \in C^{s}[0,1], 1<\bar{s} \leq s \leq S$ and $a \in \mathbb{R}^{D}$

A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard
- We shall assume that $f\left(x_{1}, \ldots, x_{D}\right)=g(a \cdot x)$,
$x \in \Omega:=[0,1]^{D}$ where $g \in C^{s}[0,1], 1<\bar{s} \leq s \leq S$ and $a \in \mathbb{R}^{D}$
- We assume $a_{i} \geq 0, i=1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_{i}=1$

A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard
- We shall assume that $f\left(x_{1}, \ldots, x_{D}\right)=g(a \cdot x)$,
$x \in \Omega:=[0,1]^{D}$ where $g \in C^{s}[0,1], 1<\bar{s} \leq s \leq S$ and $a \in \mathbb{R}^{D}$
- We assume $a_{i} \geq 0, i=1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_{i}=1$
- More generally, one could consider $f\left(x_{1}, \ldots, x_{D}\right)=g(A x)$ with A a $d \times D$ Markov matrix

A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard
- We shall assume that $f\left(x_{1}, \ldots, x_{D}\right)=g(a \cdot x)$,
$x \in \Omega:=[0,1]^{D}$ where $g \in C^{s}[0,1], 1<\bar{s} \leq s \leq S$ and $a \in \mathbb{R}^{D}$
- We assume $a_{i} \geq 0, i=1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_{i}=1$
- More generally, one could consider $f\left(x_{1}, \ldots, x_{D}\right)=g(A x)$ with A a $d \times D$ Markov matrix
- Theorem: Assume $\|g\|_{C^{s}} \leq M_{0}$ and $\|a\|_{\ell_{q}} \leq M_{1}$. Then using L point queries, we can recover f by an approximant \hat{f} satisfying

$$
\|f-\hat{f}\|_{C} \leq C\left(S, \bar{s}, d, M_{0}, M_{1}\right)\left\{L^{-s}+\left\{\frac{\log \min (D / L, 1)}{L}\right\}^{1 / q-1}\right\}
$$

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that
$\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}$

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that
$\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}$
- We next want to approximate a

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that
$\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}$
- We next want to approximate a
- Choose i, j such that $\frac{|g(i h)-g(j h)|}{|i h-j h|}=: A$ is largest

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that
$\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}$
- We next want to approximate a
- Choose i, j such that $\frac{|g(i h)-g(j h)|}{|i h-j h|}=: A$ is largest
- We adaptively bisect $[i h, j h] L$ times always choosing the interval with largest divided difference to subdivide

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that

$$
\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}
$$

- We next want to approximate a
- Choose i, j such that $\frac{|g(i h)-g(j h)|}{|i h-j h|}=: A$ is largest
- We adaptively bisect $[i h, j h] L$ times always choosing the interval with largest divided difference to subdivide
- This gives an interval $I=\left[\alpha_{0}, \alpha_{1}\right]$ with $|I| \leq 2^{-L}$ and a point $\xi_{0} \in I$ where $\left|g^{\prime}\left(\xi_{0}\right)\right| \geq A$

Query Points

- For $h:=1 / L$, we ask for the values of f at the points $i h(1, \ldots, 1), i=0, \ldots, L$
- This gives us the values of g at $i h, i=0, \ldots, L$ and allows us to construct \hat{g} such that
$\|g-\hat{g}\|_{C[0,1]} \leq C(s) h^{s}$
- We next want to approximate a
- Choose i, j such that $\frac{|g(i h)-g(j h)|}{|i h-j h|}=: A$ is largest
- We adaptively bisect $[i h, j h] L$ times always choosing the interval with largest divided difference to subdivide
- This gives an interval $I=\left[\alpha_{0}, \alpha_{1}\right]$ with $|I| \leq 2^{-L}$ and a point $\xi_{0} \in I$ where $\left|g^{\prime}\left(\xi_{0}\right)\right| \geq A$
- η the center of I

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$
- b_{1}, \ldots, b_{L} the rows of Φ

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$
- b_{1}, \ldots, b_{L} the rows of Φ
- We now ask for the value of f at the points
$\eta(1,1, \ldots, 1)+\mu b_{i}, i=1, \ldots, L$, where $\mu:=\frac{\sqrt{L} \delta}{2}$

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$
- b_{1}, \ldots, b_{L} the rows of Φ
- We now ask for the value of f at the points
$\eta(1,1, \ldots, 1)+\mu b_{i}, i=1, \ldots, L$, where $\mu:=\frac{\sqrt{L} \delta}{2}$
- These queries in turn gives the values $g\left(\eta+\mu b_{i} \cdot a\right)$, $i=1, \ldots, L$. All of the points $\eta+\mu b_{i} \cdot a$ are in I

