Non white sample covariance matrices.

S. PÉCHÉ , Université Grenoble 1, joint work with O. Ledoit, Uni. Zurich

17-21/05/2010, Université Marne la Vallée Workshop "Probability and Geometry in High Dimensions"

Plan

- I. Eigenvectors of sample covariance matrices: problem and motivations.
- II. Review of known results (eigenvalues).
- III. Eigenvectors: The white case.
- IV. Eigenvectors: The non white case.
- V. Conclusion.

Model

We consider sample covariance matrices:

$$M_N(\Sigma) = \frac{1}{p} Y Y^*, \text{ with } Y = \Sigma^{1/2} X$$

where

• X is a $N \times p$ random matrix s.t. the entries X_{ij} are i.i.d. complex (or real) random variables with distribution μ , $\int x d\mu(x) = 0$, $\int |x|^2 d\mu(x) = 1$.

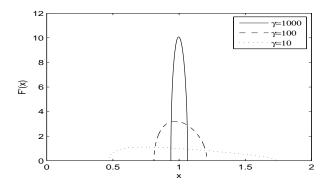
•
$$p = p(N)$$
 with $p/N \to \gamma \in (0,\infty)$ as $N \to \infty$;

• Σ is a $N \times N$ Hermitian deterministic (or random) matrix, $\Sigma > 0$ with bounded spectral radius. Σ is independent of X.

What can be said about eigenvalues and eigenvectors as $N \to \infty$?

Motivations I.

Statistics Knowing $M_N(\Sigma)$ what can be said about Σ ? -if N is fixed and $p \to \infty$: $M_N(\Sigma)$ good estimator of Σ ; -in high dimensional setting (genetics, finance, ...)? Understand e.g. the behavior of PCA in such a setting.



Density of the eigenvalues of $M_N(\Sigma)$ when $\Sigma = Id$. Dispersion of the eigenvalues: $M_N(\Sigma)$ is NOT a good estimator of Σ (smallest and largest eigenvalues e.g.)

Motivations II.

Communication theory "CDMA": received signal $r = \sum_{k=1}^{K} b_k s_k + w$, with K number of users, $s_k \in \mathbb{C}^N$ the signature $b_k \in \mathbb{C}$, $\mathbb{E}b_k = 0$, $\mathbb{E}|b_k|^2 = p_k$ transmitted signal, and $w \in \mathbb{C}^N$ a Gaussian noise with i.i.d. $\mathcal{N}(0, \sigma^2)$ components.

One has to decode/estimate the signal b_k . A measure of the performance of the communication channel is the so-called "SIR" (Signal to Interference Ratio): linear receiver $\hat{x}_1 = c_1^* r$

$$SIR = \frac{|C_1^* s_1|^2 p_1}{|c_1|^2 \sigma^2 + \sum_{i \ge 2} |c_1^* s_i|^2 p_i}.$$

 \implies as $N, K \rightarrow \infty$, $K/N \rightarrow \gamma$, the SIR depends on the eigenvalues AND the eigenvectors of SDS^* where $S = [s_2, \ldots, s_K]$ is the signature matrix (random) and D =diag (p_2, \ldots, p_N) .

Eigenvalues I

We denote by $\pi_1 \ge \pi_2 \ge \cdots \ge \pi_N$ the eigenvalues of Σ and suppose that

$$\rho_N(\Sigma) := \frac{1}{N} \sum_{i=1}^N \delta_{\pi_i} \stackrel{a.s.}{\to} H,$$

where H is a probability measure.

Let
$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$$
 be the eigenvalues of $M_N(\Sigma)$; $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$.

