On weakly bounded empirical processes

Shahar Mendelson
Technion and ANU

Questions

Let F be a set of mean-zero functions on (Ω, μ) and let $\sigma=\left(X_{1}, \ldots, X_{N}\right)$ be independent, distributed according to μ.

Set

$$
P_{\sigma} F=\left\{\left(f\left(X_{i}\right)\right)_{i=1}^{N}: f \in F\right\}
$$

the coordinate projection of F onto σ.

Questions II

What is the structure of a typical

$$
P_{\sigma} F=\left\{\left(f\left(X_{i}\right)\right)_{i=1}^{N}: f \in F\right\} ?
$$

If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a reasonable function, is

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} \phi(f)\left(X_{i}\right)-\mathbb{E} \phi(f)\right|
$$

small, and if so, why?

- $\phi(t)=t \quad \Longrightarrow$ Uniform law of large numbers
- $\phi(t)=t^{2} \quad \Longrightarrow$ Uniform CLT

Example I

Let $F=\left\{\langle x, \cdot\rangle: x \in S^{n-1}\right\}, \mu$ an isotropic measure on \mathbb{R}^{n}. Set

$$
\Gamma=\frac{1}{\sqrt{N}} \sum_{i=1}^{N}\left\langle X_{i}, \cdot\right\rangle e_{i} .
$$

Then,

$$
P_{\sigma} F=\left\{\left(\left\langle X_{i}, x\right\rangle\right)_{i=1}^{N}: x \in S^{n-1}\right\}=\sqrt{N} \Gamma\left(S^{n-1}\right)
$$

and

$$
\left.\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right|=\left.\sup _{x \in S^{n-1}}| | \Gamma x\right|^{2}-1 \right\rvert\,=(*) .
$$

So why is (${ }^{*}$) small?

Example II

If μ is L-subgaussian, i.e.,

$$
\|\langle X, x\rangle\|_{\psi_{2}} \leq L|x|
$$

then if $x \in S^{n-1}$, with probability $1-2 \exp \left(-c_{1} \varepsilon^{2} N\right)$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, x\right\rangle^{2}-1\right|<\varepsilon .
$$

On the other hand, the "complexity" of S^{n-1} is $\exp \left(c_{2} n\right)$.
A good estimate - when $N \geq c_{3}(\varepsilon) n$, and the rate of convergence is

$$
\sim \sqrt{\frac{n}{N}}+\frac{n}{N} .
$$

Example III

What happens when μ is isotropic, log-concave? Then

- $\|\langle X, x\rangle\|_{\psi_{1}} \leq L|x|$, but $\|\langle X, x\rangle\|_{\psi_{2}}$ can be very large $(\sim \sqrt{n}|x|)$.
- Concentration: since $\langle X, x\rangle^{2} \in L_{\psi_{1 / 2}}$, the degree of concentration of empirical means is $\exp \left(-c_{1}(\varepsilon) \sqrt{N}\right)$.
- Complexity: $\exp \left(c_{2} n\right)$.

One can expect a good estimate when $N \geq c_{3}(\varepsilon) n^{2}$.
Proved by Kannan-Lovász-Simonovits (97) under more general assumptions.

Example IV

Bourgain (98): it is enough to take $N \sim c_{1}(\varepsilon) n \log ^{3} n$.
Note:
$\sup _{x \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, x\right\rangle^{2}-1\right|$ is small NOT because of individual concentration.

Partial history of the progress:
Rudelson (99), Giannopoulos-Milman (00), Giannopoulos-Hartzoulaki-Tsolomitis (05), Paouris (06), Guédon-Rudelson (07), Aubrun (07), M (08), Adamczak-Litvak-Pajor-Tomczak-Jaegermann (10), showing that $N \sim c_{2}(\varepsilon) n$ is enough to ensure that

$$
\sup _{x \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, x\right\rangle^{2}-1\right|<\varepsilon .
$$

Observations

The proofs are restricted:

- Use linear structure of the problem.
- Use that the indexing set is entire sphere - based either on uniform estimates on $\left|\sum_{i \in I} X_{i}\right|$ or on a noncommutative Khintchine inequality.
- If $T \subset S^{n-1}$ there is no corresponding estimate for $\sup _{t \in T}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, t\right\rangle^{2}-1\right|$.
- Even the [ALPT] estimate is off by $\log N$ for $N \geq c(\beta) n^{1+\beta}$ for any $\beta>0$ (rate estimate of $\sim \sqrt{\frac{n}{N}} \log (e N / n)$).

What happens for a general class?

