Random embedding of ℓ_{p}^{n} into ℓ_{r}^{N}
 $0<r<p<2 \quad \frac{2 p}{p+2} \leq r \leq 1$

Omer FRIEDLAND Olivier GUÉDON

Université Pierre et Marie CURIE
Université Paris-Est Marne La Vallée

17 Mai 2010

History

- Johnson - Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :
- Let $1<p<2$. Then for any $\varepsilon>0$
- More precisely, they gave an explicit definition of a random operator, $T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}$, and proved that :

History

- Johnson - Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :
- Let $1<p<2$. Then for any $\varepsilon>0$

$$
\ell_{p}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{1}^{N}, \quad N=C(p, \varepsilon) n .
$$

- More precisely, they gave an explicit definition of a random operator, $T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}$, and proved that :

History

- Johnson - Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :
- Let $1<p<2$. Then for any $\varepsilon>0$

$$
\ell_{p}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{1}^{N}, \quad N=C(p, \varepsilon) n .
$$

- More precisely, they gave an explicit definition of a random operator, $T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}$, and proved that :

$$
1-\varepsilon \leq|T \alpha|_{1} \leq 1+\varepsilon, \quad \forall \alpha \in S_{p}^{n-1}
$$

History

- Figiel - Lindenstrauss - Milman '77 proved, following Milman's approach to Dvoretsky theorem :

$$
\ell_{2}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{1}^{N}, \quad N=C(\varepsilon) n .
$$

- Kashin '77, with a different approach, proved
where $\eta>0$.

History

- Figiel - Lindenstrauss - Milman '77 proved, following Milman's approach to Dvoretsky theorem :

$$
\ell_{2}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{1}^{N}, \quad N=C(\varepsilon) n .
$$

- Kashin '77, with a different approach, proved :

$$
\ell_{2}^{n} \xrightarrow{C(\eta)} \longleftrightarrow \ell_{1}^{N}, \quad N=(1+\eta) n,
$$

where $\eta>0$.

History

	$1 \leq p<2$	$p=2$
almost-isometric ε-embed	JS '82	FLM '77
isomorphic with $N=(1+\eta) n$	$?$	
		K'77

History

	$1 \leq p<2$	$p=2$
almost-isometric ε-embed	JS '82	FLM '77
isomorphic with $N=(1+\eta) n$	$?$	
		K'77

Questions

- Whether there is an embedding that satisfies these conditions?
- Is there a random embedding ?

History

	$1 \leq p<2$	$p=2$
almost-isometric ε-embed	JS '82	FLM '77
isomorphic with $N=(1+\eta) n$	JS '03	
		K ' $^{\prime} 77$

Questions

- Whether there is an embedding that satisfies these conditions? YES
- Is there a random embedding ?

History

	$1 \leq p<2$	$p=2$
almost-isometric ε-embed	JS '82	FLM '77
isomorphic with $N=(1+\eta) n$	$\begin{aligned} & \hline \hline \text { JS '03 } \\ & \text { NZ '01 } \end{aligned}$	K '77

- Naor - Zvavitch '01 provided an explicit definition of a random operator which satisfies the desired property :

$$
\ell_{p}^{n} \stackrel{C}{\hookrightarrow} \ell_{1}^{N}, \quad N=(1+\eta) n,
$$

where $C=(c \log n)^{(1-1 / p)(1+1 / \eta)}$.

History

	$1 \leq p<2$	$p=2$
almost-isometric	JS '82	FLM '77
ε-embed	P '83	
isomorphic	JS '03	
with	NZ '01	K'77
$N=(1+\eta) n$		

- Pisier '83 extended this result to the case of a general finite normed space E of dimension N :

$$
\ell_{p}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} E,
$$

where n depends only on ε and on the stable-type p constant of E.

