Support identification of sparse vectors from random and noisy measurements.

Charles Dossal¹ Marie-Line Chabanol¹ Gabriel Peyré² Jalal Fadili³

¹IMB CNRS-Université Bordeaux 1

²CEREMADE CNRS-Université Paris Dauphine

³GREYC CNRS-ENSICAEN-Université de Caen

Workshop Probability and Geometry in High Dimensions

Outline

- Setting
- ullet ℓ_1 recovery: Overview
 - ullet ℓ_1 minimization and geometry of polytopes.
 - Restricted Isometry Property.
 - Exact support recovery using LASSO.
- Contributions.
- Sketch of proof of the main result.

Introduction State of the art Contributions Sketch of proof Conclusions

Setting

Noisy Gaussian measurements of sparse vectors

- Linear random measurements $y = Ax + w \in \mathbb{R}^n$, $x \in \mathbb{R}^N$, $A = (a_{ij})_{i \leq n, j \leq N} \in \mathbb{R}^{n \times N}$, $a_{ij} \sim \mathcal{N}(0, 1/n)$ and iid, $w \in \mathbb{R}^n$ and $\|w\|_2 \leq \varepsilon$.
- x is sparse $\Leftrightarrow ||x||_0 < N$ is small.
- x is weakly sparse (compressible).

Questions

- Estimate x from y when n < N, ill-posed inverse problem.
- Estimate the support I of x from y.
- Stability to noise and robusteness to compressibility.

Introduction State of the art Contributions Sketch of proof Conclusion

Sparse Recovery Algorithms

A large choice of methods

- Greedy methods: Matching Pursuit, OMP, Cosamp, MCA ...
- Non convex optimization :

$$\min_{x \in \mathbb{R}^N} \|x\|_p \text{ s.t. } y-Ax \in C, p \in (0,1), C = \{0\} \text{ or } C = \mathcal{B}_{\ell_2}(\sigma)$$

Convex optimization :

$$\min_{x \in \mathbb{R}^N} \|x\|_1 \quad s.t. \quad y - Ax \in C,$$

- $C = \{0\}$: exact ℓ_1 minimization (Basis Pursuit).
- $C = \{z \mid s.t. \|A^t z\|_{\infty} \leqslant \tau\}$: Dantzig Selector.
- $C = \mathcal{B}_{\ell_2}(0, r)$: LASSO/BPDN equivalent to

$$\min_{\mathbf{x} \in \mathbb{R}^N} \frac{1}{2} \left\| \mathbf{y} - A\mathbf{x} \right\|_2^2 + \gamma \left\| \mathbf{x} \right\|_1 \tag{LASSO}$$

Noiseless observations: Geometry of centrosymmetric polytopes

Donoho [04], Donoho and Tanner [05-07]

Identifiability is a geometrical property.

- x is identifiable if and only if $\frac{Ax}{\|x\|_1} \in \partial A(\mathcal{B}_{\ell_1})$.
- For $x \in \mathbb{R}^N$, $I = \{i, x_i \neq 0\}$, $f_x = \text{Conv.Hull}(\text{sign}(x_i) a_i)_{i \in I}$.
- x is identifiable $\Leftrightarrow f_x$ is an exterior facet of $A(\mathcal{B}_{\ell_1})$.

The geometrical viewpoint

Counting *k*-faces of centro-symmetric polytopes [Donoho 04]

• If A is gaussian or USE, there is a function $\rho_N(.)$ such that w.o.p. on A, all sparse x with

$$||x||_0 \le \rho_N(n/N)n$$
 are ℓ_1 – identifiable. (1)

• If A is gaussian or USE, x with randomly chosen support and sign, there is $\rho_F(.)$ such that w.o.p. on A, most sparse x with

$$||x||_0 \leqslant \rho_F(n/N)n$$
 are ℓ_1 — identifiable. (2)

- No stability to noise.
- Sharp phase transition :

$$\rho_N(1/2) \sim 0.089, \ \rho_F(1/2) \sim 0.38$$
 $\rho_N(1/4) \sim 0.065, \ \rho_F(1/4) \sim 0.25.$

Restricted Isometry Property

Definition of RIP

• For $A \in \mathbb{R}^{n \times N}$, $\delta_{\mathcal{S}}^{\min}$ and $\delta_{\mathcal{S}}^{\max}$ are the smallest real numbers in (0,1) such that for any x, $\|x\|_0 \leqslant \mathcal{S}$,

$$(1 - \delta_S^{\min}) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_S^{\max}) \|x\|_2^2.$$

Theorem [Fourcart and Lai 08]

If
$$(4\sqrt{2} - 3)\delta_{2S}^{\min} + \delta_{2S}^{\max} < 4(\sqrt{2} - 1),$$
 (RIPFL)

