Shahar Mendelson

Technion and ANU

Let F be a set of mean-zero functions on (Ω, μ) and let $\sigma = (X_1, ..., X_N)$ be independent, distributed according to μ .

Set

$$P_{\sigma}F = \left\{ \left(f(X_i) \right)_{i=1}^N : f \in F \right\}$$

the coordinate projection of F onto σ .

What is the structure of a typical

$$P_{\sigma}F = \left\{ (f(X_i))_{i=1}^N : f \in F \right\}?$$

If $\phi : \mathbb{R} \to \mathbb{R}$ is a reasonable function, is

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} \phi(f)(X_i) - \mathbb{E}\phi(f) \right|$$

small, and if so, why?

- $\phi(t) = t \implies$ Uniform law of large numbers
- $\phi(t) = t^2 \implies \text{Uniform CLT}$

Example I

Let $F = \{ \langle x, \cdot \rangle : x \in S^{n-1} \}, \mu$ an isotropic measure on \mathbb{R}^n . Set

$$\Gamma = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \langle X_i, \cdot \rangle e_i.$$

Then,

$$P_{\sigma}F = \left\{ \left(\left\langle X_{i}, x \right\rangle \right)_{i=1}^{N} : x \in S^{n-1} \right\} = \sqrt{N}\Gamma(S^{n-1}),$$

and

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E}f^2 \right| = \sup_{x \in S^{n-1}} \left| |\Gamma x|^2 - 1 \right| = (*).$$

So why is (*) small?

Example II

If μ is *L*-subgaussian, i.e.,

 $\|\langle X, x \rangle\|_{\psi_2} \le L|x|$

then if $x \in S^{n-1}$, with probability $1 - 2\exp(-c_1\varepsilon^2 N)$,

$$\left|\frac{1}{N}\sum_{i=1}^{N} \langle X_i, x \rangle^2 - 1\right| < \varepsilon.$$

On the other hand, the "complexity" of S^{n-1} is $\exp(c_2 n)$.

A good estimate – when $N \geq c_3(\varepsilon)n$, and the rate of convergence is

$$\sim \sqrt{\frac{n}{N}} + \frac{n}{N}.$$

Example III

What happens when μ is isotropic, log-concave? Then

- $\|\langle X, x \rangle\|_{\psi_1} \leq L|x|$, but $\|\langle X, x \rangle\|_{\psi_2}$ can be very large ($\sim \sqrt{n}|x|$).
- Concentration: since $\langle X, x \rangle^2 \in L_{\psi_{1/2}}$, the degree of concentration of empirical means is $\exp(-c_1(\varepsilon)\sqrt{N})$.

• Complexity: $\exp(c_2 n)$.

One can expect a good estimate when $N \ge c_3(\varepsilon)n^2$. Proved by Kannan–Lovász–Simonovits (97) under more general assumptions.

Shahar Mendelson: On weakly bounded empirical processes

Example IV

Bourgain (98): it is enough to take $N \sim c_1(\varepsilon) n \log^3 n$. Note:

 $\sup_{x \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, x \rangle^2 - 1 \right|$ is small NOT because of individual concentration.

Partial history of the progress:

Rudelson (99), Giannopoulos–Milman (00), Giannopoulos–Hartzoulaki–Tsolomitis (05), Paouris (06), Guédon–Rudelson (07), Aubrun (07), M (08), Adamczak– Litvak–Pajor–Tomczak-Jaegermann (10),

showing that $N \sim c_2(\varepsilon)n$ is enough to ensure that

$$\sup_{x \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, x \rangle^2 - 1 \right| < \varepsilon.$$

The proofs are restricted:

- Use linear structure of the problem.
- Use that the indexing set is entire sphere based either on uniform estimates on $\left|\sum_{i\in I} X_i\right|$ or on a noncommutative Khintchine inequality.
- If $T \subset S^{n-1}$ there is no corresponding estimate for $\sup_{t \in T} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, t \rangle^2 1 \right|$.
- Even the [ALPT] estimate is off by $\log N$ for $N \ge c(\beta)n^{1+\beta}$ for any $\beta > 0$ (rate estimate of $\sim \sqrt{\frac{n}{N}}\log(eN/n)$).

What happens for a general class?