History

	$1 \leq p<2$	$p=2$
almost-isometric	JS '82	FLM '77
ε-embed	$\mathbf{P}^{\prime} 83$	
isomorphic	JS '03	
with	NZ '01	K '77
$N=(1+\eta) n$		

History

	$1 \leq p<2$	$p=2$
almost-isometric	JS '82	FLM '77
ε-embed	$\mathbf{P}^{\prime} 83$	
isomorphic	JS '03	
with	NZ '01	K '77
$N=(1+\eta) n$		

- Johnson - Schechtman '82 used a discretization method to approximate p-stable random variables.
- Naor - Zvavitch '01 used truncated p-stable random variables.
- Pisier '83 used a completely different approach.

Definitions

- Let $\left(e_{i}\right)_{1 \leq i \leq N}$ be the canonical basis of \mathbb{R}^{N}.
- Let Y be a random vector taking the values $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\}$, with probability $\frac{1}{2 N}$.
- We define the following operator
where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, and $\left(Y_{i, j}\right)$ are independent copies of Y.

Definitions

- Let $\left(e_{i}\right)_{1 \leq i \leq N}$ be the canonical basis of \mathbb{R}^{N}.
- Let Y be a random vector taking the values $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\}$, with probability $\frac{1}{2 N}$.
- We define the following operator:

$$
\begin{aligned}
T: \ell_{p}^{n} & \rightarrow \ell_{r}^{N} \\
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \mapsto \frac{\sigma_{p, r}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j},
\end{aligned}
$$

where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, and $\left(Y_{i, j}\right)$ are independent copies of Y.

Theorem [Random embedding of ℓ_{p}^{n} into ℓ_{r}^{N}]

Let $0<r<p<2$ and $\frac{2 p}{p+2} \leq r \leq 1$.
For any $\eta>0$, and any integers $n, N=(1+\eta) n$ we have
$\mathbb{P}\left\{\forall \alpha \in S_{p}^{n-1}, \quad c(p, r)^{1 / \eta} \leq|T \alpha|_{r} \leq C(p, r)\right\} \geq 1-c \exp \left(-c_{p, r} n\right)$,
where $c(p, r), C(p, r), c_{p, r}$ depend only on p and r, and c is an absolute constant.

Remark
This onerator, T, is a particular instance of the operators defined by Pisier '83 for the almost-isometric result

Theorem [Random embedding of ℓ_{p}^{n} into ℓ_{r}^{N}]

Let $0<r<p<2$ and $\frac{2 p}{p+2} \leq r \leq 1$.
For any $\eta>0$, and any integers $n, N=(1+\eta) n$ we have
$\mathbb{P}\left\{\forall \alpha \in S_{p}^{n-1}, c(p, r)^{1 / \eta} \leq|T \alpha|_{r} \leq C(p, r)\right\} \geq 1-c \exp \left(-c_{p, r} n\right)$,
where $c(p, r), C(p, r), c_{p, r}$ depend only on p and r, and c is an absolute constant.

Remark

This operator, T, is a particular instance of the operators defined by Pisier '83 for the almost-isometric result

Stable random variables

- A real-valued symmetric r.v. θ is called standard $p-$ stable :

$$
\mathbb{E} \exp (i t \theta)=\exp \left(-|t|^{p}\right), \quad \forall t \in \mathbb{R}^{n}
$$

- Why "stable" ?

where $\alpha_{i} \in \mathbb{R}, \theta_{i}$ is standard p - stable r.v., and for any finite sequence.
- In particular, it suggests that ℓ_{p}^{n} is isometric to a subspace of L_{1}

Stable random variables

- A real-valued symmetric r.v. θ is called standard $p-$ stable :

$$
\mathbb{E} \exp (i t \theta)=\exp \left(-|t|^{p}\right), \quad \forall t \in \mathbb{R}^{n}
$$

- Why "stable"?

$$
\sum_{i} \alpha_{i} \theta_{i} \stackrel{D}{=}\left(\sum_{i}\left|\alpha_{i}\right|^{p}\right)^{1 / p} \cdot \theta_{1}
$$

where $\alpha_{i} \in \mathbb{R}, \theta_{i}$ is standard p - stable r.v., and for any finite sequence.

