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Model

We consider sample covariance matrices:

1
My(X) = =YY* with Y = 212X
p

where

e X is a N X p random matrix s.t. the entries X;; are i.i.d. complex (or real) random
variables with distribution p, [zdu(xz) =0, [ |z|*du(z) = 1.

e p=p(N) with p/N — v € (0,00) as N — o0;

e > is a N X N Hermitian deterministic (or random) matrix, > > 0 with bounded
spectral radius. X is independent of X.

What can be said about eigenvalues and eigenvectors
as N — oo?




: : The problem

Motivations |.

Statistics Knowing My (3) what can be said about X7
-if N is fixed and p — oo : My(2) good estimator of ¥;

-in high dimensional setting (genetics, finance, ...)?
Understand e.g. the behavior of PCA in such a setting.

Density of the eigenvalues of My (%) when ¥ = Id.
Dispersion of the eigenvalues: My (X) is NOT a good estimator of > (smallest and

largest eigenvalues e.g.)




: : The problem

Motivations |lI.

Communication theory “CDMA": received signal r = Zszl brsk + w,
with K number of users, s, € C" the signature

b € C, Eby, = 0, E|bg|? = pi, transmitted signal,

and w € C" a Gaussian noise with i.i.d. A/(0,02) components.

One has to decode/estimate the signal by. A measure of the performance of the

communication channel is the so-called “SIR" (Signal to Interference Ratio): linear

receiver T1 = cir
2
[CTs1]"p

1202+ isq leisil?pi
—> as N, K — 0o, K/N — ~, the SIR depends on the eigenvalues AND the eigenvectors
of SDS* where S = [s3,...,S8k] is the signature matrix (random) and D =

diag(pz; - -, PN).

SIR =




Eigenvalues |
We denote by m; > w5 > - -+ > @ the eigenvalues of > and suppose that

N
1 a.s.
pN(X) = N;@m — H,
where H is a probability measure.
Let Ay > Ao > --- > Ay be the eigenvalues of My (3 Z(S)\

Theorem Marchenko-Pastur (67)
A.s. limy_.o tn = pap, Where the Stieltjes transform of pj;p given by

VzeC,3(z) >0, /—d,OMP A),

+0o0
satisfies m,(z) = / 1=y =y 2m,(2)] — z}_l dH (7).

: : Review




: : Review

Eigenvalues Il

If > = Id, one knows explicitly the density of the Marchenko-Pastur distribution

N> 1 dpmp Y

- du 27 (g =) =),

1
with uq = (1 +£ —)2.

ﬁ

Valid for both complex and real random matrices.

For general H, the relationship between pp;p and H is not “simple”, determining H

from pyrp is not easy. El Karoui (2008) gives a consistent estimator (using convex
approximation).

Assume that H has been estimated, can we improve our knowledge of 7 (even if
>, = Id, the sample covariance matrix is not a good estimator of ).




Eigenvectors: the white case.




Gaussian sample

Suppose that ¥ = Id and X;; i.i.d. N(0,1) complex or real.
My = My(Id) is a so-called “white Wishart matrix”.
Let (U, D) be a diagonalization of My: My = UDU* with U € U(N) and D a real

diagonal matrix.

U i1s Haar distributed.

Proof: Gram-Schmidt+ rotationnal invariance of the Gaussian distribution.

Conjecture: if ¥ = Id and if X has non-Gaussian entries with E|X;;|* < oo, the matrix
of eigenvectors of M shall “asymptotically be Haar distributed”.
|dea: neither direction is preferred.

Question: how to define “asymptotically Haar distributed” ?




Non Gaussian matrices |.

Silverstein's idea ('95): U is asymptotically Haar distributed if, given an arbitrary vector
r € SN ={x cCV, |z| =1}, y = U*x is asymptotically uniformly distributed on the

unit sphere. Or setting
\/ Z ‘yz|2 B 1/N

Yn(t) shall converge in distribution to a Brownlan bridge if y is uniformly distributed
(y = Z/|Z|* with Z Gaussian).

Consider instead Xy (t) = Yy (EFN(t)) = \/g (FN(t) — Fy(t)) with FN(¢) Z 1y, <t

cumulative distribution function (c.d.f.) of the spectral measure of My(3) and

N
1 : %
FN(t) = N E i *1a,<¢, with y = U™
i=1

also a c.d.f. (but combining the eigenvectors).




The white case

Non Gaussian matrices |Il.

Let

Gn(t) = VN (FN(t) — EN (1))
where FV is the c.d.f. of pyrp when v — p/N and H — py(X) spectral measure of X).
Here Gy ~ X and should be close to B(F'(t)) if B is a Brownian bridge.

Let also g be analytic on [u_,u,].

Theorem Bai-Miao-Pan (2007)
Assume also that E|X,;|* = 2 and 2*(2 — 2I) 'z — [ -dH()\). Then as N — oo,

/g(x)dGN(x) — a Gaussian random variable (centered and with known variance).

Remark: extension to non-white matrices but with the additionnal assumption on
(X — 2I) "t
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Spikes in the covariance

Let > = diag(my, mo, ..., 7m0, 1,y 1), mp > w01 > 1,4 <r —1, r independent of N.
. is a finite rank perturbation of the identity matrix: H = d;.

{4 is a centered distribution with variance 1 and finite fourth moment.

Let A1 be the largest eigenvalue of My ().

Theorem: Johnstone (2001), Johansson (2000), Baik-Ben Arous-Péché (2005), Baik-
Silverstein (2006)

1
|f7T1<1—|—%, )\1—>’U,_|_:(1—|——)2,

VY

—1
1 Y
Ifﬂl>1+ﬁ7 )\1—>7T1(1+7T1_1).

