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: : The problem

Model

We consider sample covariance matrices:

MN(Σ) =
1
p
Y Y ∗, with Y = Σ1/2X

where

• X is a N × p random matrix s.t. the entries Xij are i.i.d. complex (or real) random

variables with distribution µ,
∫
xdµ(x) = 0,

∫
|x|2dµ(x) = 1.

• p = p(N) with p/N → γ ∈ (0,∞) as N →∞;

• Σ is a N × N Hermitian deterministic (or random) matrix, Σ > 0 with bounded

spectral radius. Σ is independent of X.

What can be said about eigenvalues and eigenvectors

as N →∞?
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: : The problem

Motivations I.

Statistics Knowing MN(Σ) what can be said about Σ?
-if N is fixed and p→∞ : MN(Σ) good estimator of Σ;

-in high dimensional setting (genetics, finance, ...)?

Understand e.g. the behavior of PCA in such a setting.
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Density of the eigenvalues of MN(Σ) when Σ = Id.

Dispersion of the eigenvalues: MN(Σ) is NOT a good estimator of Σ (smallest and

largest eigenvalues e.g.)
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: : The problem

Motivations II.

Communication theory“CDMA”: received signal r =
∑K
k=1 bksk + w,

with K number of users, sk ∈ CN the signature

bk ∈ C, Ebk = 0, E|bk|2 = pk transmitted signal,

and w ∈ CN a Gaussian noise with i.i.d. N (0, σ2) components.

One has to decode/estimate the signal bk. A measure of the performance of the

communication channel is the so-called “SIR” (Signal to Interference Ratio): linear

receiver x̂1 = c∗1r

SIR =
|C∗1s1|2p1

|c1|2σ2 +
∑
i≥2 |c∗1si|2pi

.

=⇒ as N,K →∞, K/N → γ, the SIR depends on the eigenvalues AND the eigenvectors

of SDS∗ where S = [s2, . . . , sK] is the signature matrix (random) and D =
diag(p2, . . . , pN).
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: : Review

Eigenvalues I
We denote by π1 ≥ π2 ≥ · · · ≥ πN the eigenvalues of Σ and suppose that

ρN(Σ) :=
1
N

N∑
i=1

δπi
a.s.→ H,

where H is a probability measure.

Let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of MN(Σ); µN =
1
N

N∑
i=1

δλi.

Theorem Marchenko-Pastur (67)

A.s. limN→∞ µN = ρMP , where the Stieltjes transform of ρMP given by

∀ z ∈ C,=(z) > 0, mρ(z) :=
∫

1
λ− z

dρMP (λ),

satisfies mρ(z) =
∫ +∞

−∞

{
τ
[
1− γ−1 − γ−1z mρ(z)

]
− z
}−1

dH(τ).
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: : Review

Eigenvalues II

If Σ = Id, one knows explicitly the density of the Marchenko-Pastur distribution

γ ≥ 1,
dρMP

du
=

γ

2πu

√
(u+ − u)(u− u−)1[u−,u+](u),

with u± = (1± 1
√
γ

)2.

Valid for both complex and real random matrices.

For general H, the relationship between ρMP and H is not “simple”, determining H

from ρMP is not easy. El Karoui (2008) gives a consistent estimator (using convex

approximation).

Assume that H has been estimated, can we improve our knowledge of Σ? (even if

Σ = Id, the sample covariance matrix is not a good estimator of Σ).
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: :

Eigenvectors: the white case.
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: : The white case

Gaussian sample

Suppose that Σ = Id and Xij i.i.d. N (0, 1) complex or real.

MN = MN(Id) is a so-called “white Wishart matrix”.

Let (U,D) be a diagonalization of MN : MN = UDU∗ with U ∈ U(N) and D a real

diagonal matrix.

U is Haar distributed.

Proof: Gram-Schmidt+ rotationnal invariance of the Gaussian distribution.

Conjecture: if Σ = Id and if X has non-Gaussian entries with E|Xij|4 < ∞, the matrix

of eigenvectors of MN shall “asymptotically be Haar distributed”.

Idea: neither direction is preferred.

Question: how to define “asymptotically Haar distributed”?
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: : The white case

Non Gaussian matrices I.

Silverstein’s idea (’95): U is asymptotically Haar distributed if, given an arbitrary vector

x ∈ SN−1 = {x ∈ CN , |x| = 1}, y = U∗x is asymptotically uniformly distributed on the

unit sphere. Or setting

YN(t) :=

√
N

2

[Nt]∑
i=1

(|yi|2 − 1/N),

YN(t) shall converge in distribution to a Brownian bridge if y is uniformly distributed

(y = Z/|Z|2 with Z Gaussian).

