# On the existence of subgaussian directions for log-concave measures 

joint work with A. Giannopoulos and P. Valettas.

## Grigoris Paouris

Department of Mathematics
Texas A\&M University
May, 2010

## Notation

$\mathcal{P}_{[n]}$ : the class of all probability measures in $\mathbb{R}^{n}$ which are absolutely continuous with respect to the Lebesgue measure.
$\mu$ on $\mathbb{R}^{n}$ is called log-concave if for any Borel sets $A, B$ and any $\lambda \in(0,1)$, $\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}$.
$\mu \in \mathcal{P}_{[n]}$ is called centered if for all $\theta \in S^{n-1}, \int_{\mathbb{R}^{n}}\langle x, \theta\rangle d \mu(x)=0$.
Let $K$ a convex body in $\mathbb{R}^{n}$. Then $d \mu:=\mathbf{1}_{K} d x$ is log-concave.

## Notation

A direction $\theta \in S^{n-1}$ is subgaussian for $\mu$ with constant $r>0$ if

$$
\|\langle\cdot, \theta\rangle\|_{\psi_{2}} \leq r m_{\theta},
$$

where $m_{\theta}$ is the median of $|\langle\cdot, \theta\rangle|$ with respect to $\mu$, and

$$
\|f\|_{\psi_{2}}=\inf \left\{t>0: \int_{\mathbb{R}^{n}} \exp \left((|f(x)| / t)^{2}\right) d \mu(x) \leq 2\right\}
$$

Let $K$ centered convex body in $\mathbb{R}^{n},|K|=1$,

$$
h_{Z_{2}(K)}(\theta)=\left(\int_{K}|\langle x, \theta\rangle|^{2} d x\right)^{\frac{1}{2}}, \theta \in S^{n-1}
$$

We say that $K$ is isotropic if $Z_{2}(K)=L_{K} B_{2}^{n}$.

## The Question

[Bourgain] If $r_{K}(\theta)=O(1)$ for all $\theta$, then $L_{K}=O(1)$.
Question: [V. Milman] is it true that every convex body $K$ has at least one "subgaussian" direction (with constant $r=O(1)$ )?
[Bobkov- Nazarov] Yes, if $K$ is 1 -uncoditional.
[Klartag] Yes, with $r=\log ^{2} n$.
[G-P-P] Yes, with $r=\log n$.
[G-P-V] Yes, with $r=\sqrt{\log n}$.

## The result

Theorem (i) If $K$ is a centered convex body of volume 1 in $\mathbb{R}^{n}$, then there exists $\theta \in S^{n-1}$ such that

$$
\left|\left\{x \in K:|\langle x, \theta\rangle| \geq \operatorname{cth}_{Z_{2}(K)}(\theta)\right\}\right| \leq e^{-\frac{t^{2}}{\log (t+1)}}
$$

for all $t \geq 1$, where $c>0$ is an absolute constant.
(ii) If $\mu$ is a centered log-concave probability measure on $\mathbb{R}^{n}$, then there exists $\theta \in S^{n-1}$ such that

$$
\mu\left(\left\{x \in \mathbb{R}^{n}:|\langle x, \theta\rangle| \geq c t \mathbb{E}|\langle\cdot, \theta\rangle|\right\}\right) \leq e^{-\frac{t^{2}}{\log (t+1)}}
$$

for all $1 \leq t \leq \sqrt{n \log n}$, where $c>0$ is an absolute constant.

## The $\Psi_{2}(K)$ body

Let $K$ be a centered convex body of volume 1 in $\mathbb{R}^{n}$. Definition of $\Psi_{2}(K)$ : it is the symmetric convex body with support function

$$
h_{\Psi_{2}(K)}(\theta)=\sup _{1 \leq p \leq n} \frac{\left(\int_{K}|\langle x, \theta\rangle|^{p} d x\right)^{\frac{1}{p}}}{\sqrt{p}}=\sup _{1 \leq p \leq n} \frac{h_{Z_{p}(K)}(\theta)}{\sqrt{p}} .
$$

From the definition, one has $Z_{p}(K) \subseteq \sqrt{p} \Psi_{2}(K)$ for all $1 \leq p \leq n$. In particular, $Z_{2}(K) \subseteq \sqrt{2} \Psi_{2}(K)$, which implies that

$$
\left|\Psi_{2}(K)\right|^{1 / n} \geq c \frac{L_{K}}{\sqrt{n}}
$$

Conjecture: $\left|\Psi_{2}(K)\right|^{1 / n} \leq c^{\prime} \frac{L_{K}}{\sqrt{n}}$.

