Random embedding of ℓ_p^n into ℓ_r^N 0 < r < p < 2 $\frac{2p}{p+2} \le r \le 1$

Omer FRIEDLAND Olivier GUÉDON

Université Pierre et Marie CURIE Université Paris-Est Marne La Vallée

17 Mai 2010

• Johnson – Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :

• Let $1 . Then for any <math>\varepsilon > 0$

$$\ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^N$$
, $N = C(p,\varepsilon)n$.

More precisely, they gave an explicit definition of a random operator, *T* : ℓⁿ_p → ℓ^N₁, and proved that :

$$1 - \varepsilon \le |T\alpha|_1 \le 1 + \varepsilon , \quad \forall \alpha \in S_p^{n-1}.$$

- Johnson Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :
- Let $1 . Then for any <math>\varepsilon > 0$

$$\ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^N$$
, $N = C(p,\varepsilon)n$.

More precisely, they gave an explicit definition of a random operator, *T* : ℓⁿ_p → ℓ^N₁, and proved that :

$$1 - \varepsilon \le |T\alpha|_1 \le 1 + \varepsilon , \quad \forall \alpha \in S_p^{n-1}.$$

- Johnson Schechtman '82 proved the existence of a random embedding for non-Euclidean spaces :
- Let $1 . Then for any <math>\varepsilon > 0$

$$\ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^N$$
, $N = C(p,\varepsilon)n$.

More precisely, they gave an explicit definition of a random operator, *T* : ℓⁿ_p → ℓ^N₁, and proved that :

$$1 - \varepsilon \le |T\alpha|_1 \le 1 + \varepsilon , \quad \forall \alpha \in S_p^{n-1}.$$

• Figiel – Lindenstrauss – Milman '77 proved, following Milman's approach to Dvoretsky theorem :

$$\ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^N , \qquad N = C(\varepsilon)n.$$

• Kashin '77, with a different approach, proved :

$$\ell_2^n \stackrel{C(\eta)}{\hookrightarrow} \ell_1^N$$
, $N = (1+\eta)n$,

where $\eta > 0$.

• Figiel – Lindenstrauss – Milman '77 proved, following Milman's approach to Dvoretsky theorem :

$$\ell_2^n \stackrel{1+\varepsilon}{\hookrightarrow} \ell_1^N , \qquad N = C(\varepsilon)n.$$

• Kashin '77, with a different approach, proved :

$$\ell_2^n \stackrel{C(\eta)}{\hookrightarrow} \ell_1^N \quad , \qquad N = (1+\eta)n,$$

where $\eta > 0$.

	$ 1 \le p < 2 $	<i>p</i> = 2	
almost-isometric	JS '82	FLM '77	
$\varepsilon-{\sf embed}$			
isomorphic			
with	?	K '77	
$N = (1 + \eta)n$			

	$1 \le p < 2$	<i>p</i> = 2	
almost-isometric	JS '82	FLM '77	
arepsilon - embed			
isomorphic			
with	?	K '77	
$N = (1 + \eta)n$			

Questions

- Whether there is an embedding that satisfies these conditions ?
- Is there a random embedding?

	$1 \le p < 2$	<i>p</i> = 2
almost-isometric	JS '82	FLM '77
$\varepsilon-{\sf embed}$		
isomorphic	JS '03	
with		K '77
$N = (1 + \eta)n$		

Questions

- Whether there is an embedding that satisfies these conditions ? YES
- Is there a random embedding?

	$1 \le p < 2$	p = 2	
almost-isometric	JS '82	FLM '77	
$\varepsilon-{\sf embed}$			
isomorphic	JS '03		
with	NZ '01	K '77	
$N = (1 + \eta)n$			

 Naor – Zvavitch '01 provided an explicit definition of a random operator which satisfies the desired property :

$$\ell_p^n \stackrel{C}{\hookrightarrow} \ell_1^N$$
, $N = (1+\eta)n$,

where $C = (c \log n)^{(1-1/p)(1+1/\eta)}$.