General results

The complexity parameter I will use is

$$
\begin{equation*}
\gamma_{2}\left(F, \psi_{2}\right)=\inf \sup _{f \in F} \sum_{s=0}^{\infty} 2^{s / 2} d_{\psi_{2}}\left(f, \pi_{s}(f)\right) . \tag{*}
\end{equation*}
$$

If the $L_{2}(\mu)$ and the $\psi_{2}(\mu)$ metrics are equivalent (F is subgaussian) then

$$
\gamma_{2}\left(F, \psi_{2}\right) \sim \mathbb{E} \sup _{f \in F} G_{f}
$$

A simple chaining argument shows that

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)-\mathbb{E} f\right| \lesssim \frac{\gamma_{2}\left(F, \psi_{2}\right)}{\sqrt{N}} .
$$

And a similar estimate is not true for any ψ_{α} metric, for $\alpha<2$!
$\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right| ? ?$

Contraction (simple):

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right| \lesssim \sup _{f \in F}\|f\|_{\infty} \cdot \frac{\gamma_{2}\left(F, \psi_{2}\right)}{\sqrt{N}} .
$$

M-Pajor-Tomczak-Jaegermann (07):

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right| \lesssim \sup _{f \in F}\|f\|_{\psi_{2}} \cdot \frac{\gamma_{2}\left(F, \psi_{2}\right)}{\sqrt{N}}+\frac{\gamma_{2}^{2}\left(F, \psi_{2}\right)}{N} .
$$

This is good enough for many geometric applications (e.g., low- M^{*} estimates for subgaussian operators, reconstruction using subgaussian measurements, norms of subgaussian operators into $\left.\ell_{2}^{N} \ldots.\right)$, but it is NOT good enough to handle log-concave operators.

The main result

If F is class of zero-mean functions then

$$
\mathbb{E} \sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right| \lesssim \sup _{f \in F}\|f\|_{\psi_{1}} \cdot \frac{\gamma_{2}\left(F, \psi_{2}\right)}{\sqrt{N}}+\frac{\gamma_{2}^{2}\left(F, \psi_{2}\right)}{N} .
$$

and a similar bound holds with high probability (though with a weaker probability estimate than in the subgaussian case).

Main ideas of the proof

Step I: structural results on F :
with probability at least $1-2 \exp \left(-c_{1} t \log N\right)$, for every $I \subset\{1, \ldots, N\}$ and every $f \in F$,

$$
\left(\sum_{i \in I} f^{2}\left(X_{i}\right)\right)^{1 / 2} \lesssim_{t} \gamma_{2}\left(F, \psi_{2}\right)+d_{\psi_{\alpha}} \sqrt{|I|} \log ^{1 / \alpha}(e N /|I|)
$$

where $d_{\psi_{\alpha}}=\sup _{f \in F}\|f\|_{\psi_{\alpha}}$, and this estimate is optimal.
In particular,

$$
P_{\sigma} F \subset c t\left(\gamma_{2}\left(F, \psi_{2}\right) B_{2}^{N}+d_{\psi_{\alpha}} B_{\psi_{\alpha}^{N}}\right) .
$$

Step I

To put Step I in context, note that if $Y \in L_{\psi_{\alpha}}$ then with high probability, a vector of independent copies of Y satisfies

$$
\left(Y_{1}, \ldots, Y_{N}\right) \in\|Y\|_{\psi_{\alpha}} B_{\psi_{\alpha}^{N}} \Longleftrightarrow Y_{i}^{*} \lesssim\|Y\|_{\psi_{\alpha}} \log ^{1 / \alpha}(e N / i) .
$$

In other words, $P_{\sigma} F$ has

1. A "peaky" part - originates from the complexity of F, has a short support and is nicely bounded in ℓ_{2}^{N}.
2. A "regular" part - as if F has a ψ_{α} envelope function.

So, where do we stand?

This gives us a picture that is almost optimal:

$$
\sup _{f \in F} \frac{1}{N} \sum_{i=1}^{N} f^{2} \mathbb{I}_{\{|f| \geq \square\}}\left(X_{i}\right) \lesssim \frac{\gamma_{2}^{2}\left(F, \psi_{2}\right)}{N},
$$

and

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2} \mathbb{I}_{\{|f|<\square\}}\left(X_{i}\right)-\mathbb{E} f^{2} \mathbb{I}_{\{|f|<\square\}}\right| \lesssim \square \sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)-\mathbb{E} f\right| .
$$

So, the process is small because:

- The L_{2}^{N} norms of the "peaky" parts of functions in F are uniformly small BUT THERE IS NO CONCENTRATION!!!
- And for the bounded part, empirical means do concentrate around true means at the correct rate.

So, where do we stand II?

This is NOT enough to prove the result!

$$
\sup _{f \in F} \frac{1}{N} \sum_{i=1}^{N} f^{2} \mathbb{I}_{\{|f| \geq \square\}}\left(X_{i}\right) \lesssim \frac{\gamma_{2}^{2}\left(F, \psi_{2}\right)}{N},
$$

and

$$
\sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2} \mathbb{I}_{\{|f|<\square\}}\left(X_{i}\right)-\mathbb{E} f^{2} \mathbb{I}_{\{|f|<\square\}}\right| \lesssim \square \sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)-\mathbb{E} f\right| .
$$

However, $\square \neq d_{\psi_{1}}$, but rather

$$
\square \sim d_{\psi_{1}} \log ^{1 / \alpha}\left(N d_{\psi_{1}}^{2} / \gamma_{2}^{2}\left(F, \psi_{2}\right)+2\right) .
$$

off by a $\log N$ factor for "large" N - where one expects to see concentration. Truncation methods cannot overcome this!!