## The $\Psi_{2}(K)$ body

Theorem Let $K$ be a centered convex body of volume 1 in $\mathbb{R}^{n}$. Then,

$$
\left|\Psi_{2}(K)\right|^{1 / n} \leq c \frac{\sqrt{\log n}}{\sqrt{n}} L_{K} .
$$

Note that $\Psi_{2}(K)=\operatorname{conv}\left\{\frac{Z_{p}(K)}{\sqrt{p}}, p \in[1, n]\right\}$, and using the fact that $Z_{2 p}(K) \simeq Z_{p}(K)$, we may write

$$
\Psi_{2}(K) \simeq \operatorname{conv}\left\{\frac{Z_{p}(K)}{\sqrt{p}}, p=2^{k}, k=1, \ldots, \log _{2} n\right\}
$$

Known (P., L-Z) : $\left|Z_{p}(K)\right|^{\frac{1}{n}} \leq c \sqrt{\frac{p}{n}} L_{K},\left|Z_{p}(K)\right|^{\frac{1}{n}} \geq c \sqrt{\frac{p}{n}}$.

## The $\Psi_{2}(K)$ body

For any $A, B,|A| \leq N(A, B)|B|$.
Lemma
Let $A_{1}, \ldots, A_{s}$ be subsets of $R B_{2}^{k}$. For every $t>0$,

$$
N\left(\operatorname{conv}\left(A_{1} \cup \cdots \cup A_{s}\right), 2 t B_{2}^{k}\right) \leq\left(\frac{c R}{t}\right)^{s} \prod_{i=1}^{s} N\left(A_{i}, t B_{2}^{k}\right)
$$

Regularity of the covering numbers of $Z_{q}(K)$ : (G-P-P)

$$
\log N\left(Z_{q}(K), c t \sqrt{q} L_{K} B_{2}^{n}\right) \leq \frac{n}{t}, t \geq 1 .
$$

## Regularity of the covering numbers of $Z_{q}(K)$

Proposition Let $K$ be an isotropic convex body in $\mathbb{R}^{n}$, let $1 \leq q \leq n$ and $t \geq 1$. Then,

$$
\log N\left(Z_{q}(K), c_{1} t \sqrt{q} L_{K} B_{2}^{n}\right) \leq c_{2} \frac{n}{t^{2}}+c_{3} \frac{\sqrt{n} \sqrt{q}}{t}
$$

where $c_{1}, c_{2}, c_{3}>0$ are absolute constants.
Corollary Let $K$ be an isotropic convex body in $\mathbb{R}^{n}$ and let $1 \leq q \leq n$. Define $\beta \geq 1$ by the equation $q=n^{1 / \beta}$. Let $\alpha:=\min \{\beta, 2\}$. Then,

$$
N\left(Z_{q}(K), c_{1} t \sqrt{q} L_{K} B_{2}^{n}\right) \leq \exp \left(c_{2} \frac{n}{t^{\alpha}}\right)
$$

where $c_{1}, c_{2}>0$ are absolute constants.

## Sudakov-type estimates

[Talagrand] Let $\gamma_{n}$ be the n -dimensional Gaussian measure and let $C \subseteq \mathbb{R}^{n}$ be a symmetric convex body. Then, for any $s, t>0$ we have:

$$
N\left(B_{2}^{n}, t C^{\circ}\right) \leq e^{(2 s / t)^{2}}\left[\gamma_{n}\left(s C^{\circ}\right)\right]^{-1}
$$

Let $m_{1}$ such that $\gamma_{n}\left(m_{1} C^{\circ}\right)=\frac{1}{2}$. Also

$$
m_{1} \simeq I_{1}\left(\gamma_{n}, C^{\circ}\right)=\int_{\mathbb{R}^{n}}\|x\|_{C^{\circ}} d \gamma_{n}(x) \simeq \sqrt{n} W(C)
$$

## Sudakov-type estimates

Let $0<p$ and let $m_{p}$ such that $\gamma_{n}\left(m_{p} C^{\circ}\right)=\frac{1}{2^{p}}$. Also If we write $I_{-p}$ for

$$
I_{-p} \equiv I_{-p}\left(\gamma_{n}, C\right):=\left(\int_{\mathbb{R}^{n}}\|x\|_{K}^{-p} d \gamma_{n}(x)\right)^{-1 / p}
$$

Then (Markov's inequality) $m_{p} \geq \frac{1}{2} I_{-p}$.
Assume that for some $p$ and some $\alpha>1$ we have the following "regularity" condition:

$$
I_{-p} \leq \alpha I_{-2 p}
$$

Then, by applying the Paley-Zygmund inequality we get

$$
\gamma_{n}\left(x:\|x\|_{C}^{0} \leq 2 I_{-p}\right) \geq 2^{-2 p \log (2 \alpha)}
$$

