SPARSE RECOVERY IN LINEAR SPANS AND CONVEX HULLS
 OF INFINITE DICTIONARIES

VLADIMIR KOLTCHINSKII joint work with STAS MINSKER

School of Mathematics
Georgia Institute of Technology
Marne-la-Vallée, 2010

Regression Problem
(X, Y) a random couple in $S \times T, T \subset \mathbb{R}$
P distribution of (X, Y)
Π distribution of X (design distribution)
$f_{*}:=\operatorname{argmin}_{f: S \mapsto \mathbb{R}} \mathbb{E}(Y-f(X))^{2}$
$f_{*}(X)=\mathbb{E}(Y \mid X)$ regression function

Dictionary

\mathcal{H} a class of functions $h: S \mapsto[-1,1]$ equipped with a σ-algebra $\mathcal{B}_{\mathcal{H}}$ and with a measure μ

For $\lambda \in L_{1}(\mu)$,

$$
f_{\lambda}(\cdot):=\int_{\mathcal{H}} \lambda(h) h(\cdot) \mu(d h) .
$$

L_{1}-penalization
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. copies of (X, Y)

$$
\hat{\lambda}^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[n^{-1} \sum_{j=1}^{n}\left(Y_{j}-f_{\lambda}\left(X_{j}\right)\right)^{2}+\varepsilon\|\lambda\|_{L_{1}(\mu)}\right]
$$

$\mathbb{D} \subset L_{1}(\mu)$ is a bounded convex set
$\varepsilon>0$ regularization parameter

L_{2}-Error Bounds and Sparsity

Regression problem is called "sparse" with respect to \mathcal{H} if there exists a "sparse" function $\lambda \in \mathbb{D}$ (i.e., λ is supported in a "small" subset of \mathcal{H}) such that the L_{2} approximation error $\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\mathrm{I})}^{2}$ is "small".
Basic Question. Suppose the regression problem is "sparse". Does it imply that $\hat{\lambda}^{\varepsilon}$ is "approximately sparse" and $\left\|f_{\hat{\lambda} \varepsilon}-f_{*}\right\|_{L_{2}(\Pi)}^{2}$ is "small"?

Finite Dictionaries

$$
\begin{aligned}
& \mathcal{H}:=\left\{h_{1}, \ldots, h_{N}\right\} \\
& \mu\left(\left\{h_{j}\right\}\right)=1, j=1, \ldots, N \\
& \lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \\
& \|\lambda\|_{L_{1}(\mu)}=\|\lambda\|_{\ell_{1}}
\end{aligned}
$$

LASSO (Tibshirani (1996), Chen, Donoho and Saunders (1996), ...):
$\hat{\lambda}^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[n^{-1} \sum_{j=1}^{n}\left(Y_{j}-f_{\lambda}\left(X_{j}\right)\right)^{2}+\varepsilon\|\lambda\|_{\ell_{1}}\right], \mathbb{D} \subset \mathbb{R}^{N}$.

Sparse Recovery: LASSO and related methods
Connections to High Dimensional Geometry:
Donoho (2004-), Donoho and Tanner (2005-), Candes and Tao (2006-), ...

Methods of Asymptotic Geometric Analysis: Rudelson and Versynin (2005-), Mendelson, Pajor and Tomczak-Jaegermann (2007-), ... Sparsity Oracle Inequalities: Bunea, Tsybakov and Wegkamp (2007-), van de Geer (2008-), Koltchinskii (2008-)

Finite Dictionaries: Geometric Characteristics
Gram matrix $K:=\left(\left\langle h_{i}, h_{j}\right\rangle_{L_{2}(\Pi)}\right)_{i, j=1}^{N}$
For $w \in \mathbb{R}^{N}$,

$$
C_{w}:=\left\{u \in \mathbb{R}^{N}: \sum_{j \notin \operatorname{supp}(w)}\left|u_{j}\right| \leq 4\langle w, u\rangle_{\ell_{2}}\right\} .
$$

Define the alignment coefficient of w as

$$
a(w):=\sup _{\left\|f_{u}\right\|_{L_{2}(\Pi)} \leq 1, u \in C_{w}}\langle w, u\rangle_{\ell_{2}}
$$