Theorem Marchenko-Pastur (67)

A.s. $\lim_{N\to\infty} \mu_N = \rho_{MP}$, where the Stieltjes transform of ρ_{MP} given by

$$\forall z \in \mathbb{C}, \Im(z) > 0, \quad m_{\rho}(z) := \int \frac{1}{\lambda - z} d\rho_{MP}(\lambda),$$

satisfies $m_{\rho}(z) = \int_{-\infty}^{+\infty} \left\{ \tau \left[1 - \gamma^{-1} - \gamma^{-1} z \, m_{\rho}(z) \right] - z \right\}^{-1} dH(\tau).$

Eigenvalues II

If $\Sigma = Id$, one knows explicitly the density of the Marchenko-Pastur distribution

$$\gamma \ge 1, \quad \frac{d\rho_{MP}}{du} = \frac{\gamma}{2\pi u} \sqrt{(u_+ - u)(u - u_-)} \mathbf{1}_{[u_-, u_+](u)},$$

with
$$u_{\pm} = (1 \pm \frac{1}{\sqrt{\gamma}})^2$$
.

Valid for both complex and real random matrices.

For general H, the relationship between ρ_{MP} and H is not "simple", determining H from ρ_{MP} is not easy. El Karoui (2008) gives a consistent estimator (using convex approximation).

Assume that H has been estimated, can we improve our knowledge of Σ ? (even if $\Sigma = Id$, the sample covariance matrix is not a good estimator of Σ).

::

Eigenvectors: the white case.

Gaussian sample

Suppose that $\Sigma = Id$ and X_{ij} i.i.d. $\mathcal{N}(0, 1)$ complex or real. $M_N = M_N(Id)$ is a so-called "white Wishart matrix". Let (U, D) be a diagonalization of M_N : $M_N = UDU^*$ with $U \in \mathbb{U}(N)$ and D a real diagonal matrix.

\boldsymbol{U} is Haar distributed.

Proof: Gram-Schmidt+ rotationnal invariance of the Gaussian distribution.

Conjecture: if $\Sigma = Id$ and if X has non-Gaussian entries with $\mathbb{E}|X_{ij}|^4 < \infty$, the matrix of eigenvectors of M_N shall "asymptotically be Haar distributed". Idea: neither direction is preferred.

Question: how to define "asymptotically Haar distributed"?

Non Gaussian matrices I.

<u>Silverstein's idea</u> ('95): U is asymptotically Haar distributed if, given an arbitrary vector $x \in \mathbb{S}^{N-1} = \{x \in \mathbb{C}^N, |x| = 1\}, y = U^*x$ is asymptotically uniformly distributed on the unit sphere. Or setting

$$Y_N(t) := \sqrt{\frac{N}{2}} \sum_{i=1}^{\lfloor Nt \rfloor} (|y_i|^2 - 1/N),$$

 $Y_N(t)$ shall converge in distribution to a Brownian bridge if y is uniformly distributed $(y = Z/|Z|^2 \text{ with } Z \text{ Gaussian}).$

Consider instead $X_N(t) = Y_N(F^N(t)) = \sqrt{\frac{N}{2}} \left(F_1^N(t) - F_N(t)\right)$ with $F^N(t) = \frac{1}{N} \sum_{i=1}^N 1_{\lambda_i \le t}$ cumulative distribution function (c.d.f.) of the spectral measure of $M_N(\Sigma)$ and

$$F_1^N(t) = \frac{1}{N} \sum_{i=1}^N |y_i|^2 \mathbf{1}_{\lambda_i \le t}, \text{ with } y = U^* x$$

also a c.d.f. (but combining the eigenvectors).

Non Gaussian matrices II.

Let

$$G_N(t) = \sqrt{N} \left(F_1^N(t) - F_*^N(t) \right)$$

where F_*^N is the c.d.f. of ρ_{MP} when $\gamma \to p/N$ and $H \to \rho_N(\Sigma)$ spectral measure of Σ). Here $G_N \simeq X_N$ and should be close to B(F(t)) if B is a Brownian bridge. Let also g be analytic on $[u_-, u_+]$.