- All vectors x such that $||x||_0 \le S$ are identifiable.
- Stability to noise, consistency if x is only compressible.
- There exist C_0 and C_1 depending on δ_{2S}^{\min} and δ_{2S}^{\max} such that the solution x^* of (LASSO) satisfies

$$||x^* - x_0||_2 \le C_0 S^{-1/2} ||x - x_5||_1 + C_1 \varepsilon.$$

Bounds for gaussian matrices, N = 4000, n = 1000

- If A is a Gaussian matrix with iid entries, then w.o.p. A satisfies (RIPFL) for $S = O\left(\frac{n}{\log(N/n)}\right)$.
- For $n/N = \frac{1}{4}$, (RIPFL) applies up to S = 0.0027n [Blanchard et al. 09].
- but (RIPFL) doesn't apply if $S \ge 0.005n$. [D. et al 09].

Exact Support and sign pattern recovery with LASSO

Theorem [Candes Plan 07]

and $T = \min_{i \in I} |x_0(i)|$.

Let $A \in \mathcal{M}_{n,N}(\mathbb{R})$ which columned are normed and such that $\mu(A) \leqslant \frac{c_1}{\ln N}$. Let $w \in \mathbb{R}^n$ such that $w(i) \sim \mathcal{N}(0, \frac{\varepsilon^2}{n})$. Let $x_0 \in \mathbb{R}^N$

For sufficiently small constant c_0

- if x_0 is randomly chosen among vectors such that $|I| \leqslant \frac{c_0 N}{\|A\|^2 \ln N}$, (support : uniform and sign : Rademacher).
- if $T \geqslant 8\varepsilon\sqrt{\frac{2\ln N}{n}}$ and $\gamma = 2\varepsilon\sqrt{\frac{2\ln N}{n}}$

the solution x^* of

$$\min_{\mathbf{x} \in \mathbb{R}^{\mathbb{N}}} \frac{1}{2} \left\| \mathbf{y} - A\mathbf{x} \right\|_{2}^{2} + \gamma \left\| \mathbf{x} \right\|_{1}$$
 (LASSO)

satisfies $Supp(x^*) = Supp(x_0)$ and $sign(x^*) = sign(x_0)$ w.o.p.

Introduction State of the art Contributions Sketch of proof Conclusion

Contibutions

Results for Gaussian matrices

- Refinement of Theorem [Candes Plan 07] for Gaussian matrices
 - without any prior on the distribution of x_0 and w.
 - with explicit and optimal constants.
 - robustness to compressibility.
- Without any hypothesis on $\frac{T}{\varepsilon}$
 - $Supp(x^*)$ is controlled.
 - ℓ_2 consistency results.
- Explicit bounds may be better that the ones derived from RIP.
- Justify debiasing.

Support and sign pattern identification

Theorem 1

Let $(a,b) \in (0,1)^2$, N > n, $y = Ax_0 + w$ where A is a Gaussian matrix and $\|w\|_2 \le \varepsilon$.

- If $||x_0||_0 = S \leqslant \frac{ab}{2} \frac{n}{\ln N}$,
- if $\gamma = \frac{\varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$ and if $T \geqslant \frac{6\varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$

then w.o.p. $Supp(x^*) = Supp(x_0)$ and $sign(x^*) = sign(x_0)$ and

$$\|x^* - x_0\|_2 \leqslant \varepsilon \left(\sqrt{\frac{a}{1-a}} + 1\right)$$

Support inclusion

Theorem 2

Let $(a, b) \in (0, 1)^2$, N > n, $y = Ax_0 + w$ where A is a Gaussian matrix and $\|w\|_2 \le \varepsilon$.

- If $||x_0||_0 = S \leqslant \frac{ab}{2} \frac{n}{\ln N}$,
- if $\gamma = \frac{\varepsilon}{\sqrt{1-a}} \sqrt{\frac{2 \ln N}{n}}$,

then w.o.p $Supp(x^*) \subset Supp(x_0)$ and

$$\|x^* - x_0\|_2 \leqslant \varepsilon \left(\sqrt{\frac{a}{1-a}} + 1\right)$$

Numerical experiments

Example with a = 0.95, n = 1000 and N = 4000

 Rates of exact support recovery versus sparsity level.

•
$$\varepsilon = \frac{T}{6} \sqrt{\frac{(1-a)n}{2 \ln N}}$$
.