Bounds on $a(w)$

- $a(w) \leq\left\|K^{-1 / 2} w\right\|_{\ell_{2}}, w \in \operatorname{Im}\left(K^{1 / 2}\right)$

Restricted Isometry Constant δ_{d} : the smallest $\delta \in(0,1)$ such that for all $J \subset\{1, \ldots, N\}$ with $\operatorname{card}(J)=d$, the spectrum of the Gram matrix $\left(\left\langle h_{i}, h_{j}\right\rangle_{L_{2}(\Pi)}\right)_{i, j \in J}$ belongs to the interval $[1-\delta, 1+\delta]$.

- For $d=\operatorname{card}(\operatorname{supp}(w))$,

$$
a(w) \leq \frac{C\|w\|_{\ell_{2}}}{1-C\left(\|w\|_{\ell_{\infty}} \vee 1\right) \delta_{3 d}} \leq \frac{C\|w\|_{e_{\infty}} \sqrt{d}}{1-C\left(\|w\|_{e_{\infty}} \vee 1\right) \delta_{3 d}} .
$$

Theorem 1 Oracle Inequality. There exist constants $C, D>0$ such that, for all $\lambda \in \mathbb{D}$ with $\operatorname{card}(\operatorname{supp} \lambda)=d$, for all $\varepsilon \geq D \sqrt{\frac{d+\log N}{n}}$, for all $t>0$ and $t_{n, N}:=t+\log N+4 \log \log _{2} n+2 \log 2$, with probability at least $1-e^{-t}$

$$
\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[2\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\xi_{n}^{2}\right]
$$

where

$$
\xi_{n}^{2}:=C\left[a^{2}(\operatorname{sign}(\lambda)) \varepsilon^{2} \bigvee \frac{d+\log N+t_{n, N}}{n}\right]
$$

Let $L \subset L_{2}(\Pi), d=\operatorname{dim}(L)$,

$$
U_{L}(x):=\sup _{h \in L,\|h\|_{L_{2}(\Pi)} \leq 1}|h(x)| \text { and } U(L):=\left\|U_{L}\right\|_{L_{\infty}}
$$

Note that
(a) $\left\|U_{L}\right\|_{L_{2}(\Pi)}=\sqrt{d}$;
(b) If there exists an orthonormal basis of $L \subset L_{2}(\Pi)$ consisting of uniformly bounded functions, then $U(L) \asymp \sqrt{d}$.

Theorem 2 There exist constants $C, D>0$ such that, for all $\lambda \in \mathbb{D}$, for all $L \subset L_{2}(\Pi)$ with $d:=\operatorname{dim}(L)$, for all $t>0$ and $t_{n}:=t+4 \log \log _{2} n+2 \log 2$, for all
$\varepsilon \geq D \sqrt{\frac{\log N}{n}}$, the following bounds hold with probability at least $1-e^{-t}$:

$$
\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[2\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\xi_{n}^{2}\right]
$$

where

$$
\begin{gathered}
\xi_{n}^{2}:=C\left[a^{2}(\operatorname{sign}(\lambda)) \varepsilon^{2} \bigvee \frac{d+t_{n}}{n} \bigvee\right. \\
\left.\max _{j \in \operatorname{supp}(\lambda)}\left\|P_{L^{\perp}} h_{j}\right\|_{L_{2}(\Pi)} \sqrt{\frac{\log N}{n}} \bigvee \frac{U(L) \log N}{n}\right]
\end{gathered}
$$

Under Restricted Isometry Condition:

Suppose, for a small enough $c>0, \delta_{3 d} \leq c$. Then, taking $d:=\operatorname{card}(\operatorname{supp}(\lambda)), L:=$ l.s. $\left(h_{j}: j \in \operatorname{supp}(\lambda)\right)$, we get

$$
a(\operatorname{sign}(\lambda)) \leq C \sqrt{d} \text { and } U(L) \leq C \sqrt{d},
$$

implying

$$
\left\|f_{\hat{\lambda}_{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[2\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+C \frac{d \log N+t_{n}}{n}\right]
$$

and, if $f_{*}=f_{\lambda_{*}}, \operatorname{card}\left(\operatorname{supp}\left(\lambda_{*}\right)\right)=d$,

$$
\left\|\hat{\lambda}^{\varepsilon}-\lambda_{*}\right\|_{\ell_{2}}^{2} \leq C\left[\left\|\lambda-\lambda_{*}\right\|_{\ell_{2}}^{2}+\frac{d \log N+t_{n}}{n}\right] .
$$