Consider insteadXN(t) = YN(FN(t)) =
√

N
2

(
FN1 (t)− FN(t)

)
with FN(t) =

1
N

N∑
i=1

1λi≤t

cumulative distribution function (c.d.f.) of the spectral measure of MN(Σ) and

FN1 (t) =
1
N

N∑
i=1

|yi|21λi≤t, with y = U∗x

also a c.d.f. (but combining the eigenvectors).
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: : The white case

Non Gaussian matrices II.

Let

GN(t) =
√
N
(
FN1 (t)− FN∗ (t)

)
where FN∗ is the c.d.f. of ρMP when γ → p/N and H → ρN(Σ) spectral measure of Σ).

Here GN ' XN and should be close to B(F (t)) if B is a Brownian bridge.

Let also g be analytic on [u−, u+].

Theorem Bai-Miao-Pan (2007)

Assume also that E|Xij|4 = 2 and x∗(Σ− zI)−1x→
∫

1
λ−zdH(λ). Then as N →∞,

∫
g(x)dGN(x)→ a Gaussian random variable (centered and with known variance).

Remark: extension to non-white matrices but with the additionnal assumption on

x∗(Σ− zI)−1x.
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: : The white case

Spikes in the covariance

Let Σ = diag(π1, π2, . . . , πr, 1, . . . , 1), πi ≥ πi+1 ≥ 1, i ≤ r − 1, r independent of N .

Σ is a finite rank perturbation of the identity matrix: H = δ1.

µ is a centered distribution with variance 1 and finite fourth moment.

Let λ1 be the largest eigenvalue of MN(Σ).

Theorem: Johnstone (2001), Johansson (2000), Baik-Ben Arous-Péché (2005), Baik-

Silverstein (2006)

If π1 < 1 + 1√
γ , λ1 → u+ = (1 +

1
√
γ

)2,

If π1 > 1 + 1√
γ , λ1 → π1

(
1 +

γ−1

π1 − 1

)
.

Remark: “Spikes” in the true covariance can be detected if they are large enough.

Fluctuation theorems have been established: Bai-Yao (2008) and Féral-Péché (2008).
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: : The white case

Eigenvectors for a spiked covariance

When some eigenvalues separate from the bulk: D. Paul (2006), X. Mestre (2009).

Σ = diag(π1, 1, . . . , 1) with π1 > 1 + 1/
√
γ.

Let u1 (resp. e1) be the normalized eigenvector of MN(Σ) (resp. of Σ) associated to λ1

(resp. π1):

lim
N→∞

| < u1, e1 > | =

√
1− γ/(π1 − 1)2

1 + γ/(π1 − 1)
a.s. .

Idea: perturbation of the eigenvector associated to π1 (the largest eigenvalue of Σ) by a

random matrix.
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: :

Eigenvectors: the non-white case.
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: : The non white case

Another approach (Ledoit-Péché (2009))

Even for a Gaussian sample,the distribution of the eigenvectors is unknown if Σ 6= Id. It

is NOT expected that the matrix of eigenvectors is Haar distributed.

The idea is to study functionals:

θN(g) :=
1
N

Tr
(
g(Σ)(MN(Σ)− zI)−1

)
,

with z ∈ C+ = {z ∈ C,=z > 0},
g is a regular function (bounded with a finite number of discontinuities or analytic),

g(Σ) = V diag(g(π1), . . . , g(πN))V ∗ if V is the matrix of eigenvectors of Σ.

Aim : understand how the eigenvectors of MN(Σ) project onto those of Σ.

Remark: If Σ ∝ Id useless. We thus concentrate on the case where H 6= δ1.
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: : The non white case

A theoretical result

Assume that the support of H is included in [a1, a2] with a1 > 0 and

E|Xij|12 <∞ independent of N and p.

Theorem: Ledoit-Péché (2009)

Let g be a bounded function with a finite number of discontinuities on [a1, a2]. Then

θN(g)→ θ(g) a.s. as N →∞ where

∀z ∈ C+, Θg(z) =
∫ +∞

−∞

{
τ
[
1− γ−1 − γ−1zmρ(z)

]
− z
}−1

g(τ)dH(τ).

Remark: the same kernel {
τ
[
1− γ−1 − γ−1zmρ(z)

]
− z
}−1

arises as in the Marchenko-Pastur theorem.
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: : The non white case

Corrolary 1.

Question: How much do the eigenvectors of MN(Σ) deviate from those of Σ?