Notations

- For a vector x, let's denote I its support,
- A_I the associated active matrix and \overline{x} the restriction of x to I.
- We have $Ax = A_I \overline{x}$.
- Let's denote $P_{A_i^{\perp}}$ the orthogonal projection on V^{\perp} with $V = \operatorname{Span}\{(a_i)_{i \in I}\}.$

Remarks

• If A is gaussian, $\forall (y, \gamma) \in \mathbb{R}^n \times \mathbb{R}^{+*}$, the solution x^* of

$$\min \frac{1}{2} \|y - Ax\|_2^2 + \gamma \|x\|_1$$
 (LASSO)

- is unique with probability 1 and
- $(A_i^t A_l)$ associated to x^* is inversible with probability 1.

A necessary condition

• If $Supp(x^*) = I = Supp(x_0)$ and $sign(\overline{x^*}) = sign(\overline{x_0})$ then the solution of (LASSO) is defined by

$$\overline{x^*} = \overline{x_0} - \gamma (A_I^t A_I)^{-1} \operatorname{sign}(\overline{x_0}) + (A_I^t A_I)^{-1} A_I^t w. \tag{3}$$

A sufficient condition

• Let's denote $T = \min_{i \in I} |x_0(i)|$, if

$$\left\|\gamma(A_I^t A_I)^{-1} \operatorname{sign}\left(\overline{x_0}\right) - \left(A_I^t A_I\right)^{-1} A_I^t w\right\|_{\infty} < T \tag{SC1}$$

and

$$|\langle a_j, \gamma A_I (A_I^t A_I)^{-1} \operatorname{sign}(\overline{x_0}) - P_{A_I^{\perp}}(w) \rangle| \leqslant \gamma, \ \forall j \notin I \quad (SC2)$$

the vector x^* defined by (3) is the solution of (LASSO).

$SC1: \|\gamma(A_l^tA_l)^{-1} \operatorname{sign}(\overline{x_0}) - (A_l^tA_l)^{-1} A_l^t w\|_{\infty} < T$

- If $|I| \leqslant \frac{abn}{2 \ln N}$
 - $\|(A_I^t A_I)^{-1} \operatorname{sign}(x_0)\|_{\infty} \leqslant 1 + 3\sqrt{ab} \leqslant 4$ with w.o.p
 - Properties of Wishart matrices (signs of coefficients and spectral norm).
 - $\|(A_I^t A_I)^{-1} A_I^t w\|_{\infty} \leqslant 2\varepsilon \sqrt{\frac{\ln N}{n}}$ with w.o.p.
 - Rotation Invariance of $(A_I^t A_I)^{-1} A_I^t$, χ^2 concentration lemmas, and spectral norm of Wishart matrices.
- If $\gamma \leqslant \frac{T}{6}$ and $\varepsilon \leqslant \frac{T}{6} \sqrt{\frac{n}{2 \ln N}}$ then condition (SC1) applies :

$$\|\gamma(A_I^tA_I)^{-1}\operatorname{sign}(\overline{x_0}) - (A_I^tA_I)^{-1}A_I^tw\|_{\infty} < T$$

$\mathsf{SC2}: |\langle a_j, \gamma A_I (A_I^t A_I)^{-1} \operatorname{sign} \left(\overline{\chi_0} \right) - P_{A_r^{\perp}}(w) \rangle| \leqslant \gamma, \ \forall j \notin I$

- If u and a_i are independent, then $\langle a_i, u \rangle \sim \mathcal{N}(0, \frac{\|u\|_2}{n})$.
- If $j \notin I$, $u = \gamma A_I (A_I^t A_I)^{-1} \operatorname{sign}(\overline{x_0}) P_{A_I^{\perp}}(w)$ and a_j are independent.
- It follows that w.o.p.

$$\max_{j \notin I} |\langle a_j, u \rangle| \leqslant \sqrt{\frac{2 \ln N}{n}} \|u\|_2 \tag{4}$$

- $||u||_2^2 \leqslant \gamma^2 ||A_I(A_I^t A_I)^{-1} \operatorname{sign}(\overline{x_0})||_2^2 + \varepsilon^2$ using Pythagore !!!
- $\|A_I(A_I^t A_I)^{-1} \operatorname{sign}(\overline{x_0})\|_2^2$ is bounded using a classical Wishart concentration lemma.
- It follows that if $|I| \leqslant \frac{abn}{2 \ln N}$ and $\gamma \geqslant \varepsilon \sqrt{\frac{(1-a)n}{2 \ln N}}$, condition SC2 applies.

Introduction State of the art Contributions Sketch of proof **Conclusions**

Take Away Messages

Conclusions

- Optimal bounds for exact support recovery with Gaussian measurements.
- Partial support recovery if $\frac{T}{\varepsilon}$ is too small.
- New bounds for ℓ_2 recovery different from RIP.
- Robustness to noise and compressibility without RIP.

Going Further

- Extension to subgaussain matrices (USE and Bernoulli)
- Paper available online very soon.