- In particular, it suggests that ℓ_{p}^{n} is isometric to a subspace of L_{1} :

Stable random variables

- A real-valued symmetric r.v. θ is called standard $p-$ stable :

$$
\mathbb{E} \exp (i t \theta)=\exp \left(-|t|^{p}\right), \quad \forall t \in \mathbb{R}^{n}
$$

- Why "stable"?

$$
\sum_{i} \alpha_{i} \theta_{i} \stackrel{D}{=}\left(\sum_{i}\left|\alpha_{i}\right|^{p}\right)^{1 / p} \cdot \theta_{1}
$$

where $\alpha_{i} \in \mathbb{R}, \theta_{i}$ is standard p - stable r.v., and for any finite sequence.

- In particular, it suggests that ℓ_{p}^{n} is isometric to a subspace of L_{1} :

$$
\ell_{p}^{n} \hookrightarrow L_{1} .
$$

Stable random variables

- Let $\left(\lambda_{i}\right)_{i}$ be independent random variables with common exponential distribution $\mathbb{P}\left\{\lambda_{i}>t\right\}=\exp (-t), t \geq 0$.
- Set $\Gamma_{j}=\sum_{i=1}^{j} \lambda_{i}$, for $j \geq 1$.
- We recall that Y is the random vector taking the values $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\}$, with probability $\frac{1}{2 N}$.
- By a result of LePage - W/oodroofe - Zinn '81
is a p-stable random vector.

Stable random variables

- Let $\left(\lambda_{i}\right)_{i}$ be independent random variables with common exponential distribution $\mathbb{P}\left\{\lambda_{i}>t\right\}=\exp (-t), t \geq 0$.
- Set $\Gamma_{j}=\sum_{i=1}^{j} \lambda_{i}$, for $j \geq 1$.
- We recall that Y is the random vector taking the values $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\}$, with probability $\frac{1}{2 N}$.
- By a result of LePage - Woodroofe - Zinn '81
is a p-stable random vector.

Stable random variables

- Let $\left(\lambda_{i}\right)_{i}$ be independent random variables with common exponential distribution $\mathbb{P}\left\{\lambda_{i}>t\right\}=\exp (-t), t \geq 0$.
- Set $\Gamma_{j}=\sum_{i=1}^{j} \lambda_{i}$, for $j \geq 1$.
- We recall that Y is the random vector taking the values $\left\{ \pm e_{1}, \ldots, \pm e_{N}\right\}$, with probability $\frac{1}{2 N}$.
- By a result of LePage - Woodroofe - Zinn '81 :

$$
\Theta=\sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{j}
$$

is a p-stable random vector.

Stable operators

- Let us define the following operator :

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \Theta_{i}
$$

Stable operators

- Let us define the following operator :

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i}\left(\sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}\right)
$$

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

Stable operators

- Let us define the following auxiliary operator :

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators

Stable operators

- Let us define the following auxiliary operator :

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators
- $\mathbb{E}|\tilde{T} \alpha|_{1}=|\alpha|_{p}$.

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators
- $\mathbb{E}|\tilde{T} \alpha|_{1}=|\alpha|_{p}$.
- $\left.|\mathbb{E}| T \alpha\right|_{1}-\left.\mathbb{E}|\tilde{T} \alpha|_{1}\left|\leq D_{p}\left(\frac{n}{N}\right)^{1 / q}\right| \alpha\right|_{p}$.

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators
- $\mathbb{E}|\tilde{T} \alpha|_{1}=|\alpha|_{p}$.
- $\left.|\mathbb{E}| T \alpha\right|_{1}-\left.\mathbb{E}|\tilde{T} \alpha|_{1}\left|\leq D_{p}\left(\frac{n}{N}\right)^{1 / q}\right| \alpha\right|_{p}$.
- $\mathbb{P}\left\{\left.\left||T \alpha|_{1}-\mathbb{E}\right| T \alpha\right|_{1} \mid \geq t\right\} \leq 2 \exp \left(-b_{p} N t^{q}\right)$.

