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@ centered linear statistics

Nilo] = Nalol — E{N,[9]}

@ We are interested in the limiting laws of N, [¢] as n — oo.
possibly after putting a normalization factor in front (LLN and CLT

type)

Lytova-Pastur (MD ILT) LT Wig-Wish Marne la Vallee, 18 May 2010 3/30



Introduction

@ LT's is an active field of the RMT:
Marchenko, P 67; P 72; Girko 70-80; Bai-Silverstein 80-90,
Costin-Lebowitz 95; Khorunzhy-Khoruzhenko-P. 96; Spohn 97;
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e Valid due to a different mechanism (Var{N,[¢]} does not grow with
n) and even not always valid P. 06, Lytova-P. 10.

@ Applications and links: statistics, strong Szego theorem on
asymptotics of Toeplitz determinants, universal conductance
fluctuations of small metallic particles (mesoscopics), 1/ n?- expansion
in SM and QFT, telecommunications, quantitative finances, etc.

@ Noblesse oblige (L.P.): Lyapunov (first modern proof of CLT), S.
Bernstein (first CLT for dependent r.v.'s), both from Kharkov
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Gaussian Ensembles

Generalities
Definition: M, = n"/2W,, W, = {ij}f,kzl
P(dW) = Zn—le—TrW2/4w2 H dWiy.

Since

Twi- Y w2 YW
1<j<n 1<j<k<n

the above implies that { Wjx }1<j<k<, are independent Gaussian random
variables such that

E{Wi} =0, E{Wi} = w?(1+ ).

Gaussian Orthogonal Ensemble (GOE)
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Gaussian Ensembles

Law of Large Numbers (LLN)

Let M, be the GOE) and N, [¢] be a linear eigenvalue statistics of its
eigenvalues. Then we have for any bounded and continuous ¢ : R — C
with probability 1:

i $o0 (47) = ot
where the measure

Nsc(d/\) = psc(A)dA' psc( ) 27TW \/ 4-W2 1|/\|<2w

is known as the Wigner or the semicircle law.

Wigner 52 and many others.
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Gaussian Ensembles

Law of Large Numbers (proof)

It suffices to consider the Normalized Counting Measure of eigenvalues

(NCM)
Ny(A) = #{Al" € A}/n, VA C R

and its Stieltjes transform

N,(dA)}

&n(z) = A=z

, Imz #0,
determining N,. Use now

(i) Gaussian differentiation formula:

E{5@(0)) = E{EIE(@)©)}, /=1 p

(ii) Poincaré-Nash-Chernoff inequality:

Var (@} < éE{aﬂE [|@)2}
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Gaussian Ensembles

Law of Large Numbers (proof)

By spectral theorem g,(z) = n~1Tr(M, — z) !, by resolvent identity for
fo(z) = E{gn(2)}

n

he) =2+ ) Y E(MAG),

k=1
by (i) f,(z) = z71 + z 'E{g2(z)}, and by (ii) (Bose-Chatterjee 04; P. 05)
Var{g,(z)} <2w?/n?|Imz|*

while Var{g,(z)} < w?/n|Im z|* for random Schrodinger.
This leads to
fie(z) = 271 + 27 5(2)

for lim, e f = fsc uniformly on any compact set of C\IR, thus
fee(z) = (V22 — 4w?2 — 2) /2w? (Im f(z) Im z > 0). Convergence of g,
to fc, hence N, to Ns. by Borel-Cantelli.
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Gaussian Ensembles

Central Limit Theorem

Theorem

Let M, be the GOE matrix, ¢ : R — R be a differentiable function with a
polynomially bounded derivative. Then N [¢] = N,[¢] — E{N,[¢]}

converges in distribution to the Gaussian random variable with zero mean
and the variance

veodel = 35 [, [ (PR =)

4W - )Ll}\g
X d)tl dAQ.
\/4W2 - )\f\/4w2 — A2
y
A MIRACLE!
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Gaussian Ensembles

Central Limit Theorem (proof)

Proof is again based on the Gaussian differentiation formula and the bound

Var(;fgl} < 22 E{Trg/ (M) (9 (Mn)")} < 202(sup /(1))

for N, [¢] = Trg(M) by Poincaré. We have to prove that

lim Z,(x) = exp {—x*Vooelg)/2} , Zo(x) = E {efvan[fr)}}

uniformly in x, varying on a finite interval of IR. Assume first that ¢
admits the Fourier transform @ and (1 + |t])|¢(t) € L}(R). Then