General Dictionaries: Approximation Error Bounds

$$
\lambda^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\varepsilon\|\lambda\|_{L_{1}(\mu)}\right] .
$$

Approximation Error: $\left\|f_{\lambda^{\varepsilon}}-f_{*}\right\|_{L_{2}(\mathrm{\Pi})}^{2}$

Gram Operators and Alignment Coefficients
Let $K: L_{2}(\mu) \mapsto L_{2}(\mu)$ denote the Gram operator of the dictionary \mathcal{H} :

$$
(K u)(h)=\int_{\mathcal{H}}\langle h, g\rangle_{L_{2}(\Pi)} u(g) \mu(d g) .
$$

For $w \in L_{2}(\mu)$, let

$$
C_{w}:=\left\{u: \mathcal{H} \mapsto \mathbb{R}: \int_{\mathcal{H} \backslash \operatorname{supp}(w)}|u| d \mu \leq 4\langle w, u\rangle_{L_{2}(\mu)}\right\} .
$$

Define the alignment coefficient of w as

$$
a(w):=a_{\mathcal{H}}(w):=\sup _{\left\|f_{u}\right\|_{L_{2}}(\Pi) \leq 1, u \in C_{w}}\langle w, u\rangle_{L_{2}(\mu)} .
$$

For all $w \in \operatorname{Im}\left(K^{1 / 2}\right)$,

$$
a(w) \leq\left\|K^{-1 / 2} w\right\|_{L_{2}(\mu)}
$$

For $\lambda \in \mathbb{D}$, denote

$$
\partial|\lambda|:=\{w: \mathcal{H} \mapsto[-1,1]: w(h)=\operatorname{sign}(\lambda(h)), h \in \operatorname{supp}(\lambda)\}
$$

Theorem 3 There exists a constant $C>0$ such that for all $\varepsilon>0$, for all $\lambda \in \mathbb{D}$ and for all $w \in \partial|\lambda|$,

$$
\begin{gathered}
\left\|f_{\lambda^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\varepsilon \int_{\mathcal{H} \backslash \operatorname{supp}(w)}\left|\lambda^{\varepsilon}\right| d \mu \leq \\
C\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+a^{2}(w) \varepsilon^{2}\right] .
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
\left\|f_{\lambda^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq \inf _{\lambda \in \mathbb{D}, w \in \partial|\lambda|}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\right. \\
\left.C a(w) \varepsilon\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}+C^{2} a^{2}(w) \varepsilon^{2}\right] .
\end{gathered}
$$

Sobolev Norms and Sparsity
$\mathcal{H}:=\{h(t, \cdot): t \in G\}, G \subset \mathbb{R}^{d}$
Suppose

$$
a(w) \leq C\|w\|_{\mathbb{W}^{2}, \alpha}(G)
$$

Sparse Spikes

Suppose $\lambda \in \mathbb{D}, \lambda=\sum_{j=1}^{d} \lambda_{j}$, where $\lambda_{j} \in L_{1}(\mu)$, $\operatorname{supp}\left(\lambda_{j}\right) \subset U_{j} \subset G$, where $U_{j}, j=1, \ldots, d$ are disjoint balls.

Let $w=\sum_{j=1}^{d} w_{j} \in \partial|\lambda|$, where $w_{j} \in \mathbb{W}^{2, \alpha}(G)$ and $\operatorname{supp}\left(w_{j}\right), j=1, \ldots, d$ are disjoint. Then

$$
a(w) \leq C\left(\sum_{j=1}^{d}\left\|w_{j}\right\|_{\mathbb{W}^{2}, \alpha}^{2}\right)^{1 / 2}
$$

implying $a(w) \leq$ const \sqrt{d}.

