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This talk will be concerned with approximating or
capturing functions f of D variables with D large

Many Application Domains: Parametric and Stochastic
PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life
simple we will consider only real valued f

Many reasonable settings that occur in applications

We are given a budget n and can ask for the value of f
at n points of our choosing - Each question is costly

From the answers we want to produce an accurate
approximation to f : For any other value of x, we can
cheaply produce an approximation to f(x)

Where should we query f?
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We need to assume something about f

Usual Model for functions is based on smoothness

This model is not sufficient in high dimension

Curse of Dimensionality

If we only assume f has s orders of smoothness the
best we can approximated is order O(n−s/D) where n is
the number of parameters (dimension of approximation
space) or number of queries of f or number of
computations

When D is large s would have to be very large to
overcome this.
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New Models For Functions

We need better models - not based solely on
smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

ψj (orthonormal) basis: f =
∑

j cjψj

Sparsity: small number k of coefficients are nonzero

Compressibility: coefficients have some decay (when
rearranged in decreasing size)

typical assumption is the coefficients are in some
(weak) ℓp with p small

May be useful but it also suffers curse of dimensionality

For example, for wavelet basis, such compressibility
corresponds to some Besov smoothness f ∈ Bs

τ (Lτ )

and again approximation is limited by O(n−s/D)
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HD Models

Smoothness/Sparsity alone are usually not sufficient

(New) approaches: Only a few variables or parameters
are important

Manifold Learning; Laplacians on Graphs; Sensitivity
Analysis; Variable Selection

Combine smoothness (sparsity) and variable reduction:

f(x) = g(ϕ(x))

ϕ : IRD → IRd, d << D

Perhaps ϕ(x) = Ax where A is a d×D matrix

g is defined on IRd has smoothness of order s

Parameters: d,D, s, complexity of φ

How friendly are such functions to approximation?
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Recovery from Point Queries

Let assume that f(x) = f(x1, . . . , xD) is defined and
continuous on the cube Ω := [0, 1]D with D large

We shall consider two models for f
(i) f depends only on d variables:
f(x1, . . . , xD) = g(xj1 , . . . , xjd

), where d is small
compared to D and g has some smoothness that
may not be known
(ii) f can be approximated by functions of the type (i)

For this talk, we shall use smoothness conditions like
g ∈ Cs for some s > 0.

Our First Problem: Given a budget n of point values we
can ask of f where should we take these samples and
how well can we approximate f from these?
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Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Marne2010 – p. 7/21



Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Marne2010 – p. 7/21



Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

Marne2010 – p. 7/21



Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

This would require
(D

d

)

(L+ 1)d points

Marne2010 – p. 7/21



Benchmark

If we know j := (j1, . . . , jd) then sampling f at (L+ 1)d

equally spaced points in the d dimensional space
spanned by the coordinate vectors ej1 , . . . , ejd

we can
recover f to accuracy C(s)‖g‖CsL−s

Our problem is to sample at the fewest number of points
in the case we do not know j := (j1, . . . , jd)

Naively, we could consider all d dimensional subspaces,
take Ld sample points in each.

This would require
(D

d

)

(L+ 1)d points

We want and can to do much better
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First Results

DeVore-Petrova-Wojtaszczyk

Theorem
(i) Assume f(x1, . . . , xD) = g(xj1 , . . . , xjd

). By making
C(d, S)Ld(log2D) adaptive point queries we can recover
f by f̂ with the following accuracy

‖f − f̂‖C(Ω) ≤ C(S, d)‖g(s)‖C([0,1]d)L
−s

(ii) Suppose we only know that there is a g and j1, . . . , jd
such that ‖f(x1, . . . , xD) − g(xj1 , . . . , xjd

)‖C(Ω) ≤ ǫ. By

making C(d, S)Ld(log2D) adaptive point queries we can
recover f by f̂ to the accuracy

‖f − f̂‖C(Ω) ≤ C(S, d){‖g(s)‖C([0,1]d)L
−s + ǫ}
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We shall describe the points at which we query f

We say a collection A of partitions A = (A1, . . . , Ad) of
Λ := {1, 2, . . . , D} satisfy the Partition Assumption if

(i) For each j = (j1, . . . , jd), there is an A ∈ A such
that no two jν lie in the same cell Ai

(ii) For each j = (j1, . . . , jk) and j 6= jν, ν = 1, . . . , d,
there is an A such that the cell Ai which contains j
contains none of the jν , ν = 1, . . . , d

A family of partitions which satisfy (i) are called Perfect
Hashing in combinatorics

We will use these partitions to construct query points so
we want A that satisfy the Partition Assumption with the
smallest cardinality
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Controlling Cardinality of A
It is easy to prove using probability that there exist A
that satisfy (i) with #A ≤ Cded log2D