—1+/ Z)(y)dy, Z(x —l/go a(x, t)dt,
where

Y,(x. t) = E{Zn(t)en(x)}, en(x) = e*Nolo] () = Tret™
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Gaussian Ensembles

Central Limit Theorem (proof)

Use U,(t) = €™ (instead of G,(z) = (M, — z)~!) and the Duhamel

formula
n

t
Un(l’) = n+i/ Z /\/’ijjk(tl)dtl,
0 k=1

the differentiation formula, the Poincaré, and the Schwarz to obtain
t

t
Y, (x, t)+2w2/ dtr [ desn(ts — £)Ya(x, £2) = xZn(x)An(£) + ra(x, ),

0 0

t ,
An(t) = —2W2/ dtl/e’tl)‘(p’(A)E{N,,(d/\)}, Vo(t) = E{n 'TrU(t)}

0

1Yol < V2wlt[sup |’ (A)],
teR
((Ya)il < Vow(14+w?)2, (Vo)) < 2wt sup |¢f].
AER

Hence, there exists {Y,,J.} converging uniformly on any compact set of R?
to Y, satysfying
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Gaussian Ensembles

Central Limit Theorem (proof)

5]

Y (x, t) + 2w? /Ot s [ dov(t = 1) Y (. 2) = xZ(x)AC).

A(t) = —2W2/0tdt1/eitl)‘q)'(A)Nsc(d)\), v(t) = /e’Athc(d)\).

This leads (by the Laplace transformation) to

Z(x)=1-— Vsoe /OX yZ(y)dy.

The equation is uniquely soluble and yield the result for

(14 |t])|@(t) € L1(R). General case of C! (even Lip 1) test functions is
obtained by Poincaré and approximations.

The scheme dates back to Khorunzhy-Khoruzhenko-P. 96, where the
Stieljtes transform (the resolvent) was used, thus real analytic test
functions. Here we use the Fourier transform and obtain C! test functions.
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Wigner Ensembles

Generalities

M, =n"Y2W,, W, = {Win)};,kzl

with ng(n) = Wk(f) € R, 1 <j < k < nindependent and

E(W' =0, E{(W{))*} = (1+8)w?,
i.e. the two first moments of the entries coincide with those of the GOE or

PaW,) = T F(dW),

1<j<k<n

where Fjs(") has above moments. The GOE corresponds to

1

(n) _ -W2/202 2 _ 2
ij (dW) - We U"dW Ujk = (1—|—(5J-k)w .

Lytova-Pastur (MD ILT)
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Wigner Ensembles

Law of Large Numbers (semicircle law)

Let M, = n~1/2 W, be the Wigner matrix, satisfying the L2 (3 la
Lindeberg)

lim a2 / W2EY (dw), Wt > 0.

n—oo 1§j§2kgn |w|>T/n Jk

and N, be the Normalized Counting Measure of its eigenvalues. Then with
p-1: limy_eo Np(A) = Nsc(A), YA C R ( macroscopic universality).

P. 72; Girko 75. No Poincaré but the martingale-type bounds
E{|N7(A)[*} = O(n™?). Thus, it suffices to prove that if M, is the
Wigner matrix and M is the corresponding GOE, then

Ro(z) == E{n 'Tt(M, — 2) '} —E{n'Tr(M, —2) '} -0, n =

uniformly on a compact set of C \ R, cf recent results by Erdos et al 09
_1
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Wigner Ensembles

Law of Large Numbers (proof)

Proof is based on

e General differentiation formula (Khorunzhy-Khoruzhenko-P. 95):
If E{|Z|PT2} <00, p€E N, ®: R — C of CP™! with bounded
derivatives, then

p

E(Z@)} = Y. "E{0(@)} +ep,

4 /!
Jj=0
el < GE{IEIPT} sup [@PH (1)),
teR

where {x,}{°, are the cumulants of Wi,. Note that the / =1 term is
"Gaussian".

e "Interpolation trick" (P. 2000): use the product space of the Wigner
M, and the GOE M, with the same first and second moments and set

Mo(s) = s'’M, 4+ (1 —s)°M,, 0<s<1,
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Wigner Ensembles

Law of Large Numbers (proof)

. 3 .
Assume first w3 := sup, maxi<j<k<n E{‘Wji")‘ } < o0 and write

Rn(z) = / d _lTr(Mn(S)_Z)_ldS:;/OI(T]__TQ)dS
Tio= (R Y E{(W (Gl

1<j,k<n

T, = (nP(1-s)""2 Y E{Wi(GH)u}.