The complexity parameter I will use is

$$\gamma_2(F,\psi_2) = \inf \sup_{f \in F} \sum_{s=0}^{\infty} 2^{s/2} d_{\psi_2}(f,\pi_s(f)).$$
 (*)

If the $L_2(\mu)$ and the $\psi_2(\mu)$ metrics are equivalent (F is subgaussian) then

$$\gamma_2(F,\psi_2) \sim \mathbb{E} \sup_{f \in F} G_f$$

A simple chaining argument shows that

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f(X_i) - \mathbb{E}f \right| \lesssim \frac{\gamma_2(F, \psi_2)}{\sqrt{N}}.$$

And a similar estimate is not true for any ψ_{α} metric, for $\alpha < 2!$

Shahar Mendelson: On weakly bounded empirical processes

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E} f^2 \right| ??$$

Contraction (simple):

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E}f^2 \right| \lesssim \sup_{f \in F} \|f\|_{\infty} \cdot \frac{\gamma_2(F, \psi_2)}{\sqrt{N}}.$$

M–Pajor–Tomczak-Jaegermann (07):

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E}f^2 \right| \lesssim \sup_{f \in F} \|f\|_{\psi_2} \cdot \frac{\gamma_2(F, \psi_2)}{\sqrt{N}} + \frac{\gamma_2^2(F, \psi_2)}{N}.$$

This is good enough for many geometric applications (e.g., low- M^* estimates for subgaussian operators, reconstruction using subgaussian measurements, norms of subgaussian operators into ℓ_2^N), but it is **NOT** good enough to handle log-concave operators.

Shahar Mendelson: On weakly bounded empirical processes

If F is class of zero-mean functions then

$$\mathbb{E}\sup_{f\in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E}f^2 \right| \lesssim \sup_{f\in F} \|f\|_{\psi_1} \cdot \frac{\gamma_2(F,\psi_2)}{\sqrt{N}} + \frac{\gamma_2^2(F,\psi_2)}{N}$$

and a similar bound holds with high probability (though with a weaker probability estimate than in the subgaussian case).

Main ideas of the proof

Step I: structural results on F:

with probability at least $1 - 2\exp(-c_1 t \log N)$, for every $I \subset \{1, ..., N\}$ and every $f \in F$,

$$\left(\sum_{i\in I} f^2(X_i)\right)^{1/2} \lesssim_t \gamma_2(F,\psi_2) + d_{\psi_\alpha}\sqrt{|I|} \log^{1/\alpha} \left(eN/|I|\right),$$

where $d_{\psi_{\alpha}} = \sup_{f \in F} ||f||_{\psi_{\alpha}}$, and this estimate is optimal.

In particular,

$$P_{\sigma}F \subset ct\left(\gamma_2(F,\psi_2)B_2^N + d_{\psi_{\alpha}}B_{\psi_{\alpha}^N}
ight).$$

Step I

To put Step I in context, note that if $Y \in L_{\psi_{\alpha}}$ then with high probability, a vector of independent copies of Y satisfies

 $(Y_1, ..., Y_N) \in ||Y||_{\psi_\alpha} B_{\psi_\alpha^N} \iff Y_i^* \lesssim ||Y||_{\psi_\alpha} \log^{1/\alpha} (eN/i).$

In other words, $P_{\sigma}F$ has

- 1. A "peaky" part originates from the complexity of F, has a short support and is nicely bounded in ℓ_2^N .
- 2. A "regular" part as if F has a ψ_{α} envelope function.

So, where do we stand?

This gives us a picture that is almost optimal:

$$\sup_{f \in F} \frac{1}{N} \sum_{i=1}^{N} f^2 \mathbb{1}_{\{|f| \ge \Box\}}(X_i) \lesssim \frac{\gamma_2^2(F, \psi_2)}{N},$$

and

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2 \mathbb{1}_{\{|f| < \Box\}} (X_i) - \mathbb{E} f^2 \mathbb{1}_{\{|f| < \Box\}} \right| \lesssim \Box \sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f(X_i) - \mathbb{E} f \right|.$$

So, the process is small because:

- The L_2^N norms of the "peaky" parts of functions in F are uniformly small BUT THERE IS NO CONCENTRATION!!!
- And for the bounded part, empirical means do concentrate around true means at the correct rate.

Shahar Mendelson: On weakly bounded empirical processes

So, where do we stand II?

This is **NOT** enough to prove the result!

$$\sup_{f \in F} \frac{1}{N} \sum_{i=1}^{N} f^2 \mathbb{1}_{\{|f| \ge \Box\}}(X_i) \lesssim \frac{\gamma_2^2(F, \psi_2)}{N},$$

and

$$\sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2 \mathbb{1}_{\{|f| < \Box\}} (X_i) - \mathbb{E} f^2 \mathbb{1}_{\{|f| < \Box\}} \right| \lesssim \Box \sup_{f \in F} \left| \frac{1}{N} \sum_{i=1}^{N} f(X_i) - \mathbb{E} f \right|.$$

However, $\Box \neq d_{\psi_1}$, but rather

$$\Box \sim d_{\psi_1} \log^{1/\alpha} \left(N d_{\psi_1}^2 / \gamma_2^2(F, \psi_2) + 2 \right).$$

off by a $\log N$ factor for "large" N - where one expects to see concentration. Truncation methods cannot overcome this!!