	$1 \le p < 2$	<i>p</i> = 2	
almost-isometric	JS '82	FLM '77	
$\varepsilon-\text{embed}$	P '83		
isomorphic	JS '03		
with	NZ '01	K '77	
$N = (1 + \eta)n$			

• **Pisier** '83 extended this result to the case of a general finite normed space *E* of dimension *N* :

$$\ell_p^n \stackrel{1+\varepsilon}{\hookrightarrow} E,$$

where *n* depends only on ε and on the stable-type *p* constant of *E*.

	$1 \le p < 2$	<i>p</i> = 2
almost-isometric	JS '82	FLM '77
$\varepsilon-\text{embed}$	P '83	
isomorphic	JS '03	
with	NZ '01	K '77
$N = (1 + \eta)n$		

	$1 \le p < 2$	<i>p</i> = 2	
almost-isometric	JS '82	FLM '77	
$\varepsilon-embed$	P '83		
isomorphic	JS '03		
with	NZ '01	K '77	
$N = (1 + \eta)n$			

- Johnson Schechtman '82 used a discretization method to approximate *p*-stable random variables.
- **Naor Zvavitch '01** used truncated *p*-stable random variables.
- **Pisier** '83 used a completely different approach.

Definitions

- Let $(e_i)_{1 \le i \le N}$ be the canonical basis of \mathbb{R}^N .
- Let *Y* be a random vector taking the values {±*e*₁,..., ±*e*_N}, with probability ¹/_{2N}.
- We define the following operator :

$$T: \ell_p^n \to \ell_r^N$$
$$\alpha = (\alpha_1, \dots, \alpha_n) \mapsto \frac{\sigma_{p,r}}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j},$$

where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, and $(Y_{i,j})$ are independent copies of *Y*.

Definitions

- Let $(e_i)_{1 \le i \le N}$ be the canonical basis of \mathbb{R}^N .
- Let *Y* be a random vector taking the values {±*e*₁,..., ±*e*_N}, with probability ¹/_{2N}.
- We define the following operator :

$$T: \ell_p^n \to \ell_r^N$$
$$\alpha = (\alpha_1, \dots, \alpha_n) \mapsto \frac{\sigma_{p,r}}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j},$$

where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, and $(Y_{i,j})$ are independent copies of *Y*.

Theorem [Random embedding of ℓ_p^n into ℓ_r^N]

Let
$$0 < r < p < 2$$
 and $\frac{2p}{p+2} \le r \le 1$.

For any $\eta > 0$, and any integers $n, N = (1 + \eta)n$ we have

 $\mathbb{P}\left\{\forall \alpha \in S_p^{n-1}, \ c(p,r)^{1/\eta} \leq |T\alpha|_r \leq C(p,r)\right\} \geq 1 - c \exp(-c_{p,r}n),$

where $c(p,r), C(p,r), c_{p,r}$ depend only on p and r, and c is an absolute constant.

Remark

This operator, *T*, is a particular instance of the operators defined by **Pisier '83** for the almost-isometric result

Theorem [Random embedding of ℓ_p^n into ℓ_r^N]

Let
$$0 < r < p < 2$$
 and $\frac{2p}{p+2} \le r \le 1$.

For any $\eta > 0$, and any integers $n, N = (1 + \eta)n$ we have

 $\mathbb{P}\left\{\forall \alpha \in S_p^{n-1}, \ c(p,r)^{1/\eta} \leq |T\alpha|_r \leq C(p,r)\right\} \geq 1 - c \exp(-c_{p,r}n),$

where $c(p, r), C(p, r), c_{p,r}$ depend only on p and r, and c is an absolute constant.

