On 1-symmetric logaritmically concave distributions

Rafał Latała

University of Warsaw and Polish Academy of Sciences

Paris, May 18 2010

Basic Definitions

Let $X = (X_1, \dots, X_n)$ be a random vector in \mathbb{R}^n with full dimensional support. We say that the distribution of X is

- logaritmically concave, if X has density of the form $e^{-h(x)}$, $h : \mathbb{R}^n \to (-\infty, \infty]$ convex,
- 1-symmetric, if $(\eta_1 X_1, \dots, \eta_n X_n)$ has the same distribution as X for any choice of $\eta_1, \dots, \eta_n \in \{-1, 1\}$,
- isotropic, if $\mathbb{E}X_i = 0$ and $\mathbb{E}X_iX_j = \delta_{i,j}$.

If X is logaritmically concave then there exists an affine transformation T such that TX is isotropic.

If X is 1-symmetric and logconcave then there exists a diagonal transformation D such that DX is 1-symmetric, logconcave and isotropic.

Examples of 1-symmetric logconcave isotropic vectors

During this talk we will assume that $X = (X_1, \dots, X_n)$ is logconcave, isotropic and 1-symmetric.

Basic examples include

- Standard normal vector $X = (g_1, \ldots, g_n)$, where g_i are i.i.d. $\mathcal{N}(0,1)$
- X_i independent symmetric with (one dimensional) logarithmically concave distribution normalized in such a way that $\mathbb{E} X_i^2 = 1$
- Uniform distributions on 1-symmetric convex bodies normalized to satisfy $\mathbb{E}X_i^2 = 1$ (for example uniform distributions on $C_{r,n}B_r^n$, $C_{r,n} \sim n^{1/r}$).

Moments and tails

For a random variable S (or more general a random vector with values in a normed space) and p>0, we put $\|S\|_p:=(\mathbb{E}|S|^p)^{1/p}$ (resp. $\|S\|_p:=(\mathbb{E}\|S\|^p)^{1/p}$).

Moments and tails are strictly related. Namely by Chebyshev's inequality

$$\mathbb{P}(\|S\| \ge e\|S\|_p) \le e^{-p}.$$

Moreover if $||S||_{2p} \le \alpha ||S||_p$ then by the Paley-Zygmund inequality

$$\mathbb{P}\Big(\|S\| \geq \frac{1}{C(\alpha)}\|S\|_p\Big) \geq e^{-\max\{C(\alpha),p\}}.$$

For scalar or vector valued combinations of coordinates of logconcave vectors and $p \ge 2$ we have $\|S\|_{2p} \le C\|S\|_p$ (C=2 in the scalar case).

Notation

- (ε_i) is a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric ± 1 r.v.'s) independent of other random variables.
- (\mathcal{E}_i) is a sequence of i.i.d. symmetric exponential r.v.'s with variance 1 (i.e. the density $\frac{1}{\sqrt{2}} \exp(-\sqrt{2}|x|)$).
- By letter C we denote universal constants (that may take different values at each occurrence).
- For two functions f and g we write $f \sim g$ if $\frac{1}{C}f \leq g \leq Cf$.

Lower estimate of moments - scalar case

For any scalars a_i and $p \ge 1$,

$$\left\| \sum_{i=1}^n a_i X_i \right\|_p = \left\| \sum_{i=1}^n a_i \varepsilon_i |X_i| \right\|_p \ge \left\| \sum_{i=1}^n a_i \varepsilon_i \mathbb{E} |X_i| \right\|_p \ge \frac{1}{C} \left\| \sum_{i=1}^n a_i \varepsilon_i \right\|_p.$$

Montgomery-Smith'90 and Hitczenko'93

$$\left\|\sum_{i=1}^n a_i \varepsilon_i\right\|_p \sim \sum_{i \leq p} a_i^* + \sqrt{p} \left(\sum_{i > p} (a_i^*)^2\right)^{1/2},$$

where (a_i^*) denotes the noincreasing rearrangement of (a_i) .

Upper estimate of moments - scalar case

Less trivial is upper bound - it follows by Bobkov-Nazarov'03 result

$$\left\| \sum_{i=1}^n a_i X_i \right\|_p \le C \left\| \sum_{i=1}^n a_i \mathcal{E}_i \right\|_p \quad p \ge 2.$$

Theorem (Gluskin-Kwapień'95)

Let Y_i be independent symmetric r.v's with logconcave tails such that $\mathbb{E}Y_i^2=1$. We put $N_i(t)=-\ln \mathbb{P}(|Y_i|\geq t)$ for t>1 and $N_i(t)=t^2$ for $t\in [0,1]$. Then for any $p\geq 2$,

$$\left\|\sum_{i=1}^n a_i Y_i\right\|_p \sim \sup\left\{\sum_{i=1}^n a_i b_i: \sum_i N_i(|b_i|) \leq p\right\}.$$

In particular $\|\sum_{i=1}^n a_i \mathcal{E}_i\|_p \sim p \|a\|_\infty + \sqrt{p} \|a\|_2$.