Step II - Highlights

Consider the Bernoulli process

$$
\sup _{f \in F} \sum_{i=1}^{N} \varepsilon_{i} f^{2}\left(X_{i}\right)=\sup _{v \in P_{\sigma} F} \sum_{i=1}^{N} \varepsilon_{i} v_{i}^{2}
$$

To preform chaining, at the s-th step one needs to control $2^{2^{s+1}}$ points.
Observe: with probability at least $1-2 \exp \left(-t^{2} / 2\right)$,

$$
\left|\sum_{i=1}^{N} \varepsilon_{i} a_{i}\right| \leq \sum_{i=1}^{\ell} a_{i}^{*}+\sqrt{t}\left(\sum_{i=\ell+1}^{N}\left(a^{2}\right)_{i}^{*}\right)^{1 / 2}
$$

In our case, $v=\left(f\left(X_{i}\right)\right)_{i=1}^{N}, u=\left(g\left(X_{i}\right)\right)_{i=1}^{N}$ and

$$
a_{i}=\left(v_{i}^{2}-u_{i}^{2}\right)=\left(v_{i}-u_{i}\right)\left(v_{i}+u_{i}\right) .
$$

Step II - Highlights

- Use the "global information" on a monotone rearrangement of the coordinates of $(u+v)_{i=1}^{N}$ from the previous step: $u, v \in P_{\sigma} F$ implying decomposition to "short support" + bounded in ℓ_{2}^{N}, and "regular part".

$$
P_{\sigma} F \subset c(t)\left(\gamma_{2}\left(F, \psi_{2}\right) B_{2}^{N}+d_{\psi_{1}} B_{\psi_{1}^{N}}\right) .
$$

- Obtain a similar - but "local" information on a monotone rearrangement of $2^{2^{s+1}}$ vectors $\left(v_{i}-u_{i}\right)_{i=1}^{N}=\left((f-g)\left(X_{i}\right)\right)_{i=1}^{N}$ - that depends on $\|f-g\|_{\psi_{2}}$, $\|f-g\|_{\psi_{1}}$ and on s.
- For each vector, select ℓ in $\sum_{i=1}^{\ell} a_{i}^{*}+\sqrt{t}\left(\sum_{i=\ell+1}^{N}\left(a^{2}\right)_{i}^{*}\right)^{1 / 2}$ according to the above information....
- Now, completing the chaining argument concludes the proof.

Outcomes I

- Many classical results from AGA hold for a random log-concave operator, with the complexity parameter being $\gamma_{2}\left(F, \psi_{2}\right)$ rather than the Gaussian parameter $\sqrt{n} M^{*}$. For example, low- M^{*} estimates, bounds on the norm $\|\Gamma\|_{K \rightarrow \rho_{p}^{N}}$, etc.
- Question: How does one estimate $\gamma_{2}\left(S^{n-1}, \psi_{2}(\mu)\right)$ for an isotropic, log-concave measure μ ?
- If $\bar{\mu}$ is the conditioning of μ to a "large subset" of \mathbb{R}^{n}, (e.g., to $c \sqrt{n} B_{2}^{n}$), then

$$
\gamma_{2}\left(S^{n-1}, \psi_{2}(\bar{\mu})\right) \lesssim \sqrt{n \log n}
$$

If μ is unconditional, then

$$
\gamma_{2}\left(S^{n-1}, \psi_{2}(\bar{\mu})\right) \lesssim \sqrt{n}
$$

Outcomes II

This is enough to show that if $N \leq \exp (\sqrt{n})$, then with high μ^{N}-probability,

$$
\sup _{x \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, x\right\rangle^{2}-1\right| \lesssim \sqrt{\frac{n \log n}{N}}+\frac{n \log n}{N},
$$

and if μ is unconditional and $N \leq n^{\alpha}$, then with high μ^{N}-probability

$$
\sup _{x \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\left\langle X_{i}, x\right\rangle^{2}-1\right| \lesssim \alpha \sqrt{\frac{n}{N}}+\frac{n}{N} .
$$

We should expect the subgaussian rate, at least when $N \leq \exp (\sqrt{n})$.

Outcomes III

The fact that

$$
\mathbb{E} \sup _{f \in F}\left|\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(X_{i}\right)-\mathbb{E} f^{2}\right| \lesssim \sup _{f \in F}\|f\|_{\psi_{1}} \cdot \frac{\gamma_{2}\left(F, \psi_{2}\right)}{\sqrt{N}}+\frac{\gamma_{2}^{2}\left(F, \psi_{2}\right)}{N} .
$$

is another good reason to study $\gamma_{2}\left(F, \psi_{2}\right)$ and extend the beautiful theory of $\gamma_{2}\left(F, L_{2}\right)$.

But, in fact, the complexity parameter we need is really better:

$$
\inf \sup _{f \in F} \sum_{s=0}^{\infty}\left\|f-\pi_{s} f\right\|_{L_{2^{s}}} \leq \inf \sup _{f \in F} \sum_{s=0}^{\infty} 2^{s / 2}\left\|f-\pi_{s} f\right\|_{\psi_{2}}(!!)
$$