Remark

This operator, *T*, is a particular instance of the operators defined by **Pisier '83** for the almost-isometric result

• A real-valued symmetric r.v. θ is called standard *p*-stable :

$$\mathbb{E} \exp(it\theta) = \exp(-|t|^p) , \quad \forall t \in \mathbb{R}^n.$$

$$\sum_{i} \alpha_{i} \theta_{i} \stackrel{D}{=} (\sum_{i} |\alpha_{i}|^{p})^{1/p} \cdot \theta_{1},$$

where $\alpha_i \in \mathbb{R}$, θ_i is standard p- stable r.v., and for any finite sequence.

 In particular, it suggests that lⁿ_p is isometric to a subspace of L₁:

$$\ell_p^n \hookrightarrow L_1.$$

• A real-valued symmetric r.v. θ is called standard *p*-stable :

$$\mathbb{E} \exp(it\theta) = \exp(-|t|^p) , \quad \forall t \in \mathbb{R}^n.$$

• Why "stable" ?

$$\sum_{i} \alpha_{i} \theta_{i} \stackrel{D}{=} (\sum_{i} |\alpha_{i}|^{p})^{1/p} \cdot \theta_{1},$$

where $\alpha_i \in \mathbb{R}$, θ_i is standard p- stable r.v., and for any finite sequence.

 In particular, it suggests that lⁿ_p is isometric to a subspace of L₁:

$$\ell_p^n \hookrightarrow L_1.$$

• A real-valued symmetric r.v. θ is called standard *p*-stable :

$$\mathbb{E} \exp(it\theta) = \exp(-|t|^p) , \quad \forall t \in \mathbb{R}^n.$$

• Why "stable" ?

$$\sum_{i} \alpha_{i} \theta_{i} \stackrel{D}{=} \left(\sum_{i} |\alpha_{i}|^{p} \right)^{1/p} \cdot \theta_{1},$$

where $\alpha_i \in \mathbb{R}$, θ_i is standard p- stable r.v., and for any finite sequence.

 In particular, it suggests that lⁿ_p is isometric to a subspace of L₁:

$$\ell_p^n \hookrightarrow L_1.$$

Let (λ_i)_i be independent random variables with common exponential distribution P{λ_i > t} = exp(−t), t ≥ 0.

• Set
$$\Gamma_j = \sum_{i=1}^j \lambda_i$$
, for $j \ge 1$.

- We recall that *Y* is the random vector taking the values $\{\pm e_1, \ldots, \pm e_N\}$, with probability $\frac{1}{2N}$.
- By a result of LePage Woodroofe Zinn '81 :

$$\Theta = \sum_{j \ge 1} \Gamma_j^{-1/p} Y_j,$$

is a *p*-stable random vector.

 Let (λ_i)_i be independent random variables with common exponential distribution P{λ_i > t} = exp(−t), t ≥ 0.

• Set
$$\Gamma_j = \sum_{i=1}^j \lambda_i$$
, for $j \ge 1$.

- We recall that *Y* is the random vector taking the values $\{\pm e_1, \ldots, \pm e_N\}$, with probability $\frac{1}{2N}$.
- By a result of LePage Woodroofe Zinn '81 :

$$\Theta = \sum_{j \ge 1} \Gamma_j^{-1/p} Y_j,$$

is a *p*-stable random vector.

 Let (λ_i)_i be independent random variables with common exponential distribution P{λ_i > t} = exp(−t), t ≥ 0.

• Set
$$\Gamma_j = \sum_{i=1}^j \lambda_i$$
, for $j \ge 1$.

- We recall that *Y* is the random vector taking the values $\{\pm e_1, \ldots, \pm e_N\}$, with probability $\frac{1}{2N}$.
- By a result of LePage Woodroofe Zinn '81 :

$$\Theta = \sum_{j \ge 1} \Gamma_j^{-1/p} Y_j,$$

is a *p*-stable random vector.

• Let us define the following operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \Theta_i.$

• Let us define the following operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \left(\sum_{j \ge 1} \Gamma_j^{-1/p} Y_{i,j} \right)$.