Example: Fourier Dictionary

$S:=\mathbb{R}^{d}$
$\mathcal{H}:=\{\cos \langle t, \cdot\rangle: t \in G\}$
$G \subset \mathbb{R}^{d}$ bounded open subset, $G=-G$
μ, Π absolutely continuous measures with densities m, p,
$m(t)=m(-t)$
If

$$
p(x) \geq L\left(1+|x|^{2}\right)^{-\alpha},
$$

then

$$
a(w) \leq C\|w\|_{\mathbb{W}^{2}, \alpha\left(\mathbb{R}^{d}\right)} .
$$

Example: Location Dictionary

$S:=\mathbb{T}^{d}$
$\mathcal{H}:=\left\{h(\cdot-t): t \in \mathbb{T}^{d}\right\}$
Π probability measure with density p, p bounded away from 0
μ Haar measure in \mathbb{T}^{d}
If

$$
\left|\tilde{h}_{n}\right| \geq L\left(1+|n|^{2}\right)^{-\alpha / 2}, n \in \mathbb{Z}^{d},
$$

then

$$
a(w) \leq C\|w\|_{\mathbb{W}^{2}, \alpha\left(\mathbb{T}^{d}\right)} .
$$

Example: Decision Stumps

$S:=[0,1]$
$\mathcal{H}:=\left\{I_{[0, t]}-I_{(t, 1]}: t \in[0,1]\right\}$
Π absolutely continuous measure in $[0,1]$ with density p that is bounded away from 0

$$
a(w) \leq C\|w\|_{W^{2}, 1[0,1]} .
$$

Weakly Correlated Partitions and Sparsity

$\left\{\mathcal{H}_{j}, j=1, \ldots, N\right\}$ a measurable partition of \mathcal{H}
$\mathcal{L}_{j}:=$ c.l.s. $\left(\mathcal{H}_{j}\right)$

$$
\sigma_{\Pi}(g):=\operatorname{cov}_{\Pi}(g, g), \quad \rho_{\Pi}(h, g):=\frac{\operatorname{cov}_{\Pi}(h, g)}{\sigma_{\Pi}(h) \sigma_{\Pi}(g)}
$$

Restricted Isometry Constant δ_{d} : the smallest $\delta \in(0,1)$ such that for all $J \subset\{1, \ldots, N\}$ with $\operatorname{card}(J)=d$ and all $h_{j} \in \mathcal{L}_{j}, j \in J$, the spectrum of the correlation matrix $\left(\rho_{\Pi}\left(h_{i}, h_{j}\right)\right)_{i, j \in J}$ belongs to the interval $[1-\delta, 1+\delta]$.

Let $K_{j}: L_{2}\left(\mathcal{H}_{j}, \mu\right) \mapsto L_{2}\left(\mathcal{H}_{j}, \mu\right)$,

$$
\left(K_{j} u\right)(h)=\int_{\mathcal{H}_{j}} \operatorname{cov}_{\Pi}(h, g) u(g) \mu(d g), h \in \mathcal{H}_{j} .
$$

Proposition 1 For all $J \subset\{1, \ldots, N\}$ with $d:=\operatorname{card}(J)$ and all $w=\sum_{j \in J} w_{j}$ with $w_{j} \in \operatorname{Im}\left(K_{j}^{1 / 2}\right)$ and

$$
B:=\max _{j \in J}\left\|K_{j}^{-1 / 2} w_{j}\right\|_{L_{2}\left(\mathcal{H}_{j}, \mu\right)}
$$

the following bound holds with some numerical constant $C>0$:

$$
a(w) \leq \frac{C B \sqrt{d}}{1-C B \delta_{3 d}}
$$

Random Error Bounds and Oracle Inequalities
Under some complexity assumptions on the dictionary \mathcal{H}, we will provide upper bounds on $\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{\lambda}\right\|_{L_{2}(\Pi)}^{2}$ for an arbitrary function $\lambda \in \mathbb{D}$ and

$$
\hat{\lambda}^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[n^{-1} \sum_{j=1}^{n}\left(Y_{j}-f_{\lambda}\left(X_{j}\right)\right)^{2}+\varepsilon\|\lambda\|_{L_{1}(\mu)}\right] .
$$

