Support identification of sparse vectors from random and noisy measurements.

Charles Dossal ${ }^{1} \quad$ Marie-Line Chabanol ${ }^{1} \quad$ Gabriel Peyré ${ }^{2}$ Jalal Fadili ${ }^{3}$

${ }^{1}$ IMB CNRS-Université Bordeaux 1
${ }^{2}$ CEREMADE CNRS-Université Paris Dauphine
${ }^{3}$ GREYC CNRS-ENSICAEN-Université de Caen

Workshop Probability and Geometry in High Dimensions

Outline

- Setting
- ℓ_{1} recovery: Overview
- ℓ_{1} minimization and geometry of polytopes.
- Restricted Isometry Property.
- Exact support recovery using LASSO.
- Contributions.
- Sketch of proof of the main result.

Setting

Noisy Gaussian measurements of sparse vectors

- Linear random measurements $y=A x+w \in \mathbb{R}^{n}$, $x \in \mathbb{R}^{N}, A=\left(a_{i j}\right)_{i \leqslant n, j \leqslant N} \in \mathbb{R}^{n \times N}, a_{i j} \sim \mathcal{N}(0,1 / n)$ and iid, $w \in \mathbb{R}^{n}$ and $\|w\|_{2} \leqslant \varepsilon$.
- x is sparse $\Leftrightarrow\|x\|_{0}<N$ is small.
- x is weakly sparse (compressible).

Questions

- Estimate x from y when $n<N$, ill-posed inverse problem.
- Estimate the support I of x from y.
- Stability to noise and robusteness to compressibility.

Sparse Recovery Algorithms

A large choice of methods

- Greedy methods : Matching Pursuit, OMP, Cosamp, MCA ...
- Non convex optimization :

$$
\min _{x \in \mathbb{R}^{N}}\|x\|_{p} \text { s.t. } \quad y-A x \in C, p \in(0,1), C=\{0\} \text { or } C=\mathcal{B}_{\ell_{2}}(\sigma)
$$

- Convex optimization :

$$
\min _{x \mathbb{R}^{N}}\|x\|_{1} \quad \text { s.t. } \quad y-A x \in C
$$

- $C=\{0\}$: exact ℓ_{1} minimization (Basis Pursuit).
- $C=\left\{\begin{array}{ll}z & \text { s.t. }\left\|A^{t} z\right\|_{\infty} \leqslant \tau\end{array}\right\}$: Dantzig Selector.
- $C=\mathcal{B}_{\ell_{2}}(0, r):$ LASSO/BPDN equivalent to

$$
\min _{x \in \mathbb{R}^{N}} \frac{1}{2}\|y-A x\|_{2}^{2}+\gamma\|x\|_{1}
$$

Noiseless observations : Geometry of centrosymmetric polytopes

Donoho [04], Donoho and Tanner [05-07]

- Identifiability is a geometrical property.

- x is identifiable if and only if $\frac{A x}{\|x\|_{1}} \in \partial A\left(\mathcal{B}_{\ell_{1}}\right)$.
- For $x \in \mathbb{R}^{N}, I=\left\{i, x_{i} \neq 0\right\}, f_{x}=C o n v . H u l l\left(\operatorname{sign}\left(x_{i}\right) a_{i}\right)_{i \in I}$.
- x is identifiable $\Leftrightarrow f_{x}$ is an exterior facet of $A\left(\mathcal{B}_{\ell_{1}}\right)$.

The geometrical viewpoint

Counting k-faces of centro-symmetric polytopes [Donoho 04]

- If A is gaussian or USE, there is a function $\rho_{N}($.$) such that$ w.o.p. on A, all sparse x with

$$
\begin{equation*}
\|x\|_{0} \leqslant \rho_{N}(n / N) n \text { are } \ell_{1} \text { - identifiable. } \tag{1}
\end{equation*}
$$

- If A is gaussian or USE, x with randomly chosen support and sign, there is $\rho_{F}($.$) such that w.o.p. on A$, most sparse x with

$$
\begin{equation*}
\|x\|_{0} \leqslant \rho_{F}(n / N) n \text { are } \ell_{1}-\text { identifiable. } \tag{2}
\end{equation*}
$$

- No stability to noise.
- Sharp phase transition :

$$
\begin{aligned}
& \rho_{N}(1 / 2) \sim 0.089, \rho_{F}(1 / 2) \sim 0.38 \\
& \rho_{N}(1 / 4) \sim 0.065, \rho_{F}(1 / 4) \sim 0.25
\end{aligned}
$$

Restricted Isometry Property

Definition of RIP

- For $A \in \mathbb{R}^{n \times N}, \delta_{S}^{\min }$ and $\delta_{S}^{\max }$ are the smallest real numbers in $(0,1)$ such that for any $x,\|x\|_{0} \leqslant S$,

$$
\left(1-\delta_{S}^{\min }\right)\|x\|_{2}^{2} \leqslant\|A x\|_{2}^{2} \leqslant\left(1+\delta_{S}^{\max }\right)\|x\|_{2}^{2} .
$$