Two-sided estimate

Theorem

There exists a constant C such that for any $p \ge 2$,

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i} X_{i} \right\|_{p} \\ \sim \inf_{\#I = \min\{\lfloor p \rfloor, n\}} \sup \left\{ \sum_{i \in I} a_{i} x_{i} + \sqrt{p} (\sum_{i \notin I} a_{i}^{2})^{1/2} \colon g_{I}(x) \geq e^{-Cp} \right\} \\ \sim \sup \left\{ \sum_{i \in I_{p}} a_{i} x_{i} + \sqrt{p} (\sum_{i \notin I_{p}} a_{i}^{2})^{1/2} \colon g_{I_{p}}(x) \geq e^{-Cp} \right\}, \end{split}$$

where g_I is a density of $(X_i)_{i \in I}$ and $(|a_i|)_{i \in I_p}$ are min $\{p, n\}$ largest values of $|a_i|$.

Uniform distribution on B_r^n

If X has a uniform distribution on $C_{r,n}B_r^n$ then for $p \ge 2$

$$\Big\| \sum_{i=1}^n a_i X_i \Big\|_{p} \sim \min\{p, n\}^{1/r} \Big(\sum_{i \leq p} |a_i^*|^{r'} \Big)^{1/r'} + \sqrt{p} \Big(\sum_{i > p} |a_i^*|^2 \Big)^{1/2},$$

where $\frac{1}{r} + \frac{1}{r'} = 1$ (Barthe, Guedon, Mendelson, Naor'05). In particular

$$\left\| \sum_{i=1}^{n} a_{i} X_{i} \right\|_{p} \sim \left\| \sum_{i=1}^{n} a_{i} X_{i}^{*} \right\|_{p} \quad \text{for } 2 \leq p \leq n, \tag{1}$$

where X_1^*, \ldots, X_n^* are independent such that X_i has the same distribution as X_i .

One may ask if (1) holds for more general class of logconcave vectors X (1-symmetric and permutation invariant?) The result of Pilipczuk and Wojtaszczyk'08 implies that

$$\left\| \sum_{i=1}^{n} a_i X_i \right\|_p \le C \left\| \sum_{i=1}^{n} a_i X_i^* \right\|_p \text{ for } p \ge 2$$

if X is uniformly distributed on Orlicz ball.

Moments - vector case

Theorem

For any vectors v_i in a normed space

$$\frac{1}{C} \left\| \sum_{i=1}^{n} v_{i} \varepsilon_{i} \right\|_{p} \leq \left\| \sum_{i=1}^{n} v_{i} X_{i} \right\|_{p} \leq C \left\| \sum_{i=1}^{n} v_{i} \mathcal{E}_{i} \right\|_{p}.$$

Lower estimate may be shown as in the scalar case. Upper follows from Bobkov-Nazarov's result and Talagrand's estimation of suprema of linear combinations of exponential random variables (generic chaining technique).

Corollary

For any t > 0

$$\frac{1}{C}\mathbb{P}\Big(\Big\|\sum_{i=1}^n v_i \varepsilon_i\Big\| \ge Ct\Big) \le \mathbb{P}\Big(\Big\|\sum_{i=1}^n v_i X_i\Big\| \ge t\Big) \le C\mathbb{P}\Big(\Big\|\sum_{i=1}^n v_i \varepsilon_i\Big\| \ge \frac{t}{C}\Big)$$

Weak and strong moments

Using Talagrand's two level concentration for the product exponential distribution one can prove that

Theorem

If X_i are independent, symmetric, logconcave then for $p \ge 1$,

$$\left\| \sum_{i=1}^{n} v_{i} X_{i} \right\|_{p} \sim \left\| \sum_{i=1}^{n} v_{i} X_{i} \right\|_{1} + \sup_{\|\varphi\|_{*} \leq 1} \left\| \sum_{i=1}^{n} \varphi(v_{i}) X_{i} \right\|_{p}.$$
 (2)

Conjecture

Estimate (2) holds for any (1-symmetric) logconcave random vector X.

Theorem (L., Wojtaszczyk'08)

(2) holds for uniform distributions on B_r^n .

Connection with concentration.