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$
- b_{1}, \ldots, b_{L} the rows of Φ
- We now ask for the value of f at the points
$\eta(1,1, \ldots, 1)+\mu b_{i}, i=1, \ldots, L$, where $\mu:=\frac{\sqrt{L} \delta}{2}$
- These queries in turn gives the values $g\left(\eta+\mu b_{i} \cdot a\right)$, $i=1, \ldots, L$. All of the points $\eta+\mu b_{i} \cdot a$ are in I

$$
\begin{aligned}
& \text { - } \hat{y}_{i}:=\frac{2}{\sqrt{L}}\left[\frac{g\left(\eta+\mu b_{i} \cdot a\right)-g(\eta)}{g\left(\alpha_{0}+\delta\right)-g\left(\alpha_{0}\right)}\right]=\frac{2}{\sqrt{L}}\left[\frac{g^{\prime}\left(\xi_{1}\right) \mu b_{i} \cdot a}{g^{\prime}\left(\xi_{0}\right) \delta}\right] \\
& \quad=b_{i} \cdot a\left[1+\frac{g^{\prime}\left(\xi_{1}\right)-g^{\prime}\left(\xi_{0}\right)}{g^{\prime}\left(\xi_{0}\right)}\right]=b_{i} \cdot a\left[1+\epsilon_{i}\right]
\end{aligned}
$$

Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1 / \sqrt{L}$
- b_{1}, \ldots, b_{L} the rows of Φ
- We now ask for the value of f at the points
$\eta(1,1, \ldots, 1)+\mu b_{i}, i=1, \ldots, L$, where $\mu:=\frac{\sqrt{L} \delta}{2}$
- These queries in turn gives the values $g\left(\eta+\mu b_{i} \cdot a\right)$, $i=1, \ldots, L$. All of the points $\eta+\mu b_{i} \cdot a$ are in I
- $\hat{y}_{i}:=\frac{2}{\sqrt{L}}\left[\frac{g\left(\eta+\mu b_{i} \cdot a\right)-g(\eta)}{g\left(\alpha_{0}+\delta\right)-g\left(\alpha_{0}\right)}\right]=\frac{2}{\sqrt{L}}\left[\frac{g^{\prime}\left(\xi_{1}\right) \mu b_{i} \cdot a}{g^{\prime}\left(\xi_{0}\right) \delta}\right]$
$=b_{i} \cdot a\left[1+\frac{g^{\prime}\left(\xi_{1}\right)-g^{\prime}\left(\xi_{0}\right)}{g^{\prime}\left(\xi_{0}\right)}\right]=b_{i} \cdot a\left[1+\epsilon_{i}\right]$
- $\left|\epsilon_{i}\right| \leq C A^{-1} 2^{-L} M_{0} L^{-\bar{s}}$

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$
- $\hat{a}:=\left(\hat{a}_{1}, \ldots, \hat{a}_{D}\right)$

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$
- $\hat{a}:=\left(\hat{a}_{1}, \ldots, \hat{a}_{D}\right)$
- $\|a-\hat{a}\|_{\ell_{1}} \leq C\left\{\frac{\log (D / L)}{L}\right\}^{1 / q-1}+L M_{0} A^{-1} 2^{-\ell \bar{s}}$

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$
- $\hat{a}:=\left(\hat{a}_{1}, \ldots, \hat{a}_{D}\right)$
- $\|a-\hat{a}\|_{\ell_{1}} \leq C\left\{\frac{\log (D / L)}{L}\right\}^{1 / q-1}+L M_{0} A^{-1} 2^{-\ell \bar{s}}$
- $\hat{f}(x):=\hat{g}(\hat{a} \cdot x)$ satisfies Theorem

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$
- $\hat{a}:=\left(\hat{a}_{1}, \ldots, \hat{a}_{D}\right)$
- $\|a-\hat{a}\|_{\ell_{1}} \leq C\left\{\frac{\log (D / L)}{L}\right\}^{1 / q-1}+L M_{0} A^{-1} 2^{-\ell \bar{s}}$
- $\hat{f}(x):=\hat{g}(\hat{a} \cdot x)$ satisfies Theorem
- Case $A \leq M_{0} L^{-s}$ then g does not vary

Decode

- Compressed sensing allows us to decode $\hat{a}_{i}:=\operatorname{argmin}_{\Phi z=\hat{y}_{i}}\|z\|_{\ell_{1}}$
- $\hat{a}:=\left(\hat{a}_{1}, \ldots, \hat{a}_{D}\right)$
- $\|a-\hat{a}\|_{\ell_{1}} \leq C\left\{\frac{\log (D / L)}{L}\right\}^{1 / q-1}+L M_{0} A^{-1} 2^{-\ell \bar{s}}$
- $\hat{f}(x):=\hat{g}(\hat{a} \cdot x)$ satisfies Theorem
- Case $A \leq M_{0} L^{-s}$ then g does not vary
- Case $A \geq M_{0} L^{-s}$ then

$$
\begin{aligned}
& |f(x)-\hat{f}(x)| \leq|g(a \cdot x)-g(\hat{a} \cdot x)|+|g(\hat{a} \cdot x)-\hat{g}(\hat{a} \cdot x)| \leq \\
& M_{0}\|a-\hat{a}\|_{\ell_{1}}+\|g-\hat{g}\|_{C[0,1]}
\end{aligned}
$$

Final Remarks

- The result cannot be improved (save for the constant)

Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points

Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x,\|a\|_{\ell_{q}} \leq M_{1}$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy

Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x,\|a\|_{\ell_{q}} \leq M_{1}$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy
- Why $\bar{s}>1$?

Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x,\|a\|_{\ell_{q}} \leq M_{1}$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy
- Why $\bar{s}>1$?
- We do not have the stability we had in the first setting