Theorem Bai-Miao-Pan (2007) Assume also that $\mathbb{E}|X_{ij}|^4 = 2$ and $x^*(\Sigma - zI)^{-1}x \to \int \frac{1}{\lambda - z} dH(\lambda)$. Then as $N \to \infty$,

 $\int g(x) dG_N(x) \rightarrow$ a Gaussian random variable (centered and with known variance).

Remark: extension to non-white matrices but with the additionnal assumption on $x^*(\Sigma - zI)^{-1}x$.

Spikes in the covariance

Let $\Sigma = \operatorname{diag}(\pi_1, \pi_2, \ldots, \pi_r, 1, \ldots, 1)$, $\pi_i \ge \pi_{i+1} \ge 1$, $i \le r-1$, r independent of N.

 Σ is a finite rank perturbation of the identity matrix: $H = \delta_1$. μ is a centered distribution with variance 1 and finite fourth moment. Let λ_1 be the largest eigenvalue of $M_N(\Sigma)$.

Theorem: Johnstone (2001), Johansson (2000), Baik-Ben Arous-Péché (2005), Baik-Silverstein (2006)

If
$$\pi_1 < 1 + \frac{1}{\sqrt{\gamma}}, \quad \lambda_1 \to u_+ = (1 + \frac{1}{\sqrt{\gamma}})^2,$$

If $\pi_1 > 1 + \frac{1}{\sqrt{\gamma}}, \quad \lambda_1 \to \pi_1 \left(1 + \frac{\gamma^{-1}}{\pi_1 - 1} \right).$

Remark: "Spikes" in the true covariance can be detected if they are large enough. Fluctuation theorems have been established: Bai-Yao (2008) and Féral-Péché (2008).

Eigenvectors for a spiked covariance

When some eigenvalues separate from the bulk: D. Paul (2006), X. Mestre (2009).

 $\Sigma = \operatorname{diag}(\pi_1, 1, \dots, 1)$ with $\pi_1 > 1 + 1/\sqrt{\gamma}$.

Let u_1 (resp. e_1) be the normalized eigenvector of $M_N(\Sigma)$ (resp. of Σ) associated to λ_1 (resp. π_1):

$$\lim_{N \to \infty} | < u_1, e_1 > | = \sqrt{\frac{1 - \gamma/(\pi_1 - 1)^2}{1 + \gamma/(\pi_1 - 1)}} \text{ a.s.}$$

Idea: perturbation of the eigenvector associated to π_1 (the largest eigenvalue of Σ) by a random matrix.

Eigenvectors: the non-white case.

::

Another approach (Ledoit-Péché (2009))

Even for a Gaussian sample, the distribution of the eigenvectors is unknown if $\Sigma \neq Id$. It is NOT expected that the matrix of eigenvectors is Haar distributed.

The idea is to study functionals:

$$\theta_N(g) := \frac{1}{N} \operatorname{Tr} \left(g(\Sigma) (M_N(\Sigma) - zI)^{-1} \right),$$

with $z \in \mathbb{C}^+ = \{z \in \mathbb{C}, \Im z > 0\}$, g is a regular function (bounded with a finite number of discontinuities or analytic), $g(\Sigma) = V \operatorname{diag}(g(\pi_1), \ldots, g(\pi_N))V^*$ if V is the matrix of eigenvectors of Σ .

<u>Aim</u>: understand how the eigenvectors of $M_N(\Sigma)$ project onto those of Σ .

Remark: If $\Sigma \propto Id$ useless. We thus concentrate on the case where $H \neq \delta_1$.

A theoretical result

Assume that the support of H is included in $[a_1, a_2]$ with $a_1 > 0$ and

 $\mathbb{E}|X_{ij}|^{12} < \infty$ independent of N and p.