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

Properties of these operators

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

Properties of these operators

•
$$\mathbb{E}|\tilde{T}\alpha|_1 = |\alpha|_p.$$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

Properties of these operators

•
$$\mathbb{E}|\tilde{T}\alpha|_1 = |\alpha|_p.$$

•
$$\left|\mathbb{E}|T\alpha|_1 - \mathbb{E}|\tilde{T}\alpha|_1\right| \le D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p.$$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

- Properties of these operators
 - $\mathbb{E}|\tilde{T}\alpha|_1 = |\alpha|_p$.

•
$$\left|\mathbb{E}|T\alpha|_1 - \mathbb{E}|\tilde{T}\alpha|_1\right| \le D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p.$$

• $\mathbb{P}\{\left||T\alpha|_1 - \mathbb{E}|T\alpha|_1\right| \ge t\} \le 2\exp(-b_pNt^q).$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

- Properties of these operators
 - $\mathbb{E}|\tilde{T}\alpha|_1 = |\alpha|_p$.

•
$$\left|\mathbb{E}|T\alpha|_1 - \mathbb{E}|\tilde{T}\alpha|_1\right| \le D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p. \quad \longleftarrow \mathbf{P}$$
 '83

• $\mathbb{P}\{\left||T\alpha|_1 - \mathbb{E}|T\alpha|_1\right| \ge t\} \le 2\exp(-b_pNt^q).$

• Let us define the following auxiliary operator :

$$\tilde{T}: \ell_p^n \to \ell_1^N$$
, $\tilde{T}\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j\geq 1} \Gamma_j^{-1/p} Y_{i,j}.$

• Recall :

$$T: \ell_p^n \to \ell_1^N$$
, $T\alpha = \frac{\sigma_p}{N^{1/q}} \sum_{i=1}^n \alpha_i \sum_{j \ge 1} \frac{1}{j^{1/p}} Y_{i,j}.$

- Properties of these operators
 - $\mathbb{E}|\tilde{T}\alpha|_1 = |\alpha|_p.$
 - $\left|\mathbb{E}|T\alpha|_1 \mathbb{E}|\tilde{T}\alpha|_1\right| \le D_p \left(\frac{n}{N}\right)^{1/q} |\alpha|_p$. \longleftarrow **P** '83
 - $\mathbb{P}\{\left||T\alpha|_1 \mathbb{E}|T\alpha|_1\right| \ge t\} \le 2\exp(-b_pNt^q)$. \leftarrow JS '82

• Fix $\alpha \in S_p^{n-1}$. We have

 $\mathbb{P}\{\left||T\alpha|_1 - |\alpha|_p\right| \ge t\} \le 2\exp(-c_pNt^q),$

note that $|\alpha|_p = 1$.

It means

$$1 - t \le |T\alpha|_1 \le 1 + t$$

$$t = \varepsilon > 0 \quad , \qquad N = Cn.$$

• But

$$|T\alpha|_1 \le 1+t \ , \qquad \forall t > 0.$$

• Fix $\alpha \in S_p^{n-1}$. We have

 $\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q),$

note that $|\alpha|_p = 1$.

It means

 $1 - t \le |T\alpha|_1 \le 1 + t$ $t = \varepsilon > 0 , \qquad N = Cn.$

• But

$$|T\alpha|_1 \le 1+t \ , \qquad \forall t > 0.$$

• Fix $\alpha \in S_p^{n-1}$. We have

 $\mathbb{P}\{\left||T\alpha|_1 - |\alpha|_p\right| \ge t\} \le 2\exp(-c_pNt^q),$

note that $|\alpha|_p = 1$.

It means

 $1 - t \le |T\alpha|_1 \le 1 + t$ $t = \varepsilon > 0 , \qquad N = Cn.$

But

$|T\alpha|_1 \leq 1+t \ , \qquad \forall t>0.$

• Fix $\alpha \in S_p^{n-1}$. We have

 $\mathbb{P}\{\left||T\alpha|_1 - |\alpha|_p\right| \ge t\} \le 2\exp(-c_pNt^q),$

note that $|\alpha|_p = 1$.