Comparison of weak and strong moments is related to the following concentration problem for isotropic (1-symmetric) logconcave measures μ . Is it true that

$$1 - \mu(A + \mathcal{Z}_{\mu}(p)) \le e^{-p/C} \text{ if } \mu(A) \ge 1/2,$$

where

$$\mathcal{M}_{\mu}(p) := \left\{ t \in \mathbb{R}^n \colon \int |\langle t, x \rangle|^p d\mu(x) \leq 1 \right\}$$

and

$$egin{aligned} \mathcal{Z}_{\mu}(p) &:= (\mathcal{M}_{\mu}(p))^{\circ} \ &= \{ y \in \mathbb{R}^n \colon |\langle t, y
angle|^p \leq \int |\langle t, x
angle|^p d\mu(x) ext{ for all } t \in \mathbb{R}^n \} ? \end{aligned}$$

Weaker question

Is it true that

$$\left\| \sum_{i=1}^n v_i X_i \right\|_{p} \leq C \left(\left\| \sum_{i=1}^n v_i X_i \right\|_1 + \sup_{\|\varphi\|_* \leq 1} \left\| \sum_{i=1}^n \varphi(v_i) \mathcal{E}_i \right\|_{p} \right).$$

or equivalently that

$$\left\| \sum_{i=1}^{n} v_{i} X_{i} \right\|_{p} \leq C \left(\left\| \sum_{i=1}^{n} v_{i} X_{i} \right\|_{1} + \sup_{\|\varphi\|_{*} \leq 1} p \|\varphi(v_{i})\|_{\infty} + \sqrt{p} \|\varphi(v_{i})\|_{2} \right).$$

This is related to the following question for isotropic 1-symmetric logconcave measures: Is it true that

$$\mu(A + \sqrt{t}B_2^n + tB_1^n) \ge \min\{\frac{1}{2}, e^{t/C}\mu(A)\}$$
?

Resent results of Klartag and E. Milman implies that

$$\mu(A+t\log nB_2^n)\leq \min\{\frac{1}{2},e^{t/C}\mu(A)\}.$$

Concentration far away from the origin

Proposition (L., Wojtaszczyk)

Let μ be an isotropic 1-symmetric, permutation invariant logconcave measures and $t \ge 1$. Then either

$$\mu((A+tB_1^n)\cap C\sqrt{n}B_2^n)\geq \frac{1}{2}\mu(A)$$

or

$$\mu(A+tB_1^n)\geq e^{t/C}\mu(A).$$

Sudakov minoration

How to estimate $\mathbb{E}\sup_{t\in\mathcal{T}}\langle t,X\rangle$ for $\mathcal{T}\subset\mathbb{R}^n$?

Suppose that $\#T \leq e^p$ and t_0 is any vector then

$$\begin{split} \mathbb{E}\sup_{t\in T}\langle t,X\rangle &= \mathbb{E}\sup_{t\in T}\langle t-t_0,X\rangle \leq \mathbb{E}\sup_{t\in T}|\langle t-t_0,X\rangle| \\ &\leq \big(\mathbb{E}\sup_{t\in T}|\langle t-t_0,X\rangle|^p\big)^{1/p} \leq \big(\mathbb{E}\sum_{t\in T}|\langle t-t_0,X\rangle|^p\big)^{1/p} \\ &\leq e\sup_{t\in T}\|\langle t-t_0,X\rangle\|_p. \end{split}$$

May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)

Suppose that $T \subset \mathbb{R}^n$, $\#T \geq e^p$, $p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t - s, X \rangle\|_p \geq A$. Then $\mathbb{E} \sup_{t \in T} \langle t, X \rangle \geq \frac{1}{C}A$.

Examples

If $G=(g_1,\ldots,g_n)$ is standard normal vector then $\langle t,G\rangle\sim \mathcal{N}(0,\|t\|_2^2)$ and $\|\langle t-s,G\rangle\|_p\sim \sqrt{p}\|t-s\|_2$. Hence the conjectured estimate in this situation is equivalent to $\mathbb{E}\sup_{t\in T}\langle t,G\rangle\geq \frac{1}{C}a\sqrt{\log N(T,aB_2^n)}$, that is Sudakov minoration for Gaussian processes.

More general if X_i are symmetric independent logconcave then Sudakov minoration holds (Talagrand'94, L'97).

Minoration conjecture holds if X has uniform distribution on B_r^n ball.

Two observations

Suppose that $T \subset \mathbb{R}^n$, $\#T \geq e^p$, $p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t - s, X \rangle\|_p \geq A$.

Let $\mathcal{E} = (\mathcal{E}_1, \dots, \mathcal{E}_n)$, then $\|\langle t - s, \mathcal{E} \rangle\|_p \ge \frac{1}{C}A$ so by Talagrand's result $\mathbb{E} \sup_{t \in \mathcal{T}} \langle t, \mathcal{E} \rangle \ge \frac{1}{C}A$. But

$$\mathbb{E} \sup_{t \in T} \langle t, X \rangle \ge \frac{1}{C} \mathbb{E} \sup_{t \in T} \sum_{i=1}^{n} t_i \varepsilon_i \ge \frac{1}{C \log n} \mathbb{E} \sup_{t \in T} \langle t, \mathcal{E} \rangle \ge \frac{1}{C \log n} A,$$

thus minoration conjecture holds up to logarithmic factor.

Slightly more complicated argument shows that

$$\mathbb{E}\sup_{t\in T}\langle t,X\rangle\geq \frac{1}{C\max\{1,\log\frac{n}{p}\}}A$$

in particular minoration conjecture holds for $p \ge n$.