Remark: “Spikes” in the true covariance can be detected if they are large enough.
Fluctuation theorems have been established: Bai-Yao (2008) and Féral-Péché (2008).

S 11 -



Eigenvectors for a spiked covariance

When some eigenvalues separate from the bulk: D. Paul (2006), X. Mestre (2009).

¥ =diag(m, 1,...,1) with 1y > 1+1//7.

Let u; (resp. e1) be the normalized eigenvector of My (35) (resp. of XJ) associated to Ay

(resp. m):
1 — —1)2
lim | <wup,e; >|= \/ AGE ) a.s. .

N T+ /(mi— 1)

ldea: perturbation of the eigenvector associated to m; (the largest eigenvalue of XJ) by a
random matrix.
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Eigenvectors: the non-white case.
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: : The non white case

Another approach (Ledoit-Péché (2009))

Even for a Gaussian sample,the distribution of the eigenvectors is unknown if ¥ # Id. It
is NOT expected that the matrix of eigenvectors is Haar distributed.

The idea is to study functionals:

On(g) i= T (9(2) (M (%) — =)

with z € CT = {z € C, 3z > 0},
g is a regular function (bounded with a finite number of discontinuities or analytic),
g(X) = Vdiag(g(m),...,g9(mn))V* if V is the matrix of eigenvectors of X.

Aim : understand how the eigenvectors of My () project onto those of 3.

Remark: If > o Id useless. We thus concentrate on the case where H = 4.

_14 -



: : The non white case

A theoretical result

Assume that the support of H is included in |a1, as] with a; > 0 and

E| X;;]'? < oo independent of N and p.

Theorem: Ledoit-Péché (2009)
Let g be a bounded function with a finite number of discontinuities on [a1,as]. Then
On(g) — 0(g) a.s. as N — oo where

Vze CH, ©9(z) = / [T 1= =9 2m,(2)] — Z}_lg(T)dH(T).

— 00

Remark: the same kernel

{7‘ [1 — - 7_1zmp(z)} — z}_l

arises as in the Marchenko-Pastur theorem.
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: : The non white case

Corrolary 1.

Question: How much do the eigenvectors of My (3) deviate from those of X7

Weset g = 1(_oo ) and O (A, 7) ZZ w517 1 400) (A) X Lz ooy (T)-

21]1

Let v; be the normalized eigenvector of ¥ associated to ;. The average of N|ujv;|?
bearing on the eigenvectors associated to sample eigenvalues (resp. eigenvalues of the
true covariance) in the interval [\, \] (resp. [z, 7]) is:

ONAT)—Py(N\, 1) — PN, T) + Pn(A, T)
[FNn(A) — Fn(A)] % [Hn(T) — Hn(z)]

if Fiy (resp. Hy) is the c.d.f. of My(X) (resp. X).

If one can choose )\, A and 7, 7 arbitrarily close, then one gets precise information!

- 16 -



: : The non white case

Corrolary 1.

Theorem: @y (), 7) &5 ®(\,7) at any point of continuity of ®. And V(\,7) €
R2, o\ 7)= [ _ [T o, t)dH(t) dprp(l), where

=:a-+1b, ifl>0

o(l,t) = <

ifl=0and vy <1

otherwise

Here m,(0) = lim._,om,(2) and m,, is the limiting Stieltjes transform of X*3XX/N.

Thus in principle one can obtain precise information on the eigenvectors (but this assumes
that one knows the c.d.f. of Hy).

_17 -



: : The non white case

Corrolary 2.

Question: how does My (3) differ from > and how can we improve the initial estimator
of 3 given by My (X)?

We get a better estimator by choosing g(z) = x.

One seeks an estimator of X of the kind UD U™, Dy diagonal i.e. an estimator which
has the same eigenvectors as My (X).
The best estimator (Frobenius norm) is

~

Dy =diag(dy,...,dy) where Yi=1,....N d;=u’Snu.

Can we say a few things on the d;’s:
yes asymptotically by choosing g(x) = .

- 18 -



: : The non white case

Corrolary 2.
We set

2—1

N
1
Ve e R, Apn(z :NZ Ay +o00) (T ZU YNt X x40y (T)-

Then one has

) 01 . AN()\z'—|_5) — AN()\z —8)
Vi=1,...,N d; = 1 .
! ’ ’ sir(gl*‘ FN()\'L —|—8) — FN()\z — 8)

Theorem: For all z # 0, Ax(z) — A(z). Moreover A(z) = [*__§(X) dF(X), with

VA € R, 5(A):<(1_v)7m(0) fA\=0and~ <1
P

\O otherwise.

- 19 -



: : The non white case

An improved estimator

We consider the “improved” estimator §N = UD'U*, where
Di=XNi/[1 =" = (M)

We ran 10,000 simulations with pn(2) = 0.26; + 0.405 + 0.4619, v = 2 and increasing
the number of variables p from 5 to 100. For each simulation, we calculate the “Percentage
Relative Improvement in Average Loss” (PRIAL):

if M is an estimator of ¥y and if |A|% = TrAA* (Frobenius norm),

~ 2 7
e oo

PRIAL(M) =100 x |1 —

~ 2
E HMN(Z) — UnDyU%

jal

- 20 -



: : The non white case

Simulations
Even for small sizes, p = 40, the PRIAL is 95%.
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: . Conclusion

Concluding remarks

-On(g) is a new tool that allows to study the average behavior of the eigenvectors: for
instance we cannot recover D. Paul's result for the eigenvector associated to the largest
eigenvalue separating from the bulk.

-in general we cannot say anything on the eigenvectors associated to extreme eigenvalues:
average behavior of the eigenvectors.

-for the moment theoretical results only: one has to define first appropriate estimators for

mp,HN...

29