For small d one can do this constructively, e.g. d = 2
use binary partitions

It is still an open problem to determine the asymptotic
behavior of the smallest perfect hashing collections
when d ≥ 3

To satisfy (ii) of the Partition Assumption we have to
enlarge Perfect Hashing constructions. Our current
constructions give #A ≤ d2e2d lnD

Probably this could be improved
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The first points at which we query f are what we call
base points

The set P of base points is defined as
P = PA :=

∑d
i=1 αiχAi

, αi ∈ {0, 1/L, . . . , 1}, A ∈ A
There are (L+ 1)d#A points in P
Projection Property: The important property of this set
is that for any j = (j1, . . . , jd), 1 ≤ j1 < j2 < · · · < jd ≤ D
the projection of P onto the d- dimensional space
spanned by ej1 , . . . , ejd

contains a uniform grid of the
cube [0, 1]d with spacing h := 1/L

For any j = (j1, . . . , jd) and any k- variate function g let
Gj(x1, . . . , xD) := g(xj1 , . . . , xjd

)

If f = Gj for some j, then knowing f on P will determine
g on a uniform grid with spacing h Marne2010 – p. 11/21



Padding points Q
The base points are not sufficient to determine the
change coordinates

Marne2010 – p. 12/21



Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

Marne2010 – p. 12/21



Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

Marne2010 – p. 12/21



Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

There are ≤ 2d#(P) = 2d(L+ 1)d#(A) such admissible
pairs

Marne2010 – p. 12/21



Padding points Q
The base points are not sufficient to determine the
change coordinates

To determine the change coordinates we query f at
certain padding points which are adaptively chosen

A pair of points P, P ′ ∈ P is said to be admissible if they
are subordinate to the same partition A and there is a
cell Ai of A such that P and P ′ agree on all cells Aj ,
j 6= i and on Ai, P and P ′ differ by ±1/L

There are ≤ 2d#(P) = 2d(L+ 1)d#(A) such admissible
pairs

Given an admissible pair P, P ′ associated to A and Ai

and given any B ∈ P and ν ∈ {1, . . . , d}, we define

[P, P ′]B,ν :=

{

P ′(j), ifj ∈ Ai ∩ Bν

P (j), otherwise Marne2010 – p. 12/21



Algorithm 1
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j = (j1, . . . , jd)
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Algorithm 1

Intended for the case where f = Gj for some
j = (j1, . . . , jd)

Given f , we ask for the values of f at all points in P ∪Q
Given these values, from the Projection Property we
can find g on the lattice
hLd := {h(i1, . . . , id} : 1 ≤ i1, . . . , id ≤ L}
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Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows
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Approximating g

We construct a piecewise polynomial approximation
Ar,h(g) from these values as follows

For each cell I = hd[i1, i1 + 1] × · · · × [id, id + 1], we
choose a tensor product grid consisting of rd points
from hLd closest to I
We define pI as the tensor product polynomial of
degree r − 1 which interpolates g at these points

Then Ar,h(g)(x) := pI(x), x ∈ I, for all I gives an
approximation to g satisfying

‖g −Ar,hg‖C[0,1]k ≤ C(s)‖g‖Cshs

as long as s ≤ r

Marne2010 – p. 14/21



Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values
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B∈ABν(B) ∩Ai
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Finding change coordinates

Given any admissible pair P, P ′, let A be the
subordinating partition of P and P ′ and let Ai be the set
in A where P and P ′ take differing values

We examine the values of f at all the padding points Q
associated to this pair.

We say the pair P, P ′ is useful if for each B ∈ A, there is
exactly one value ν = ν(B) where f([P, P ′]B,ν) = f(P ′)
and for all µ 6= ν, we have f([P, P ′]B,µ) = f(P )

For each such admissible and useful pair, we define
JP,P ′ :=

⋂

B∈ABν(B) ∩Ai

Either JP,P ′ = {j} with j a change coordinate or
JP,P ′ = ∅
Every change coordinate which is visible on hLd

appears in some JP,P ′ Marne2010 – p. 15/21



Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld
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vector j′ = (j′1, . . . , j
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d) in an arbitrary way
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The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

If f = Gj with g ∈ Cs, s ≤ r, then

‖f − f̂‖C(Ω) ≤ C(s, r)‖g‖Cshs

The number of point values used in Algorithm 1 is
≤ 2d2(L+ 1)d(#(A))2
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Performance of Algorithm 1

Algorithm 1 finds all change coordinates that are visible
on Ld

The number of these may be < d. Complete this to a
vector j′ = (j′1, . . . , j

′
d) in an arbitrary way

Define f̂ := Ar,h(g)(xj′
1
, . . . , xj′d

)