1<j.k<n

Apply to Ty the general differentiation formula with p =1 and
® = (G?2)jx and to T the Gaussian differentiation formula. We have the
cancelation, resulting only in &;:

Ciws 0
&l < —7 sup |Dj (|} < ==, Dy =
ol = e 1<,§gnMesn’ (Gl } < nt/2|Qz|4"

S, is the set of n X n real symmetric matrices.
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Wigner Ensembles

Central Limit Theorem (zero excess)

Let M, = n"Y2W,, W, = {Wjin) f,k:l be the real symmetric Wigner

random matrix. Assume that p, = E{(WJ.E("))‘l} does not depend on j, k
and n, kg = p, — 3w* =0, and the L4:

lim 02} /| _ WAF (dW) = 0, VT >0,
n—oo i W|>1+/n

If ¢ possesses the Fourier transform @ and (1 + |t|°)|@(t)| € L' (R, then

N [@] converges in distribution to the Gaussian random variable with zero
mean the GOE variance (again the macroscopic universality, even a bit
more).

Proof by the "interpolation" trick from the GOE. For "Lindeberg-4 " see
KKP. 95.
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Wigner Ensembles

Central Limit Theorem (general case)

Theorem

Let M, 1/2 W, be the real symmetric Wigner random matrix,
Uy = E{( ) } do not depend on j, k and n and

We : —sgpljwjkqu{( Y6} < co.

If (14 |t®)]|9(t)| € LX(R, then Ny[g] = Nulg] — E{N, @]} converges
in distribution to the Gaussian random variable of zero mean and of
variance

K
Viigle) = Vooele] + 555 live.
2w 2W2 2

Lytova-Pastur (MD ILT) LT Wig-Wish
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Assume that x4 # 0, then:

lwig = 0: the GOE CLT, e.g. for an ODD ¢.

lwig # 0: a modified CLT, generically and, in particular, for an EVEN ¢

such that , ) )
w 2w —
/O (P(#)iyﬂﬂ # 0.

Vaw? —
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Wigner Ensembles

CLT (O(1) bound for the variance of linear statistics)

Proof: by combining the schemes of proof of the CLT for the GOE and the
"interpolation" trick, in particular, by proving and using

Let M, = n=Y/2W, be the real symmetric Wigner random matrix and
N, [@] be the linear eigenvalue statistic of its eigenvalues. Assume that

6
< 0.

1/2
Var(Nogl} < o) ( [+ 1P D(0et)

where C(wes) depends only on ws.

We :=sup max E {‘WJS{")

n 1<j,k<n

Then

The bound replaces the Poincaré one in the case of Wigner ensembles.
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Wigner Ensembles

CLT (origin of new term in the variance)

3
- Z Ta +€31
a=1
where now
T,=— ' Z Kas1 B { D2 (Une(s)eS(x)) } s, 9
@ = i a+l)/2 a+1,jk Dy = ank
and

les] < COx)w’®(1+ [t[*)/nt/2.
The term T3 contains Ujj(t1) Ujj(t2) Uik (t3) Ukk (ta) Because of

Dy Un(£) = i,Bjk/Otds Uy (£ — 5)Upi(5) + Usj (£ — 5) Ui (s)]

These are only combinations of U’s that contribute.
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Wigner Ensembles

Universality Classes w.r.t. CLT

Universality class w.r.t. to the CLT: the set of random matrices, having
the same CLT (variance) for linear eigenvalue statistics.

Universality classes of the Wigner matrices w.r.t. the CLT are indexed by
the first two even moments of their off-diagonal entries:

w? = E{(W")?}, = E{(W)* ) 1<j<k<n

(two dimensional moduli space).

An example of "collective theorem", Linnik 70'’s.

The Gaussian universality classes: &4 := p, — 3w* = 0.

In the conventional probability setting for the CLT of independent random

variables {gf”)},"zl the universality classes w.r.t. the CLT of linear

statistics are indexed by a single parameter, the variance 02 = E{(Cf"))Q}.
All classes are Gaussian.
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Sample Covariance Matrices

Generalities

M. n is a n X n real symmetric matrix of the form (matrix x?)
~1,T
Mm,n =n Am,nAm,n.

with A, , = {AM}M 1 having i.i.d. entries (m observation on n
parameters)

P(dAm,n) ]‘[ 1‘[ (dA)
such that
E{A,} =0 E{A;} =2

The case of i.i.d. Gaussian {Ag;};":2; is known since the early 30's as the
(white or null) Wishart Ensemble.
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Sample Covariance Matrices