Theorem [Fourcart and Lai 08]

$$
\text { If }(4 \sqrt{2}-3) \delta_{2 S}^{\min }+\delta_{2 S}^{\max }<4(\sqrt{2}-1)
$$

- All vectors x such that $\|x\|_{0} \leqslant S$ are identifiable.
- Stability to noise, consistency if x is only compressible.
- There exist C_{0} and C_{1} depending on $\delta_{2 S}^{\min }$ and $\delta_{2 S}^{\max }$ such that the solution x^{*} of (LASSO) satisfies

$$
\left\|x^{*}-x_{0}\right\|_{2} \leqslant C_{0} S^{-1 / 2}\left\|x-x_{S}\right\|_{1}+C_{1} \varepsilon
$$

Bounds for gaussian matrices, $N=4000, n=1000$

- If A is a Gaussian matrix with iid entries, then w.o.p. A satisfies (RIPFL) for $S=O\left(\frac{n}{\log (N / n)}\right)$.
- For $n / N=\frac{1}{4}$, (RIPFL) applies up to $S=0.0027 n$ [Blanchard et al. 09].
- but (RIPFL) doesn't apply if $S \geqslant 0.005 n$. [D. et al 09].

Exact Support and sign pattern recovery with LASSO

Theorem [Candes Plan 07]

Let $A \in \mathcal{M}_{n, N}(\mathbb{R})$ which columned are normed and such that $\mu(A) \leqslant \frac{c_{1}}{\ln N}$. Let $w \in \mathbb{R}^{n}$ such that $w(i) \sim \mathcal{N}\left(0, \frac{\varepsilon^{2}}{n}\right)$. Let $x_{0} \in \mathbb{R}^{N}$ and $T=\min _{i \in I}\left|x_{0}(i)\right|$.
For sufficiently small constant c_{0}

- if x_{0} is randomly chosen among vectors such that $|I| \leqslant \frac{c_{0} N}{\|A\|^{2} \operatorname{In} N}$, (support: uniform and sign : Rademacher).
- if $T \geqslant 8 \varepsilon \sqrt{\frac{2 \ln N}{n}}$ and $\gamma=2 \varepsilon \sqrt{\frac{2 \ln N}{n}}$
the solution x^{*} of

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{\mathbb{N}}} \frac{1}{2}\|y-A x\|_{2}^{2}+\gamma\|x\|_{1} \tag{LASSO}
\end{equation*}
$$

satisfies $\operatorname{Supp}\left(x^{*}\right)=\operatorname{Supp}\left(x_{0}\right)$ and $\operatorname{sign}\left(x^{*}\right)=\operatorname{sign}\left(x_{0}\right)$ w.o.p.

Contibutions

Results for Gaussian matrices

- Refinement of Theorem [Candes Plan 07] for Gaussian matrices
- without any prior on the distribution of x_{0} and w.
- with explicit and optimal constants.
- robustness to compressibility.
- Without any hypothesis on $\frac{T}{\varepsilon}$
- $\operatorname{Supp}\left(x^{*}\right)$ is controlled.
- ℓ_{2} consistency results.
- Explicit bounds may be better that the ones derived from RIP.
- Justify debiasing.

Support and sign pattern identification

Theorem 1

Let $(a, b) \in(0,1)^{2}, N>n, y=A x_{0}+w$ where A is a Gaussian matrix and $\|w\|_{2} \leqslant \varepsilon$.

- If $\left\|x_{0}\right\|_{0}=S \leqslant \frac{a b}{2} \frac{n}{\ln N}$,
- if $\gamma=\frac{\varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$ and if $T \geqslant \frac{6 \varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$
then w.o.p. $\operatorname{Supp}\left(x^{*}\right)=\operatorname{Supp}\left(x_{0}\right)$ and $\operatorname{sign}\left(x^{*}\right)=\operatorname{sign}\left(x_{0}\right)$ and

$$
\left\|x^{*}-x_{0}\right\|_{2} \leqslant \varepsilon\left(\sqrt{\frac{a}{1-a}}+1\right)
$$

Support inclusion

Theorem 2

Let $(a, b) \in(0,1)^{2}, N>n, y=A x_{0}+w$ where A is a Gaussian matrix and $\|w\|_{2} \leqslant \varepsilon$.

- If $\left\|x_{0}\right\|_{0}=S \leqslant \frac{a b}{2} \frac{n}{\ln N}$,
- if $\gamma=\frac{\varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$,
then w.o.p $\operatorname{Supp}\left(x^{*}\right) \subset \operatorname{Supp}\left(x_{0}\right)$ and

$$
\left\|x^{*}-x_{0}\right\|_{2} \leqslant \varepsilon\left(\sqrt{\frac{a}{1-a}}+1\right)
$$

Numerical experiments

Example with $a=0.95, n=1000$ and $N=4000$

- Rates of exact support recovery versus sparsity level.
- $\varepsilon=\frac{T}{6} \sqrt{\frac{(1-a) n}{2 \ln N}}$.

Sketch of proof of Theorem 1

Notations

- For a vector x, let's denote I its support,
- A_{l} the associated active matrix and \bar{x} the restriction of x to l.
- We have $A x=A_{I} \bar{x}$.
- Let's denote $P_{A_{\perp}^{\perp}}$ the orthogonal projection on V^{\perp} with $V=\operatorname{Span}\left\{\left(a_{i}\right)_{i \in 1}\right\}$.