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators
- $\mathbb{E}|\tilde{T} \alpha|_{1}=|\alpha|_{p}$.
- $\left.|\mathbb{E}| T \alpha\right|_{1}-\left.\mathbb{E}|\tilde{T} \alpha|_{1}\left|\leq D_{p}\left(\frac{n}{N}\right)^{1 / q}\right| \alpha\right|_{p} . \longleftarrow \mathbf{P}{ }^{\prime} 83$
- $\mathbb{P}\left\{\left.\left||T \alpha|_{1}-\mathbb{E}\right| T \alpha\right|_{1} \mid \geq t\right\} \leq 2 \exp \left(-b_{p} N t^{q}\right)$.

Stable operators

- Let us define the following auxiliary operator:

$$
\tilde{T}: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad \tilde{T} \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \Gamma_{j}^{-1 / p} Y_{i, j}
$$

- Recall :

$$
T: \ell_{p}^{n} \rightarrow \ell_{1}^{N}, \quad T \alpha=\frac{\sigma_{p}}{N^{1 / q}} \sum_{i=1}^{n} \alpha_{i} \sum_{j \geq 1} \frac{1}{j^{1 / p}} Y_{i, j}
$$

- Properties of these operators
- $\mathbb{E}|\tilde{T} \alpha|_{1}=|\alpha|_{p}$.
- $\left.|\mathbb{E}| T \alpha\right|_{1}-\left.\mathbb{E}|\tilde{T} \alpha|_{1}\left|\leq D_{p}\left(\frac{n}{N}\right)^{1 / q}\right| \alpha\right|_{p}$.
$\longleftarrow \mathbf{P}{ }^{\prime} 83$
- $\mathbb{P}\left\{\left.\left||T \alpha|_{1}-\mathbb{E}\right| T \alpha\right|_{1} \mid \geq t\right\} \leq 2 \exp \left(-b_{p} N t^{q}\right)$.

Ideas behind this result

- Fix $\alpha \in S_{p}^{n-1}$. We have

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

note that $|\alpha|_{p}=1$.

- It means

$$
N=C n .
$$

- Large deviation is useful for almost-isometric results and for obtaining upper bounds in general.

Ideas behind this result

- Fix $\alpha \in S_{p}^{n-1}$. We have

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

note that $|\alpha|_{p}=1$.

- It means

$$
\begin{gathered}
1-t \leq|T \alpha|_{1} \leq 1+t \\
t=\varepsilon>0, \quad N=C n
\end{gathered}
$$

- Large deviation is useful for almost-isometric results and for obtaining upper bounds in general.

Ideas behind this result

- Fix $\alpha \in S_{p}^{n-1}$. We have

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

note that $|\alpha|_{p}=1$.

- It means

$$
\begin{gathered}
1-t \leq|T \alpha|_{1} \leq 1+t \\
t=\varepsilon>0, \quad N=C n
\end{gathered}
$$

- But

$$
|T \alpha|_{1} \leq 1+t, \quad \forall t>0
$$

- Large deviation is useful for almost-isometric results and for obtaining upper bounds in general.

Ideas behind this result

- Fix $\alpha \in S_{p}^{n-1}$. We have

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

note that $|\alpha|_{p}=1$.

- It means

$$
\begin{gathered}
1-t \leq|T \alpha|_{1} \leq 1+t \\
t=\varepsilon>0, \quad N=C n
\end{gathered}
$$

- But

$$
|T \alpha|_{1} \leq 1+t, \quad \forall t>0
$$

- Large deviation is useful for almost-isometric results and for obtaining upper bounds in general.

Ideas behind this result

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

- In our situation : $N=(1+\eta) n$ and $t \in(0,1)$.
- We may assume in addition that $\alpha \in S_{p}^{n-1}$ has a small support : $|\operatorname{supp}(\alpha)| \leq \delta n$.

$$
\begin{array}{rll}
C n & X & n \\
(1+\eta) n & X & \delta n
\end{array}
$$

- It means that for such vectors with $\delta \simeq \frac{1}{C}$, we may use this large deviation inequality again, and have a lower bound.