Complexity Assumptions on the Dictionary

Suppose there exists a function $H(u) \geq 0, u>0$, $H(u) \rightarrow \infty$ as $u \rightarrow 0$, H regularly varying of exponent $\alpha \in[0,2)$ and such that the following condition on the random covering numbers holds

$$
\log N\left(\mathcal{H} ; L_{2}\left(\Pi_{n}\right) ; u\right) \leq H(u), u>0 \text { a.s., }
$$

or the following condition on the bracketing numbers holds

$$
\log N_{[J}\left(\mathcal{H} ; L_{2}(\Pi) ; u\right) \leq H(u), u>0 .
$$

Approximation by Finite Dimensional Subspaces
$L \subset L_{2}(\Pi)$ a linear subspace, $\operatorname{dim}(L)<+\infty$
For $\mathcal{H}^{\prime} \subset \mathcal{H}$,

$$
\rho\left(\mathcal{H}^{\prime} ; L\right):=\sup _{h \in \mathcal{H}^{\prime}}\left\|P_{L^{\perp}} h\right\|_{L_{2}(\Pi)}
$$

Theorem 4 There exist constants $C, D>0$ such that for all $\lambda \in \mathbb{D}, w \in \partial|\lambda|, L \subset L_{2}(\Pi)$ with $d:=\operatorname{dim}(L)$ and $\rho:=\rho(\operatorname{supp}(w) ; L)$, for all $t>0$ and
$t_{n}:=t+4 \log \log _{2} n+2 \log 2$, for all $\varepsilon \geq D \sqrt{\frac{H(1 / \sqrt{d})}{n}}$, the following bounds hold with probability at least $1-e^{-t}$:

$$
\begin{aligned}
& \left\|f_{\hat{\lambda}_{\varepsilon}}-f_{\lambda}\right\|_{L_{2}(\Pi)}^{2}+\varepsilon \int_{\mathcal{H} \backslash \operatorname{supp}(w)}\left|\hat{\lambda}^{\varepsilon}\right| d \mu \leq \\
& C\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \bigvee a^{2}(w) \varepsilon^{2} \bigvee\right. \\
& \left.\frac{d+t_{n}}{n} \bigvee \rho \sqrt{\frac{H(\rho / \sqrt{d})}{n}} \bigvee \frac{U(L) H(\rho / \sqrt{d})}{n}\right]
\end{aligned}
$$

Moreover, with the same probability, the following sparsity oracle inequality holds:

$$
\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)} \xi_{n}+\xi_{n}^{2}\right]
$$

where

$$
\begin{gathered}
\xi_{n}^{2}:=C\left[a^{2}(w) \varepsilon^{2} \bigvee \frac{d+t_{n}}{n} \bigvee\right. \\
\left.\rho \sqrt{\frac{H(\rho / \sqrt{d})}{n}} \bigvee \frac{U(L) H(\rho / \sqrt{d})}{n}\right]
\end{gathered}
$$

Regularized Boosting

The problem

$$
\hat{\lambda}^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[n^{-1} \sum_{j=1}^{n}\left(Y_{j}-f_{\lambda}\left(X_{j}\right)\right)^{2}+\varepsilon\|\lambda\|_{L_{1}(\mu)}\right]
$$

can be viewed as a regularized boosting.
Blanchard, Lugosi and Vayatis (2003) obtained oracle inequalities for regularized boosting (for more general losses than quadratic) with error rate $n^{-\frac{1}{2} \frac{V+2}{V+1}}$, where V is the VC-dimension of the base class \mathcal{H}. In the case of N-dimensional decision stumps, $V=\left[2 \log _{2}(2 N)\right]$.