Remarks

- If A is gaussian, $\forall(y, \gamma) \in \mathbb{R}^{n} \times \mathbb{R}^{+*}$, the solution x^{*} of

$$
\min \frac{1}{2}\|y-A x\|_{2}^{2}+\gamma\|x\|_{1}
$$

(LASSO)

- is unique with probability 1 and
- $\left(A_{l}^{t} A_{l}\right)$ associated to x^{*} is inversible with probability 1 .

Sketch of proof of Theorem 1

A necessary condition

- If $\operatorname{Supp}\left(x^{*}\right)=I=\operatorname{Supp}\left(x_{0}\right)$ and $\operatorname{sign}\left(\overline{x^{*}}\right)=\operatorname{sign}\left(\overline{x_{0}}\right)$ then the solution of (LASSO) is defined by

$$
\begin{equation*}
\overline{x^{*}}=\overline{x_{0}}-\gamma\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)+\left(A_{l}^{t} A_{l}\right)^{-1} A_{l}^{t} w . \tag{3}
\end{equation*}
$$

A sufficient condition

- Let's denote $T=\min _{i \in I}\left|x_{0}(i)\right|$, if

$$
\begin{equation*}
\left\|\gamma\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)-\left(A_{l}^{t} A_{l}\right)^{-1} A_{l}^{t} w\right\|_{\infty}<T \tag{SC1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle a_{j}, \gamma A_{l}\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)-P_{A_{l}^{\perp}}(w)\right\rangle\right| \leqslant \gamma, \forall j \notin I \tag{SC2}
\end{equation*}
$$

the vector x^{*} defined by (3) is the solution of (LASSO).

Sketch of proof of Theorem 1

SC1 : \| γ $-\left(A_{j}^{t} A_{l}\right)^{-1} A_{j}^{t} w \|_{\infty}<T$

- If $\left\lvert\, \| \leqslant \frac{a b n}{2 \ln N}\right.$
- $\left\|\left(A_{I}^{\dagger} A_{l}\right)^{-1} \operatorname{sign}\left(x_{0}\right)\right\|_{\infty} \leqslant 1+3 \sqrt{a b} \leqslant 4$ with w.o.p
- Properties of Wishart matrices (signs of coefficients and spectral norm).
- $\left\|\left(A_{l}^{t} A_{l}\right)^{-1} A_{l}^{t} w\right\|_{\infty} \leqslant 2 \varepsilon \sqrt{\frac{\ln N}{n}}$ with w.o.p.
- Rotation Invariance of $\left(A_{l}^{t} A_{l}\right)^{-1} A_{l}^{t}, \chi^{2}$ concentration lemmas, and spectral norm of Wishart matrices.
- If $\gamma \leqslant \frac{T}{6}$ and $\varepsilon \leqslant \frac{T}{6} \sqrt{\frac{n}{2 \ln N}}$ then condition (SC1) applies :

$$
\left\|\gamma\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)-\left(A_{l}^{t} A_{l}\right)^{-1} A_{l}^{t} w\right\|_{\infty}<T
$$

Sketch of proof of Theorem 1

SC2: $\left|\left\langle a_{j}, \gamma A_{l}\left(A_{j}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)-P_{A_{j}^{\perp}}(w)\right\rangle\right| \leqslant \gamma, \forall j \notin I$

- If u and a_{j} are independent, then $\left\langle a_{j}, u\right\rangle \sim \mathcal{N}\left(0, \frac{\|u\|_{2}}{n}\right)$.
- If $j \notin I, u=\gamma A_{l}\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)-P_{A_{l}^{\perp}}(w)$ and a_{j} are independent.
- It follows that w.o.p.

$$
\begin{equation*}
\max _{j \notin l}\left|\left\langle a_{j}, u\right\rangle\right| \leqslant \sqrt{\frac{2 \ln N}{n}}\|u\|_{2} \tag{4}
\end{equation*}
$$

- $\|u\|_{2}^{2} \leqslant \gamma^{2}\left\|A_{l}\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)\right\|_{2}^{2}+\varepsilon^{2}$ using Pythagore !!!
- $\left\|A_{l}\left(A_{l}^{t} A_{l}\right)^{-1} \operatorname{sign}\left(\overline{x_{0}}\right)\right\|_{2}^{2}$ is bounded using a classical Wishart concentration lemma.
- It follows that if $|I| \leqslant \frac{a b n}{2 \ln N}$ and $\gamma \geqslant \varepsilon \sqrt{\frac{(1-a) n}{2 \ln N}}$, condition SC2 applies.

Take Away Messages

Conclusions

- Optimal bounds for exact support recovery with Gaussian measurements.
- Partial support recovery if $\frac{T}{\varepsilon}$ is too small.
- New bounds for ℓ_{2} recovery different from RIP.
- Robustness to noise and compressibility without RIP.

Going Further

- Extension to subgaussain matrices (USE and Bernoulli)
- Paper available online very soon.