Ideas behind this result

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

- In our situation : $N=(1+\eta) n$ and $t \in(0,1)$.
- We may assume in addition that $\alpha \in S_{p}^{n-1}$ has a small support : $|\operatorname{supp}(\alpha)| \leq \delta n$.
- It means that for such vectors with $\delta \simeq \frac{1}{C}$, we may use this large deviation inequality again, and have a lower bound.

Ideas behind this result

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

- In our situation : $N=(1+\eta) n$ and $t \in(0,1)$.
- We may assume in addition that $\alpha \in S_{p}^{n-1}$ has a small support : $|\operatorname{supp}(\alpha)| \leq \delta n$.
- It means that for such vectors with $\delta \simeq \frac{1}{C}$, we may use this large deviation inequality again, and have a lower bound.

Ideas behind this result

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

- In our situation : $N=(1+\eta) n$ and $t \in(0,1)$.
- We may assume in addition that $\alpha \in S_{p}^{n-1}$ has a small support : $|\operatorname{supp}(\alpha)| \leq \delta n$.

$$
\begin{array}{rll}
C n & X & n \\
(1+\eta) n & X & \delta n
\end{array}
$$

- It means that for such vectors with $\delta \simeq \frac{1}{C}$, we may use this large deviation inequality again, and have a lower bound.

Ideas behind this result

$$
\mathbb{P}\left\{\left||T \alpha|_{1}-|\alpha|_{p}\right| \geq t\right\} \leq 2 \exp \left(-c_{p} N t^{q}\right)
$$

- In our situation : $N=(1+\eta) n$ and $t \in(0,1)$.
- We may assume in addition that $\alpha \in S_{p}^{n-1}$ has a small support : $|\operatorname{supp}(\alpha)| \leq \delta n$.

$$
\begin{array}{rll}
C n & X & n \\
(1+\eta) n & X & \delta n
\end{array}
$$

- It means that for such vectors with $\delta \simeq \frac{1}{C}$, we may use this large deviation inequality again, and have a lower bound.

Division of S_{p}^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in(0,1)$.
- We define

$$
\operatorname{Sparse}(\delta)=\left\{\alpha \in \ell_{p}^{n}:|\operatorname{supp}(\alpha)| \leq \delta n\right\}
$$

- We partition S_{p}^{n-1} into two sets with respect to Sparse (δ) and ρ.
- We define the following sets:
where $A S(\delta, \rho)$ is the ρ-enlargement (for the ℓ_{p}^{n} metric) of the set of sparse vectors intersected with S_{p}^{n-1}

Division of S_{p}^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in(0,1)$.
- We define

$$
\operatorname{Sparse}(\delta)=\left\{\alpha \in \ell_{p}^{n}:|\operatorname{supp}(\alpha)| \leq \delta n\right\}
$$

- We partition S_{p}^{n-1} into two sets with respect to Sparse (δ) and ρ.
- We define the following sets :
where $A S(\delta, \rho)$ is the ρ-enlargement (for the ℓ_{p}^{n} metric) of the set of sparse vectors intersected with S_{p}^{n-1}.

Division of S_{p}^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in(0,1)$.
- We define

$$
\operatorname{Sparse}(\delta)=\left\{\alpha \in \ell_{p}^{n}:|\operatorname{supp}(\alpha)| \leq \delta n\right\}
$$

- We partition S_{p}^{n-1} into two sets with respect to Sparse (δ) and ρ.
- We define the following sets :

$$
\begin{aligned}
& A S(\delta, \rho)=\left\{\alpha \in S_{p}^{n-1}: \operatorname{dist}_{p}(\alpha, \text { Sparse }(\delta)) \leq \rho\right\} \\
& N A S(\delta, \rho)=S_{p}^{n-1} \backslash A S(\delta, \rho)
\end{aligned}
$$

where $A S(\delta, \rho)$ is the ρ-enlargement (for the ℓ_{p}^{n} metric) of the set of sparse vectors intersected with S_{p}^{n-1}.