An Additive Model: High-Dimensional Decision Stumps
$S:=[0,1]^{N}$
$\mathcal{H}_{j}:=\left\{h_{t}^{(j)}: t \in[0,1]\right\}$
$h_{t}^{(j)}(x):=I_{[0, t]}\left(x_{j}\right)-I_{(t, 1]}\left(x_{j}\right), x=\left(x_{1}, \ldots, x_{N}\right) \in S$
$\mathcal{H}:=\bigcup_{j=1}^{N} \mathcal{H}_{j}$
μ "Lebesgue measure"

$$
\begin{aligned}
& \lambda:=\sum_{j=1}^{N} \lambda_{j}, \operatorname{supp}\left(\lambda_{j}\right) \subset \mathcal{H}_{j} \\
& f_{\lambda}(x)=\sum_{j=1}^{N} f_{\lambda^{\prime}}\left(x_{j}\right) \\
& \left\|\lambda_{j}\right\|_{L_{1}\left(\mathcal{H}_{j}, \mu\right)} \frac{1}{2}\left\|f_{\lambda_{j}}\right\|_{T V}
\end{aligned}
$$

L_{1}-penalization is equivalent to

$$
\left(\hat{f}_{1}^{\varepsilon}, \ldots, \hat{f}_{N}^{e}\right):=
$$

$\operatorname{argmin}\left[n^{-1} \sum_{j=1}^{N}\left(Y_{j}-\left(f_{1}+\cdots+f_{N}\right)\left(X_{j}\right)\right)^{2}+\frac{\varepsilon}{2} \sum_{j=1}^{N}\left\|f_{j}\right\|_{T V}\right]$.

Sparsity in Additive Models
Let $J \subset\{1, \ldots, N\}, d:=\operatorname{card}(J)$ and let Λ_{s} be the set of sparse functions λ such that
(a) $\lambda=\sum_{j \in J} \lambda_{j}, \operatorname{supp}\left(\lambda_{j}\right) \subset \mathcal{H}_{j}$
(b) there exist $w_{j} \in \partial\left|\lambda_{j}\right|, j \in J,\left\|w_{j}\right\|_{\mathbb{W}^{2,1}[0,1]} \leq L, L$ is a constant.

Suppose also that the spaces $\mathcal{L}_{j}=$ c.l.s. $\left(\mathcal{H}_{j}\right)$ are "weakly correlated" (e.g., $\delta_{3 d}$ is bounded by a small constant).

$$
\text { Let } \varepsilon:=D \sqrt{\frac{\log N}{n}}
$$

Then, for all $\lambda \in \Lambda_{s}$, with probability at least $1-e^{-t}$,

$$
\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\xi_{n}\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}+\xi_{n}^{2}\right],
$$

where
$\xi_{n}^{2}:=C\left[\frac{(d \log (n d))^{1 / 3}}{n^{2 / 3}}+\frac{d \log N+t+4 \log \left(2^{1 / 2} \log _{2} n\right)}{n}\right]$

Sparse Recovery in Convex Hulls: Entropy

Penalization
$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. copies of (X, Y)

$$
\begin{gathered}
\hat{\lambda}^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[n^{-1} \sum_{j=1}^{n}\left(Y_{j}-f_{\lambda}\left(X_{j}\right)\right)^{2}+\varepsilon \int_{\mathcal{H}} \lambda \log \lambda d \mu\right] \\
\lambda^{\varepsilon}:=\operatorname{argmin}_{\lambda \in \mathbb{D}}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\mu)}^{2}+\varepsilon \int_{\mathcal{H}} \lambda \log \lambda d \mu\right]
\end{gathered}
$$

\mathbb{D} is a convex set of probability densities with respect to μ $\varepsilon>0$ regularization parameter

Symmetrized Kullback-Leibler Distance

$$
\begin{aligned}
K\left(\lambda_{1} \mid \lambda_{2}\right) & :=\int_{\mathcal{H}} \lambda_{1} \log \left(\frac{\lambda_{1}}{\lambda_{2}}\right) d \mu \\
K\left(\lambda_{1}, \lambda_{2}\right) & :=K\left(\lambda_{1} \mid \lambda_{2}\right)+K\left(\lambda_{2} \mid \lambda_{1}\right)
\end{aligned}
$$

For $\lambda \in \mathbb{D}$,

$$
\Lambda(A):=\int_{A} \lambda d \mu, A \subset \mathcal{H}
$$

Theorem 5 Approximation Error. There exists a constant $C>0$ such that for all $\varepsilon>0$ and for all $\lambda \in \mathbb{D}$

$$
\begin{gathered}
\left\|f_{\lambda^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\varepsilon K\left(\lambda^{\varepsilon}, \lambda\right) \leq \\
C\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+a^{2}(\log \lambda) \varepsilon^{2}\right] .
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
\left\|f_{\lambda^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq \inf _{\lambda \in \mathbb{D}}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\right. \\
\left.C a(\log \lambda) \varepsilon\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}+C^{2} a^{2}(\log \lambda) \varepsilon^{2}\right]
\end{gathered}
$$