It means

$$1 - t \le |T\alpha|_1 \le 1 + t$$

$$t = \varepsilon > 0 , \qquad N = Cn.$$

But

$$|T\alpha|_1 \le 1+t \ , \qquad \forall t > 0.$$

$\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q).$

- In our situation : $N = (1 + \eta)n$ and $t \in (0, 1)$.
- We may assume in addition that α ∈ Sⁿ⁻¹_p has a small support : |supp(α)| ≤ δn.

 $\begin{array}{ccc} Cn & X & n \\ 1+\eta)n & X & \delta n \end{array}$

$\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q).$

- In our situation : $N = (1 + \eta)n$ and $t \in (0, 1)$.
- We may assume in addition that α ∈ Sⁿ⁻¹_p has a small support : |supp(α)| ≤ δn.

 $\begin{array}{ccc} Cn & X & n \\ 1+\eta)n & X & \delta n \end{array}$

 $\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q).$

- In our situation : $N = (1 + \eta)n$ and $t \in (0, 1)$.
- We may assume in addition that α ∈ Sⁿ⁻¹_p has a small support : |supp(α)| ≤ δn.

 $\begin{array}{ccc} Cn & X & n \\ (1+\eta)n & X & \delta n \end{array}$

 $\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q).$

- In our situation : $N = (1 + \eta)n$ and $t \in (0, 1)$.
- We may assume in addition that α ∈ Sⁿ⁻¹_p has a small support : |supp(α)| ≤ δn.

 $\begin{array}{ccc} Cn & X & n \\ (1+\eta)n & X & \delta n \end{array}$

 It means that for such vectors with δ ≃ ¹/_C, we may use this large deviation inequality again, and have a lower bound. $\mathbb{P}\{\left||T\alpha|_1-|\alpha|_p\right|\geq t\}\leq 2\exp(-c_pNt^q).$

- In our situation : $N = (1 + \eta)n$ and $t \in (0, 1)$.
- We may assume in addition that α ∈ Sⁿ⁻¹_p has a small support : |supp(α)| ≤ δn.

 $\begin{array}{ccc} Cn & X & n \\ (1+\eta)n & X & \delta n \end{array}$

Division of S_p^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in (0, 1)$.
- We define

 $\operatorname{Sparse}(\delta) = \{ \alpha \in \ell_p^n : |\operatorname{supp}(\alpha)| \le \delta n \}.$

- We partition Sⁿ⁻¹_p into two sets with respect to Sparse(δ) and ρ.
- We define the following sets :

 $AS(\delta, \rho) = \{ \alpha \in S_p^{n-1} : \text{dist}_p(\alpha, \text{Sparse}(\delta)) \le \rho \},\$ $NAS(\delta, \rho) = S_p^{n-1} \setminus AS(\delta, \rho),\$

where $AS(\delta, \rho)$ is the ρ -enlargement (for the ℓ_p^n metric) of the set of sparse vectors intersected with S_p^{n-1} .

Division of S_p^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in (0, 1)$.
- We define

Sparse $(\delta) = \{ \alpha \in \ell_p^n : |\operatorname{supp}(\alpha)| \le \delta n \}.$

- We partition S_p^{n-1} into two sets with respect to $\text{Sparse}(\delta)$ and ρ .
- We define the following sets :

 $AS(\delta, \rho) = \{ \alpha \in S_p^{n-1} : dist_p(\alpha, Sparse(\delta)) \le \rho \},$ $NAS(\delta, \rho) = S_p^{n-1} \setminus AS(\delta, \rho),$

where $AS(\delta, \rho)$ is the ρ -enlargement (for the ℓ_p^n metric) of the set of sparse vectors intersected with S_p^{n-1} .