We set g = 1(−∞,τ) and ΦN(λ, τ) =
1
N

N∑
i=1

N∑
j=1

|u∗i vj|2 1[λi,+∞)(λ)× 1[τj,+∞)(τ).

Let vj be the normalized eigenvector of Σ associated to πj. The average of N |u∗i vj|2
bearing on the eigenvectors associated to sample eigenvalues (resp. eigenvalues of the

true covariance) in the interval [λ, λ] (resp. [τ , τ ]) is:

ΦN(λ, τ)− ΦN(λ, τ)− ΦN(λ, τ) + ΦN(λ, τ)
[FN(λ)− FN(λ)]× [HN(τ)−HN(τ)]

,

if FN (resp. HN) is the c.d.f. of MN(Σ) (resp. Σ).

If one can choose λ, λ and τ , τ arbitrarily close, then one gets precise information!
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: : The non white case

Corrolary 1.

Theorem: ΦN(λ, τ) a.s.−→ Φ(λ, τ) at any point of continuity of Φ. And ∀(λ, τ) ∈
R2, Φ(λ, τ) =

∫ λ
−∞

∫ τ
−∞ϕ(l, t) dH(t) dρMP (l), where

ϕ(l, t) =



γ−1lt

(at− l)2 + b2t2
, 1− 1

γ
− l m̆ρ(l)

γ
=: a+ ib, if l > 0

1
(1− γ)[1 + m̆ρ(0) t]

if l = 0 and γ < 1

0 otherwise

Here m̆ρ(0) = limz→0mρ(z) and mρ is the limiting Stieltjes transform of X∗ΣX/N.

Thus in principle one can obtain precise information on the eigenvectors (but this assumes

that one knows the c.d.f. of HN).
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: : The non white case

Corrolary 2.

Question: how does MN(Σ) differ from Σ and how can we improve the initial estimator

of Σ given by MN(Σ)?

We get a better estimator by choosing g(x) = x.

One seeks an estimator of Σ of the kind UDNU
∗, DN diagonal i.e. an estimator which

has the same eigenvectors as MN(Σ).

The best estimator (Frobenius norm) is

D̃N = diag(d̃1, . . . , d̃N) where ∀i = 1, . . . , N d̃i = u∗i ΣN ui.

Can we say a few things on the d̃i’s:

yes asymptotically by choosing g(x) = x.
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: : The non white case

Corrolary 2.
We set

∀x ∈ R, ∆N(x) =
1
N

N∑
i=1

d̃i 1[λi,+∞)(x) =
1
N

N∑
i=1

u∗iΣNui × 1[λi,+∞)(x).

Then one has

∀i = 1, . . . , N d̃i = lim
ε→0+

∆N(λi + ε)−∆N(λi − ε)
FN(λi + ε)− FN(λi − ε)

.

Theorem: For all x 6= 0, ∆N(x)→ ∆(x). Moreover ∆(x) =
∫ x
−∞ δ(λ) dF (λ), with

∀λ ∈ R, δ(λ) =


λ

|1−γ−1−γ−1λ m̆ρ(λ)|2
if λ > 0

γ

(1− γ) m̆ρ(0)
if λ = 0 and γ < 1

0 otherwise.
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: : The non white case

An improved estimator

We consider the “improved” estimator S̃N := UD′U∗, where

D′i = λi/|1− γ−1 − γ−1λi m̆ρ(λi)|2.

We ran 10,000 simulations with ρN(Σ) = 0.2δ1 + 0.4δ3 + 0.4δ10, γ = 2 and increasing

the number of variables p from 5 to 100. For each simulation, we calculate the “Percentage

Relative Improvement in Average Loss” (PRIAL):

if M is an estimator of ΣN and if |A|2F = TrAA∗ (Frobenius norm),

PRIAL(M) = 100×

1−
E
∥∥∥M − UND̃NU

∗
N

∥∥∥2

F

E
∥∥∥MN(Σ)− UND̃NU∗N

∥∥∥2

F

.
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: : The non white case

Simulations
Even for small sizes, p = 40, the PRIAL is 95%.
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: : Conclusion

Concluding remarks

-θN(g) is a new tool that allows to study the average behavior of the eigenvectors: for

instance we cannot recover D. Paul’s result for the eigenvector associated to the largest

eigenvalue separating from the bulk.

-in general we cannot say anything on the eigenvectors associated to extreme eigenvalues:

average behavior of the eigenvectors.

-for the moment theoretical results only: one has to define first appropriate estimators for

m̆ρ, HN . . .
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