If f = Gj with g ∈ Cs, s ≤ r, then

‖f − f̂‖C(Ω) ≤ C(s, r)‖g‖Cshs

The number of point values used in Algorithm 1 is
≤ 2d2(L+ 1)d(#(A))2

There is a second algorithm (adaptive) for the case
when we only know f can be approximated by
g(xj1 , . . . , xjd

)
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A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard
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We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD
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a ∈ IRD

We assume ai ≥ 0, i = 1, . . . , D, and WOLOG
D

∑

i=1

ai = 1
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A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that f(x1, . . . , xD) = g(a · x),
x ∈ Ω := [0, 1]D where g ∈ Cs[0, 1], 1 < s̄ ≤ s ≤ S and
a ∈ IRD

We assume ai ≥ 0, i = 1, . . . , D, and WOLOG
D

∑

i=1

ai = 1

More generally, one could consider
f(x1, . . . , xD) = g(Ax) with A a d×D Markov matrix

Theorem: Assume ‖g‖Cs ≤M0 and ‖a‖ℓq
≤M1. Then

using L point queries, we can recover f by an
approximant f̂ satisfying

‖f − f̂‖C ≤ C(S, s̄, d,M0,M1){L−s + { log min(D/L,1)
L }1/q−1}
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Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L
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We adaptively bisect [ih, jh] L times always choosing
the interval with largest divided difference to subdivide

This gives an interval I = [α0, α1] with |I| ≤ 2−Land a
point ξ0 ∈ I where |g′(ξ0)| ≥ A
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Query Points

For h := 1/L, we ask for the values of f at the points
ih(1, . . . , 1), i = 0, . . . , L

This gives us the values of g at ih, i = 0, . . . , L and
allows us to construct ĝ such that

‖g − ĝ‖C[0,1] ≤ C(s)hs

We next want to approximate a

Choose i, j such that |g(ih)−g(jh)|
|ih−jh| =: A is largest

We adaptively bisect [ih, jh] L times always choosing
the interval with largest divided difference to subdivide

This gives an interval I = [α0, α1] with |I| ≤ 2−Land a
point ξ0 ∈ I where |g′(ξ0)| ≥ A

η the center of I
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Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L
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b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
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Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

These queries in turn gives the values g(η + µbi · a),
i = 1, . . . , L. All of the points η + µbi · a are in I

ŷi := 2√
L
[g(η+µbi·a)−g(η)

g(α0+δ)−g(α0)
] = 2√

L
[g

′(ξ1)µbi·a
g′(ξ0)δ

]

= bi · a[1 + g′(ξ1)−g′(ξ0)
g′(ξ0)

] = bi · a[1 + ǫi]
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Approximating a

Let Φ be an L×D Bernoulli matrix with entries ±1/
√
L

b1, . . . , bL the rows of Φ

We now ask for the value of f at the points

η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√

Lδ
2

These queries in turn gives the values g(η + µbi · a),
i = 1, . . . , L. All of the points η + µbi · a are in I

ŷi := 2√
L
[g(η+µbi·a)−g(η)

g(α0+δ)−g(α0)
] = 2√

L
[g

′(ξ1)µbi·a
g′(ξ0)δ

]

= bi · a[1 + g′(ξ1)−g′(ξ0)
g′(ξ0)

] = bi · a[1 + ǫi]

|ǫi| ≤ CA−12−LM0L
−s̄
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Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1
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‖z‖ℓ1
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L }1/q−1 + LM0A

−12−ℓs̄
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âi := argminΦz=ŷi
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‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄
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Decode

Compressed sensing allows us to decode
âi := argminΦz=ŷi

‖z‖ℓ1

â := (â1, . . . , âD)

‖a− â‖ℓ1 ≤ C{ log(D/L)
L }1/q−1 + LM0A

−12−ℓs̄

f̂(x) := ĝ(â · x) satisfies Theorem

Case A ≤M0L
−s then g does not vary

Case A ≥M0L
−s then

|f(x) − f̂(x)| ≤ |g(a · x) − g(â · x)| + |g(â · x) − ĝ(â · x)| ≤
M0‖a− â‖ℓ1 + ‖g − ĝ‖C[0,1]
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Final Remarks

The result cannot be improved (save for the constant)
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bounds for Gelfand widths (Foucart, Rauhut, Pajor,
Ullrich) we need O(L) points for the second term
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Final Remarks

The result cannot be improved (save for the constant)

To achieve L−s we need O(L) points

By considering the functions a · x, ‖a‖ℓq
≤M1 and lower

bounds for Gelfand widths (Foucart, Rauhut, Pajor,
Ullrich) we need O(L) points for the second term
accuracy

Why s̄ > 1?

We do not have the stability we had in the first setting

Marne2010 – p. 21/21
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