It follows that

$$
m_{2 p \log (2 \alpha)} \leq 2 I_{-p}
$$

Also

$$
I_{-p}\left(\gamma_{n}, C^{\circ}\right) \simeq \sqrt{n} W_{-p}(C)
$$

## Sudakov-type estimates

Corollary Let $C$ be a symmetric convex body in $\mathbb{R}^{n}$ and let $1 \leq p \leq n / 2$ be such that $W_{-2 p}(C) \simeq W_{-p}(C)$. Then,

$$
\log N\left(C, c_{1} \sqrt{n / p} W_{-p}(C) B_{2}^{n}\right) \leq c_{2} p
$$

where $c_{1}, c_{2}>0$ are absolute constants.
Proof: Choose $s:=m_{p} \simeq \sqrt{n} W_{-p}(C)$. Then

$$
N\left(B_{2}^{n}, t K^{\circ}\right) \leq e^{\frac{n W_{-p}(C)^{2}}{t^{2}}}\left[\gamma_{n}\left(s K^{\circ}\right)\right]^{-1} \leq e^{\frac{n W_{-p}(C)^{2}}{t^{2}}} e^{p} .
$$

Choose $t=\sqrt{n / p} W_{-p}(C)$, then $\log N\left(B_{2}^{n}, t K^{\circ}\right) \leq c p$. Then "duality of entropy" (A-M-S).

## Back to $Z_{q}(K)$

Let $-n<p \leq n, I_{q}(K)=\left(\int_{K}\|x\|_{2}^{p} d x\right)^{\frac{1}{p}}$. Let $q>0$, then (P.),

$$
\begin{aligned}
I_{q}(K) & \simeq \sqrt{\frac{n}{q}} W_{q}\left(Z_{q}(K)\right) \\
I_{-q}(K) & \simeq \sqrt{\frac{n}{q}} W_{-q}\left(Z_{q}(K)\right)
\end{aligned}
$$

Then

$$
c_{1} \sqrt{q} \leq W_{-n}\left(Z_{q}(K)\right) \leq W_{-q}\left(Z_{q}(K)\right) \leq c_{2} \sqrt{q} L_{K} .
$$

## Convolutions

PropositionLet $K$ be an isotropic convex body in $\mathbb{R}^{n}$. There exists an isotropic convex body $K_{1}$ in $\mathbb{R}^{n}$ with the following properties:
(1) $L_{K_{1}} \leq c_{1}$.
(2) $c_{2} Z_{p}\left(K_{1}\right) \subseteq \frac{Z_{p}(K)}{L_{K}}+\sqrt{p} B_{2}^{n} \subseteq c_{3} Z_{p}\left(K_{1}\right)$ for all $1 \leq p \leq n$.
(3) $c_{4} \Psi_{2}\left(K_{1}\right) \subseteq \frac{\Psi_{2}(K)}{L_{K}} \subseteq c_{5} \Psi_{2}\left(K_{1}\right)$.

The constants $c_{i}, i=1, \ldots, 5$ are absolute positive constants.

## Back to $Z_{q}(K)$

Proposition Let $K_{1}$ be an isotropic convex body as before, let $1 \leq q \leq n / 2$ and $1 \leq t \leq \sqrt{n / q}$. Then,

$$
\log N\left(Z_{q}\left(K_{1}\right), c_{1} t \sqrt{q} B_{2}^{n}\right) \leq c_{2} \frac{n}{t^{2}} .
$$

Proof: For $q \leq r \leq n, W_{-r}\left(Z_{q}(K)\right) \simeq \sqrt{q}$. Then

$$
\log N\left(Z_{q}\left(K_{1}\right), \sqrt{\frac{n}{r}} W_{-r}\left(Z_{q}(K)\right) B_{2}^{n}\right) \leq r
$$

Set $t=\sqrt{\frac{\pi}{r}}$.

## Back to $\Psi_{2}(K)$

Let $2^{k_{1}}=\frac{n}{\log n}$. Let $V_{1}:=\operatorname{conv}\left\{\frac{Z_{p}\left(K_{1}\right)}{\sqrt{p}}, p=2^{k}, k=1, \ldots, k_{1}\right\}$
and $V_{2}:=\operatorname{conv}\left\{\frac{Z_{p}\left(K_{1}\right)}{\sqrt{p}}, p=2^{k}, k=k_{1}, \ldots, \log _{2} n\right\}$.
Note that $\Psi_{2}\left(K_{1}\right) \simeq \operatorname{conv}\left\{V_{1}, V_{2}\right\}$.
Then $\log N\left(V_{1}, \sqrt{\log n} B_{2}^{n}\right) \leq n$ and $\log N\left(V_{2}, \log \log n B_{2}^{n}\right) \leq n$.
So, $\log N\left(\Psi_{2}\left(K_{1}, c \sqrt{\log n} B_{2}^{n}\right) \leq n\right.$ and

$$
\left|\Psi_{2}\left(K_{1}\right)\right|^{\frac{1}{n}} \leq c \frac{\sqrt{\log n}}{\sqrt{n}}
$$

So,

$$
\left|\Psi_{2}(K)\right|^{\frac{1}{n}} \leq c \frac{\sqrt{\log n}}{\sqrt{n}} L_{K}
$$