Small ball estimate

- For $\alpha \in \operatorname{NAS}(\delta, \rho)$

$$
\mathbb{P}\left\{|T \alpha|_{1} \leq t\right\} \leq\left(c_{p} t\right)^{N}, \quad t>0
$$

- It means $\quad t \leq|T \alpha|_{1} \quad$ w.h.p
- Basic properties of NAS vector
$\exists I \subseteq\{1, \ldots, n\}$ such that $|I| \geq \frac{1}{2} \delta n \rho^{p}$ and $\forall k \in I$ we have

$$
\frac{\rho}{(2 n)^{1 / p}} \leq\left|\alpha_{k}\right| \leq \frac{1}{(\delta n)^{1 / p}} .
$$

Small ball estimate

- For $\alpha \in \operatorname{NAS}(\delta, \rho)$

$$
\mathbb{P}\left\{|T \alpha|_{1} \leq t\right\} \leq\left(c_{p} t\right)^{N}, \quad t>0
$$

- It means $\quad t \leq|T \alpha|_{1} \quad$ w.h.p
- Basic properties of NAS vector
$\exists I \subseteq\{1, \ldots, n\}$ such that $|I| \geq \frac{1}{2} \delta n \rho^{p}$ and $\forall k \in I$ we have

Small ball estimate

- For $\alpha \in \operatorname{NAS}(\delta, \rho)$

$$
\mathbb{P}\left\{|T \alpha|_{1} \leq t\right\} \leq\left(c_{p} t\right)^{N}, \quad t>0
$$

- It means $\quad t \leq|T \alpha|_{1} \quad$ w.h.p
- Basic properties of NAS vector :
$\exists I \subseteq\{1, \ldots, n\}$ such that $|I| \geq \frac{1}{2} \delta n \rho^{p}$ and $\forall k \in I$ we have

Small ball estimate

- For $\alpha \in \operatorname{NAS}(\delta, \rho)$

$$
\mathbb{P}\left\{|T \alpha|_{1} \leq t\right\} \leq\left(c_{p} t\right)^{N}, \quad t>0
$$

- It means $\quad t \leq|T \alpha|_{1} \quad$ w.h.p
- Basic properties of NAS vector :
$\exists I \subseteq\{1, \ldots, n\}$ such that $|I| \geq \frac{1}{2} \delta n \rho^{p}$ and $\forall k \in I$ we have

$$
\frac{\rho}{(2 n)^{1 / p}} \leq\left|\alpha_{k}\right| \leq \frac{1}{(\delta n)^{1 / p}}
$$

Small ball estimate

- For $\alpha \in \operatorname{NAS}(\delta, \rho)$

$$
\mathbb{P}\left\{|T \alpha|_{1} \leq t\right\} \leq\left(c_{p} t\right)^{N}, \quad t>0
$$

- It means $\quad t \leq|T \alpha|_{1} \quad$ w.h.p
- Basic properties of NAS vector :
$\exists I \subseteq\{1, \ldots, n\}$ such that $|I| \geq \frac{1}{2} \delta n \rho^{p}$ and $\forall k \in I$ we have

$$
\left|\alpha_{k}\right| \stackrel{\rho, \delta}{\sim} \frac{1}{n^{1 / p}} .
$$

Theorem [Multi-dimensional Esseen type inequality]

Let X be a random vector in \mathbb{R}^{N}, such that the function

$$
\xi \mapsto \mathbb{E} \exp (i\langle\xi, X\rangle)
$$

belongs to $L_{1}\left(\mathbb{R}^{N}\right)$.
Then for any compact star-shape $K \subset \mathbb{R}^{N}$, for any $t>0$

$$
\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi
$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

Theorem [Multi-dimensional Esseen type inequality]

Let X be a random vector in \mathbb{R}^{N}, such that the function

$$
\xi \mapsto \mathbb{E} \exp (i\langle\xi, X\rangle)
$$

belongs to $L_{1}\left(\mathbb{R}^{N}\right)$.
Then for any compact star-shape $K \subset \mathbb{R}^{N}$, for any $t>0$

$$
\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi
$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