Division of S_p^{n-1} (following Rudelson-Vershynin)

- Let $\delta, \rho \in (0, 1)$.
- We define

Sparse $(\delta) = \{ \alpha \in \ell_p^n : |\operatorname{supp}(\alpha)| \le \delta n \}.$

- We partition S_p^{n-1} into two sets with respect to $\text{Sparse}(\delta)$ and ρ .
- We define the following sets :

 $AS(\delta, \rho) = \{ \alpha \in S_p^{n-1} : \operatorname{dist}_p(\alpha, \operatorname{Sparse}(\delta)) \le \rho \},\$ $NAS(\delta, \rho) = S_p^{n-1} \setminus AS(\delta, \rho),$

where $AS(\delta, \rho)$ is the ρ -enlargement (for the ℓ_p^n metric) of the set of sparse vectors intersected with S_p^{n-1} .

• For $\alpha \in N\!AS(\delta, \rho)$

$\mathbb{P}\{|T\alpha|_1 \le t\} \le (c_p t)^N \quad , \qquad t > 0.$

- It means $t \leq |T\alpha|_1$ w.h.p
- Basic properties of NAS vector :

$$\frac{\rho}{(2n)^{1/p}} \le |\alpha_k| \le \frac{1}{(\delta n)^{1/p}}$$

• For $\alpha \in N\!AS(\delta, \rho)$

 $\mathbb{P}\{|T\alpha|_1 \le t\} \le (c_p t)^N \quad , \qquad t > 0.$

- It means $t \leq |T\alpha|_1$ w.h.p
- Basic properties of NAS vector :

$$\frac{\rho}{(2n)^{1/p}} \le |\alpha_k| \le \frac{1}{(\delta n)^{1/p}}$$

• For $\alpha \in N\!AS(\delta, \rho)$

$\mathbb{P}\{|T\alpha|_1 \le t\} \le (c_p t)^N \quad , \qquad t > 0.$

- It means $t \leq |T\alpha|_1$ w.h.p
- Basic properties of NAS vector :

$$\frac{\rho}{(2n)^{1/p}} \le |\alpha_k| \le \frac{1}{(\delta n)^{1/p}}$$

• For $\alpha \in N\!AS(\delta, \rho)$

 $\mathbb{P}\{|T\alpha|_1 \le t\} \le (c_p t)^N \quad , \qquad t > 0.$

- It means $t \leq |T\alpha|_1$ w.h.p
- Basic properties of NAS vector :

$$\frac{\rho}{(2n)^{1/p}} \le |\alpha_k| \le \frac{1}{(\delta n)^{1/p}}.$$

• For $\alpha \in N\!AS(\delta, \rho)$

$$\mathbb{P}\{|T\alpha|_1 \le t\} \le (c_p t)^N \quad , \qquad t > 0.$$

- It means $t \leq |T\alpha|_1$ w.h.p
- Basic properties of NAS vector :

$$|\alpha_k| \stackrel{\rho,\delta}{\sim} \frac{1}{n^{1/p}}.$$

Theorem [Multi-dimensional Esseen type inequality]

Let *X* be a random vector in \mathbb{R}^N , such that the function

 $\xi \mapsto \mathbb{E}\exp(i\langle \xi, X\rangle)$

belongs to $L_1(\mathbb{R}^N)$.

Then for any compact star-shape $K \subset \mathbb{R}^N$, for any t > 0

$$\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle\xi, X\rangle\right)| d\xi.$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

Theorem [Multi-dimensional Esseen type inequality]

Let *X* be a random vector in \mathbb{R}^N , such that the function

 $\xi \mapsto \mathbb{E}\exp(i\langle \xi, X\rangle)$

belongs to $L_1(\mathbb{R}^N)$.