In addition, for all $\mathcal{H}^{\prime} \subset \mathcal{H}$
$\Lambda^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq 2 \Lambda\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right)+\frac{C}{\varepsilon}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+a^{2}(\log \lambda) \varepsilon^{2}\right]$
and
$\Lambda\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq 2 \Lambda^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right)+\frac{C}{\varepsilon}\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+a^{2}(\log \lambda) \varepsilon^{2}\right]$.

Theorem 6 Random Error. There exist constants
$C, D>0$ such that for all $\mathcal{H}^{\prime} \subset \mathcal{H}, L \subset L_{2}(\Pi)$ with $d:=\operatorname{dim}(L)$ and $\rho:=\rho\left(\mathcal{H}^{\prime} ; L\right)$, for all $t>0$ and
$t_{n}:=t+4 \log \log _{2} n+2 \log 2$, for all $\varepsilon \geq D \sqrt{\frac{H(1 / \sqrt{d})}{n}}$, the following bounds hold with probability at least $1-e^{-t}$:

$$
\begin{aligned}
& \left\|f_{\hat{\lambda}^{\varepsilon}}-f_{\lambda^{\varepsilon}}\right\|_{L_{2}(\Pi)}^{2}+\varepsilon K\left(\hat{\lambda}^{\varepsilon}, \lambda^{\varepsilon}\right) \leq C\left[\frac{d+t_{n}}{n} \bigvee\right. \\
& \left.\rho \sqrt{\frac{H\left(\frac{\rho}{\sqrt{d}}\right)}{n}} \bigvee \Lambda^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \sqrt{\frac{H\left(\frac{1}{\sqrt{d}}\right)}{n}} \bigvee \frac{U(L) H\left(\frac{\rho}{\sqrt{d}}\right)}{n}\right]
\end{aligned}
$$

In addition,

$$
\begin{gathered}
\hat{\Lambda}^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq C\left[\Lambda^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \bigvee \frac{d+t_{n}}{n \varepsilon} \bigvee\right. \\
\left.\frac{\rho}{\varepsilon} \sqrt{\frac{H\left(\frac{\rho}{\sqrt{d}}\right)}{n}} \bigvee \frac{U(L) H\left(\frac{\rho}{\sqrt{d}}\right)}{n \varepsilon}\right]
\end{gathered}
$$

and

$$
\begin{gathered}
\Lambda^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \leq C\left[\hat{\Lambda}^{\varepsilon}\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \bigvee \frac{d+t_{n}}{n \varepsilon} \bigvee\right. \\
\left.\frac{\rho}{\varepsilon} \sqrt{\frac{H\left(\frac{\rho}{\sqrt{d}}\right)}{n}} \bigvee \frac{U(L) H\left(\frac{\rho}{\sqrt{d}}\right)}{n \varepsilon}\right]
\end{gathered}
$$

Moreover, for all $\lambda \in \mathbb{D}$, with the same probability, the following sparsity oracle inequality holds

$$
\left\|f_{\hat{\lambda}^{\varepsilon}}-f_{*}\right\|_{L_{2}(\Pi)}^{2} \leq\left[\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)}^{2}+\left\|f_{\lambda}-f_{*}\right\|_{L_{2}(\Pi)} \xi_{n}+\xi_{n}^{2}\right]
$$ where

$$
\xi_{n}^{2}:=C\left[a^{2}(\log \lambda) \varepsilon^{2} \bigvee \frac{d+t_{n}}{n} \bigvee\right.
$$

$$
\left.\rho \sqrt{\frac{H(\rho / \sqrt{d})}{n}} \bigvee \Lambda\left(\mathcal{H} \backslash \mathcal{H}^{\prime}\right) \sqrt{\frac{H(\rho / \sqrt{d})}{n}} \bigvee \frac{U(L) H(\rho / \sqrt{d})}{n}\right]
$$