Law of Large Numbers

Let My, , be the sample covariance matrix such that T > 0

1 m
lim — E E / 2F(7) d 0, Vt >0
I a=1 }’|>Tﬁy g ( y) - ’

n—00,m—00, m/n—>ce 0, oo m

Then its Normalized Counting Measures N, converges with probability 1
to the non-random measure: Ny (dA) = p, (A)dA

pw(A) = (1 —c)1d0 + \/((/\— (ay — /2713

where ax = a?(1 4 \/c)? (macroscopic universality again)

Marchenko, P. 67; Girko 70'’s.
Proof: Wishart by the resolvent identity, Gaussian differentiation formula,

and Poincaré. General case as for the Wigner (i.e. the interpolation again):
Lytova-Pastur (MD ILT) LT Wig-Wish Marne la Vallee, 18 May 2010 24 / 30



Sample Covariance Matrices
CLT (Wishart)

o
Let My, , be the Wishart random matrix. If ¢ is C, then N, [¢]
converges in distribution as m,n — oo, m/n — ¢ > 0 to the Gaussian
random variable with zero mean and the variance

Viwisn[] = 27t2/ / ( 2(/\2))

4a* c—()\l—a)(/\g E)
\/4a4c— (A1 —3)2\/4a%c — (A, —3)2

dA1dAy,

where a =1/2(a_ +ay) = a*(c + 1).

Proof: By mimicking the proof for the GOE, i.e. by the Gaussian
differentiation formula and Poincaré.
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Sample Covariance Matrices
CLT (4th cumulant is zero)

Theorem

Let My, , be the sample covariance matrix such that:
(I) W5 := supm n max1<“<m 1<) {‘AD‘J‘ }

(i) u, = E{’AM} } do not depend on «, j, m, and n, and
Kq :=p, —3a* =0.

If (L+|t]°)|®(t)| € LY(R), then N ,[@] converges in distribution as
m,n — o0, m/n — ¢ > 0 to the Gaussian random variable with zero
mean and the variance Viyisp[@].

Proof: by interpolation from Wishart.

Bai, Silverstein, 04: Stieltjes transform, real analytic test functions, direct
and rather long proof.

Lytova-Pastur (MD ILT) LT Wig-Wish Marne la Vallee, 18 May 2010 26 / 30



Sample Covariance Matrices
CLT (general case)

Let My, , be the sample covariance matrix such that:
. 6
(i) we := SUP, , MaXi<a<m, 1<j<n E{!A,Xj‘ } <

(ii) u, = E{‘Aaj}‘l}do not depend on «, j, m, and n.

If (1+ [t]*)|9(t)| € LY(R), then N ,[¢@]converges in distribution as
m,n — o, m/n — c > 0 to the Gaussian random variable with zero
mean and the variance

2
a4 ]/l —a
Vwish[9] + 7— 5 4_Cn-238 (/a \/434 )zdll> |

Proof: by the same scheme as in the Wigner case, i.e., by combining the

schemes of proof of the CLT for the Wishart case and the "interpolation"
trick

Lytova-Pastur (MD ILT) LT Wig-Wish
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Multivariate statistics

¢ : R?P — R symmetric and

Z/Ip’n[qo] = Z @(Agln)' e )\Epn)),
0<h<..<lpb<n
Noalol = 2 o7 A7),
h=..=l,=1
We have:
1. with probability 1 (LLN):
lim n"PUp plp] = lim n7PN, (9]

- /ptimes/go(/\l,...,Ap)NSC/(dAl)...NSC/(dAp);
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2. in distribution

lim n*pﬂup,n[(p] = lim npr./\/'p,,,[go]
— nllmooN]_'n[q)*],
where
P (A) = /(p— 1) times/q)(/\,}\g...,/\p)
XNSC/(d)\Q)...NSC/(d)\p),
i.e., the CLT.

Both assertions are valid in the cases, where there are corresponding
results for p = 1.
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Borel type theorem

Theorem

Let U, be a n X n unitary random matrix, whose probability law is the
normalized Haar measure on U(n), and A, be a n X n matrix such that

lim n !TrA*A, = 1.

n—oo

Then TrU,A, converges in distribution to the standard complex Gaussian
variable: v = vy + ivy, E{71} = E{71} =0, E{r{} = E{n3} =1/2.

E. Borel 05 (Ay = {6j1641}7 1), Diaconis et al 03; Snyady-Stolz 06.

On the other hand, by using analogs of the differentiation formula and the
Poincaré type inequality for U(n) and O(n) (P.-Vasilchuk 06) and the
above scheme, a short and simple proof of the assertion can be obtained.
Analogous assertions are valid for O(n) and Sp(n).
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