Shahar Mendelson: On weakly bounded empirical processes

Step II - Highlights

Consider the Bernoulli process

$$\sup_{f \in F} \sum_{i=1}^{N} \varepsilon_i f^2(X_i) = \sup_{v \in P_{\sigma}F} \sum_{i=1}^{N} \varepsilon_i v_i^2.$$

To preform chaining, at the *s*-th step one needs to control $2^{2^{s+1}}$ points.

Observe: with probability at least $1 - 2\exp(-t^2/2)$,

$$\left|\sum_{i=1}^N \varepsilon_i a_i\right| \le \sum_{i=1}^\ell a_i^* + \sqrt{t} \left(\sum_{i=\ell+1}^N (a^2)_i^*\right)^{1/2}.$$

In our case, $v = (f(X_i))_{i=1}^N$, $u = (g(X_i))_{i=1}^N$ and $a_i = (v_i^2 - u_i^2) = (v_i - u_i)(v_i + u_i).$ • Use the "global information" on a monotone rearrangement of the coordinates of $(u + v)_{i=1}^{N}$ from the previous step: $u, v \in P_{\sigma}F$ implying decomposition to "short support" + bounded in ℓ_2^N , and "regular part".

$$P_{\sigma}F \subset c(t) \left(\gamma_2(F, \psi_2) B_2^N + d_{\psi_1} B_{\psi_1^N} \right).$$

• Obtain a similar – but "local" information on a monotone rearrangement of $2^{2^{s+1}}$ vectors $(v_i - u_i)_{i=1}^N = ((f - g)(X_i))_{i=1}^N$ – that depends on $||f - g||_{\psi_2}$, $||f - g||_{\psi_1}$ and on s.

• For each vector, select ℓ in $\sum_{i=1}^{\ell} a_i^* + \sqrt{t} \left(\sum_{i=\ell+1}^{N} (a^2)_i^* \right)^{1/2}$ according to the above information....

• Now, completing the chaining argument concludes the proof.

Outcomes I

• Many classical results from AGA hold for a random log-concave operator, with the complexity parameter being $\gamma_2(F, \psi_2)$ rather than the Gaussian parameter $\sqrt{n}M^*$. For example, low- M^* estimates, bounds on the norm $\|\Gamma\|_{K \to \ell_p^N}$, etc.

• Question: How does one estimate $\gamma_2(S^{n-1}, \psi_2(\mu))$ for an isotropic, log-concave measure μ ?

• If $\bar{\mu}$ is the conditioning of μ to a "large subset" of \mathbb{R}^n , (e.g., to $c\sqrt{n}B_2^n$), then

 $\gamma_2(S^{n-1}, \psi_2(\bar{\mu})) \lesssim \sqrt{n \log n}.$

If μ is unconditional, then

 $\gamma_2(S^{n-1},\psi_2(\bar{\mu})) \lesssim \sqrt{n}.$

Outcomes II

This is enough to show that if $N \leq \exp(\sqrt{n})$, then with high μ^N -probability,

$$\sup_{x \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, x \rangle^2 - 1 \right| \lesssim \sqrt{\frac{n \log n}{N}} + \frac{n \log n}{N},$$

and if μ is unconditional and $N \leq n^{\alpha}$, then with high μ^{N} -probability

$$\sup_{x \in S^{n-1}} \left| \frac{1}{N} \sum_{i=1}^{N} \langle X_i, x \rangle^2 - 1 \right| \lesssim_{\alpha} \sqrt{\frac{n}{N}} + \frac{n}{N}.$$

We should expect the subgaussian rate, at least when $N \leq \exp(\sqrt{n})$.

The fact that

$$\mathbb{E}\sup_{f\in F} \left| \frac{1}{N} \sum_{i=1}^{N} f^2(X_i) - \mathbb{E}f^2 \right| \lesssim \sup_{f\in F} \|f\|_{\psi_1} \cdot \frac{\gamma_2(F,\psi_2)}{\sqrt{N}} + \frac{\gamma_2^2(F,\psi_2)}{N}.$$

is another good reason to study $\gamma_2(F, \psi_2)$ and extend the beautiful theory of $\gamma_2(F, L_2)$.

But, in fact, the complexity parameter we need is really better:

$$\inf \sup_{f \in F} \sum_{s=0}^{\infty} \|f - \pi_s f\|_{L_{2^s}} \le \inf \sup_{f \in F} \sum_{s=0}^{\infty} 2^{s/2} \|f - \pi_s f\|_{\psi_2}(!!)$$