Theorem: Ledoit-Péché (2009)

Let g be a bounded function with a finite number of discontinuities on $[a_1, a_2]$. Then $\theta_N(g) \to \theta(g)$ a.s. as $N \to \infty$ where

$$\forall z \in \mathbb{C}^+, \ \Theta^g(z) = \int_{-\infty}^{+\infty} \left\{ \tau \left[1 - \gamma^{-1} - \gamma^{-1} z m_\rho(z) \right] - z \right\}^{-1} g(\tau) dH(\tau).$$

Remark: the same kernel

$$\{\tau [1 - \gamma^{-1} - \gamma^{-1} z m_{\rho}(z)] - z\}^{-1}$$

arises as in the Marchenko-Pastur theorem.

Corrolary 1.

Question: How much do the eigenvectors of $M_N(\Sigma)$ deviate from those of Σ ?

We set
$$g = 1_{(-\infty,\tau)}$$
 and $\Phi_N(\lambda,\tau) = \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^N |u_i^* v_j|^2 \ 1_{[\lambda_i,+\infty)}(\lambda) \times 1_{[\tau_j,+\infty)}(\tau).$

Let v_j be the normalized eigenvector of Σ associated to π_j . The average of $N|u_i^*v_j|^2$ bearing on the eigenvectors associated to sample eigenvalues (resp. eigenvalues of the true covariance) in the interval $[\underline{\lambda}, \overline{\lambda}]$ (resp. $[\underline{\tau}, \overline{\tau}]$) is:

$$\frac{\Phi_N(\overline{\lambda},\overline{\tau}) - \Phi_N(\overline{\lambda},\underline{\tau}) - \Phi_N(\underline{\lambda},\overline{\tau}) + \Phi_N(\underline{\lambda},\underline{\tau})}{[F_N(\overline{\lambda}) - F_N(\underline{\lambda})] \times [H_N(\overline{\tau}) - H_N(\underline{\tau})]},$$

if F_N (resp. H_N) is the c.d.f. of $M_N(\Sigma)$ (resp. Σ). If one can choose $\underline{\lambda}$, $\overline{\lambda}$ and $\underline{\tau}$, $\overline{\tau}$ arbitrarily close, then one gets precise information!

Corrolary 1.

Theorem: $\Phi_N(\lambda, \tau) \xrightarrow{a.s.} \Phi(\lambda, \tau)$ at any point of continuity of Φ . And $\forall (\lambda, \tau) \in \mathbb{R}^2$, $\Phi(\lambda, \tau) = \int_{-\infty}^{\lambda} \int_{-\infty}^{\tau} \varphi(l, t) dH(t) d\rho_{MP}(l)$, where

$$\varphi(l,t) = \begin{cases} \frac{\gamma^{-1}lt}{\left(at-l\right)^2 + b^2t^2}, & 1 - \frac{1}{\gamma} - \frac{l\,\breve{m}_{\rho}(l)}{\gamma} =: a+ib, & \text{if } l > 0\\ \frac{1}{(1-\gamma)[1+\breve{m}_{\underline{\rho}}(0)\,t]} & \text{if } l = 0 \text{ and } \gamma < 1\\ 0 & \text{otherwise} \end{cases}$$

Here $\check{m}_{\rho}(0) = \lim_{z\to 0} m_{\rho}(z)$ and $m_{\underline{\rho}}$ is the limiting Stieltjes transform of $X^*\Sigma X/N$. Thus in principle one can obtain precise information on the eigenvectors (but this assumes that one knows the c.d.f. of H_N).

Corrolary 2.

Question: how does $M_N(\Sigma)$ differ from Σ and how can we improve the initial estimator of Σ given by $M_N(\Sigma)$?

We get a better estimator by choosing g(x) = x.

One seeks an estimator of Σ of the kind UD_NU^* , D_N diagonal i.e. an estimator which has the same eigenvectors as $M_N(\Sigma)$. The best estimator (Frobenius norm) is

 $\widetilde{D}_N = \operatorname{diag}(\widetilde{d}_1, \ldots, \widetilde{d}_N)$ where $\forall i = 1, \ldots, N$ $\widetilde{d}_i = u_i^* \Sigma_N u_i$.