Then for any compact star-shape $K \subset \mathbb{R}^N$, for any t > 0

$$\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle\xi, X\rangle\right)| d\xi.$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

Theorem [Multi-dimensional Esseen type inequality]

Let *X* be a random vector in \mathbb{R}^N , such that the function

 $\xi \mapsto \mathbb{E}\exp(i\langle \xi, X\rangle)$

belongs to $L_1(\mathbb{R}^N)$.

Then for any compact star-shape $K \subset \mathbb{R}^N$, for any t > 0

$$\mathbb{P}\left\{\|X\|_{K} \leq t\right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle\xi, X\rangle\right)| d\xi.$$

Remarks

- We generalize the classical Esseen inequality to the multi-dimensional case, and to an arbitrary norm.
- The proof is an application of Fourier analysis.

- For $\alpha \in NAS(\delta, \rho)$ $\mathbb{P}\{||T\alpha|_1| \le t\} \le (c_p t)^N$.
- Recall : $\mathbb{P}\left\{ \|X\|_{K} \leq t \right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle\xi, X\rangle\right)| d\xi.$ Set $K = N \cdot B_{1}^{N}$ and $X = N \cdot T\alpha$. Then

 $|T\alpha|_1 = ||X||_K.$

• Lemma : For any vector $\alpha \in NAS(\delta, \rho)$, the function $\xi \mapsto \mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)$, belongs to $L_1(\mathbb{R}^N)$. Moreover,

$$\int_{\mathbb{R}^N} |\mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)| d\xi \leq C(p, \delta, \rho)^N.$$

- For $\alpha \in NAS(\delta, \rho)$ $\mathbb{P}\{||T\alpha|_1| \le t\} \le (c_p t)^N$.
- Recall : $\mathbb{P}\left\{ \|X\|_{K} \leq t \right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle \xi, X \rangle\right)| d\xi.$ Set $K = N \cdot B_{1}^{N}$ and $X = N \cdot T\alpha$. Then

 $|T\alpha|_1 = ||X||_K.$

Lemma : For any vector α ∈ NAS(δ, ρ), the function
ξ ↦ E exp(iN ⟨ξ, Tα⟩), belongs to L₁(ℝ^N). Moreover,

$$\int_{\mathbb{R}^N} |\mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)| d\xi \leq C(p, \delta, \rho)^N.$$

- For $\alpha \in NAS(\delta, \rho)$ $\mathbb{P}\{||T\alpha|_1| \le t\} \le (c_p t)^N$.
- Recall : $\mathbb{P}\left\{ \|X\|_{K} \leq t \right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle \xi, X \rangle\right)| d\xi.$ Set $K = N \cdot B_{1}^{N}$ and $X = N \cdot T\alpha$. Then

 $|T\alpha|_1 = ||X||_K.$

Lemma : For any vector α ∈ NAS(δ, ρ), the function
ξ ↦ E exp(iN ⟨ξ, Tα⟩), belongs to L₁(ℝ^N). Moreover,

$$\int_{\mathbb{R}^N} |\mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)| d\xi \leq C(p, \delta, \rho)^N.$$

- For $\alpha \in NAS(\delta, \rho)$ $\mathbb{P}\{||T\alpha|_1| \le t\} \le (c_p t)^N$.
- Recall : $\mathbb{P}\left\{ \|X\|_{K} \leq t \right\} \leq |K| \left(\frac{t}{2\pi}\right)^{N} \int_{\mathbb{R}^{N}} |\mathbb{E} \exp\left(i\langle \xi, X \rangle\right)| d\xi.$ Set $K = N \cdot B_{1}^{N}$ and $X = N \cdot T\alpha$. Then

$$|T\alpha|_1 = ||X||_K.$$

• Lemma : For any vector $\alpha \in NAS(\delta, \rho)$, the function $\xi \mapsto \mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)$, belongs to $L_1(\mathbb{R}^N)$. Moreover, $\int_{\mathbb{R}^N} |\mathbb{E} \exp(iN \langle \xi, T\alpha \rangle)| d\xi \leq C(p, \delta, \rho)^N$.