Theorem [Multi-dimensional Esseen type inequality]

Let X be a random vector in \mathbb{R}^{N}, such that the function

$$
\xi \mapsto \mathbb{E} \exp (i\langle\xi, X\rangle)
$$

belongs to $L_{1}\left(\mathbb{R}^{N}\right)$.
Then for any compact star-shape $K \subset \mathbb{R}^{N}$, for any $t>0$

$$
\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi
$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

Application

- For $\alpha \in \operatorname{NAS}(\delta, \rho) \quad \mathbb{P}\left\{\left||T \alpha|_{1}\right| \leq t\right\} \leq\left(c_{p} t\right)^{N}$.
- Recall : $\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi$. Set $K=N \cdot B_{1}^{N}$ and $X=N \cdot T \alpha$. Then

$$
|T \alpha|_{1}=\|X\|_{K}
$$

- Lemma : For any vector $\alpha \in \operatorname{NAS}(\delta, \rho)$, the function $\xi \mapsto \mathbb{E} \operatorname{exn}(i N\langle\xi, T \alpha\rangle)$, belongs to $L_{1}\left(\mathbb{R}^{N}\right)$. Moreover,

$$
\int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i N\langle\xi, T \alpha\rangle)| d \xi \leq C(p, \delta, \rho)^{N} .
$$

Application

- For $\alpha \in \operatorname{NAS}(\delta, \rho) \quad \mathbb{P}\left\{\left||T \alpha|_{1}\right| \leq t\right\} \leq\left(c_{p} t\right)^{N}$.
- Recall : $\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi$.

Set $K=N \cdot B_{1}^{N}$ and $X=N \cdot T \alpha$. Then

$$
|T \alpha|_{1}=\|X\|_{K}
$$

- Lemma : For any vector $\alpha \in \operatorname{NAS}(\delta, \rho)$, the function
$\xi \mapsto \mathbb{E} \operatorname{exn}(i N\langle\xi, T \alpha\rangle)$, belongs to $L_{1}\left(\mathbb{R}^{N}\right)$. Moreover

Application

- For $\alpha \in \operatorname{NAS}(\delta, \rho) \quad \mathbb{P}\left\{\left||T \alpha|_{1}\right| \leq t\right\} \leq\left(c_{p} t\right)^{N}$.
- Recall : $\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi$.

Set $K=N \cdot B_{1}^{N}$ and $X=N \cdot T \alpha$. Then

$$
|T \alpha|_{1}=\|X\|_{K}
$$

- Lemma : For any vector $\alpha \in \operatorname{NAS}(\delta, \rho)$, the function

$\xi \rightharpoonup \mathbb{E} \exp \left(i N^{\prime}\langle\xi, T \alpha\rangle\right)$, belongs to $I_{1}\left(\mathbb{R}^{N}\right)$. Moreover,

Application

- For $\alpha \in \operatorname{NAS}(\delta, \rho) \quad \mathbb{P}\left\{\left||T \alpha|_{1}\right| \leq t\right\} \leq\left(c_{p} t\right)^{N}$.
- Recall : $\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq|K|\left(\frac{t}{2 \pi}\right)^{N} \int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i\langle\xi, X\rangle)| d \xi$.

Set $K=N \cdot B_{1}^{N}$ and $X=N \cdot T \alpha$. Then

$$
|T \alpha|_{1}=\|X\|_{K}
$$

- Lemma : For any vector $\alpha \in N A S(\delta, \rho)$, the function $\xi \mapsto \mathbb{E} \exp (i N\langle\xi, T \alpha\rangle)$, belongs to $L_{1}\left(\mathbb{R}^{N}\right)$. Moreover,

$$
\int_{\mathbb{R}^{N}}|\mathbb{E} \exp (i N\langle\xi, T \alpha\rangle)| d \xi \leq C(p, \delta, \rho)^{N}
$$