Can we say a few things on the \tilde{d}_i 's: yes asymptotically by choosing g(x) = x.

Corrolary 2.

We set

$$\forall x \in \mathbb{R}, \quad \Delta_N(x) = \frac{1}{N} \sum_{i=1}^N \widetilde{d}_i \ \mathbf{1}_{[\lambda_i, +\infty)}(x) = \frac{1}{N} \sum_{i=1}^N u_i^* \Sigma_N u_i \times \mathbf{1}_{[\lambda_i, +\infty)}(x).$$

Then one has

$$\forall i = 1, \dots, N \qquad \widetilde{d}_i = \lim_{\varepsilon \to 0^+} \frac{\Delta_N(\lambda_i + \varepsilon) - \Delta_N(\lambda_i - \varepsilon)}{F_N(\lambda_i + \varepsilon) - F_N(\lambda_i - \varepsilon)}.$$

Theorem: For all $x \neq 0$, $\Delta_N(x) \to \Delta(x)$. Moreover $\Delta(x) = \int_{-\infty}^x \delta(\lambda) dF(\lambda)$, with

$$\forall \lambda \in \mathbb{R}, \qquad \delta(\lambda) = \begin{cases} \frac{\lambda}{\left|1 - \gamma^{-1} - \gamma^{-1}\lambda \ \breve{m}_{\rho}(\lambda)\right|^{2}} & \text{if } \lambda > 0\\ \frac{\gamma}{(1 - \gamma) \ \breve{m}_{\underline{\rho}}(0)} & \text{if } \lambda = 0 \text{ and } \gamma < 1\\ 0 & \text{otherwise.} \end{cases}$$

An improved estimator

We consider the "improved" estimator $\widetilde{S}_N := UD'U^*$, where

$$D'_i = \lambda_i / |1 - \gamma^{-1} - \gamma^{-1} \lambda_i \, \breve{m}_\rho(\lambda_i)|^2.$$

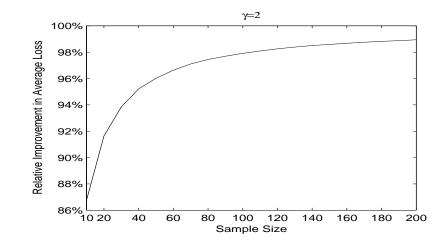
We ran 10,000 simulations with $\rho_N(\Sigma) = 0.2\delta_1 + 0.4\delta_3 + 0.4\delta_{10}$, $\gamma = 2$ and increasing the number of variables p from 5 to 100. For each simulation, we calculate the "Percentage Relative Improvement in Average Loss" (PRIAL): if M is an estimator of Σ_N and if $|A|_T^2 = \text{Tr}AA^*$ (Frobenius norm).

I is an estimator of
$$\mathbb{Z}_N$$
 and if $|A|_F = \text{Ir}AA$ (Frobenius norm),

$$PRIAL(M) = 100 \times \left[1 - \frac{\mathbb{E} \left\| M - U_N \widetilde{D}_N U_N^* \right\|_F^2}{\mathbb{E} \left\| M_N(\Sigma) - U_N \widetilde{D}_N U_N^* \right\|_F^2} \right]$$

Simulations

Even for small sizes, p = 40, the PRIAL is 95%.



Concluding remarks

 $-\theta_N(g)$ is a new tool that allows to study the average behavior of the eigenvectors: for instance we cannot recover D. Paul's result for the eigenvector associated to the largest eigenvalue separating from the bulk.

-in general we cannot say anything on the eigenvectors associated to extreme eigenvalues: average behavior of the eigenvectors.

-for the moment theoretical results only: one has to define first appropriate estimators for $\breve{m}_{\rho}, H_N \dots$