Random Matrices and

Analyticity of the Planar Limit

Stavros Garoufalidis (Gatech) and I.P. (Gatech and IMAR)



Wick’s Formula

Assume that u ~ N(0, C) on R".
@ (f) is the expectation with respect to u
(] (X,') = 0, <X,'Xj> = C,'j.
@ For any linear functions fi, f, ..., fox : R" — C,

(fify...fok) = Z‘(fp1 fa X foofge) - - - {Toi i

P191P=202 . .. Pxqx permutation of {1,2,...,2k} with
p1 <p2<---<pxandp; <qy, P2 <Q2 ..., Pk < Gk-
FOI’[J~ N(O,1)and f1 = fg = f3 = f4 =X,

(x*y = (fifafafa) = (fifp)fafa) + (frfa)(fafs) + (f1fa)(fof3) = 3.



Random Matrices and Moments

MZ2(C) are N x N Hermitian matrices.
TrM? = Zx” +ZZ Re?(xj) +22 Im? (x;)
i<j i<j

The distribution is
gy gy
N

dM the Lebesgue measure on M3?(C).
Xj) =0

,1\1 iffi=1j=K.
M2k Z Xiyip Xipi - + - Xipje_1 iy

2k
(Tr (M=) Z Xiqiy Xigig - - - Xipye_4iy)

(XijjXk1) =



Example:
<NTr(M4)> = NZ<XI1 i2Xi2i3Xi3i4Xi4i1>

Use Wick’s formula to compute this.

Example: Couple iji» with iaiz and izig with iyiq, thus
It = I3, ip = ip, I3 = Iy, i = Iy.

There are three free indices, thus the contribution from such a
choice to (Tr(M*)) is N2,

These indices define a “diagram” or a “map” on a sphere (a
genus 0 surface).
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The Formal Matrix Models: An Example

(L{(t, N) - <eNa4TrM4>
= ¥ B ey

nx1

a
=) N

where the sum is over all diagrams with n 4-valent vertices. x is
the Euler characteristic of the diagram.
If the diagram is on a surface, then

x=V-E+F=2-2g

where g is the genus of the surface.



1 4
Z(t,N) : = 155 log(e"T)
=) Folas)N 29

g=0

where

an
Fo(as) =), +rKn(0)
n>0
where Kj(g) is the number of connected diagrams with n
4-valent vertices and genus g.
This can be thought of as the generating function of these
diagrams.
We will be mainly interested in the first of these, namely the

planar limit .



Take .
agX
V(x) =) kT

k>1
_ 1 NTrV( VM
Z(t,N) := 15 loge TeV(VIM))y
Then
Z(t,N) = Fo(t) + N2F1(t) + N*Fo(t) + ...

where ¥4(t) is the generating function of the numbers Kj(g) of
connected genus g-diagrams with n edges and weights ax on
the vertices of valence K.

We are interested in the planar limit Fo(t).

Conjecture (T’Hooft’s)

IfV is analytic at 0, then ¥ is also analytic at 0.

In particular, the numbers K,(0) grow at most exponentially.
Extreme potentials: V(x) = Yx-1 X2K/(2k) = -3 log(1 — x2)
and V(x) = Y1 XK /k = —log(1 — ).



The Analytical Matrix Models

For a potential which grows sufficiently fast at infinity,

ly =— Ilmoo—logfexp( NTr(V(M)))dM

= ot [ Vet - [ ok - yistamuan),

If V(x) = x2/2 — V(tx) and this makes sense, then, formally
Iv(t) = 3/4 - Fo(t)

This is one of the ways of computing the planar limit in the
physics literature.



The Minimization
= [ oo s osno

There is a unique equilibrium measure and it has compact
support.

Step 1 Find the support of the equilibrium measure.

In the physics literature, for planar maps calculations, this
is assumed to be a single interval.

Step 2 For the case of a single interval support of the equilibrium
measure, find a “nice” formula for Iy, (eventually one which
does not involve the equilibrium measure. )



Haagerup’s Formula

For any real x,y € [-2,2], x # y, we have

2 _ (X
o= 5203l

where the series here is convergenton x # y.
Ifx >2andy e [-2,2], we have

X+ V-4 & 2(x-Vx2—4)
logx = yI = log T‘_ZE(T) Tn(%)
=

where the series is absolutely convergent.

Here T, is the n'" Chebysev polynomial: T,(cos x) = cos(nx).

Orthogonal polynomials w.r.t. w(dx) = 1[‘2'2]()()71\/%'




The Proof of Haagerup’s Formula

x=2cosuandy =2cosv withu,ve(0,nr),u#v

, . (Uu—V
x—y:2(cosu—cosv):4sm(uJ2rv)sm( 5 )

yrv ‘+Io ‘Zsin U_V)‘
2 9 2

—log|1 - ’(“+")|+Iog|1 i(u=v))
=Re (log(1 - V) + Iog(1 - elv))

log|x — y| =log ‘2 sin

|z|=1,2#1 B Z lRe gin(u+v) + ein(u—v))
log(1-z)=-Yp 2 =11

Z (cos(n(u+ v)) + cos(n(u—v)))

[se]

Z cos(nu) cos(nv) = Z::% () ()

—1



For x > 2, ye[ —-2,2], write x = 2coshu = e" + e™Y, where

u_Iog"+~ 4 and y = 2cosv

log [x — y| = log (e“(1 —e Ut V)(1 - e—u—iV))
=Uu-+ |Og(1 - e—U+iV) + |og(1 _ e—u—iV)

[o¢]

2 __
=u- Z —e " cos(nv).

n=1



Corollary

If w(dx) = 1j-2,2)(X) dX__ js the arcsine law of the interval

e
[-2,2], then
f l0gx — ylw(dy) = { M=z
og|X — =
VAN = \log Bl 315




Working with measures on [-2, 2]

Corollary
The logarithmic potential of a measure on [-2,2] is given by

flog Ix — ylu(dx) = —Z%Tn(g)ITn(y)u(dy)

where this series makes sense pointwise, and the logaritmic
energy of the measure i is given by

[ee]

[[ 1oabx = yiu(axu(an - -Yi ( [7(% )u(dx))z.

n—=

In particular ([ log|x — ylu(dx)u(dy) is finite if and only if
2., .
Yo 2 (f Th (g) y(dx)) is finite.




Working with measures on [-2, 2]

Corollary

If u e P([-2,2]) and V is a C? potential on [-2,2], then

W = [ v~ [[ logix - yiu(axu(ay)
= po(V +2Z(ﬁn Jarn + )

where

an:an( ) (dx) and (V) = ﬁ%




Working with measures on [-2, 2]

[e¢]

S 2
() = ﬁo(V)—% oV Z%( + )

1

n=
o]

-3 L,

l\) |

with equality if and only if
1 —Znﬁn(V)Tn( )> 0 forany xe[-22],

in which case

u(dx) = (1 - i nBa(V)Th (g)] %.
n=1 T -



Working with measures on [-2, 2]

The equilibrium measure on [-2, 2] has full support if and only if
1- Z npn(V ( ) >0 forx on a dense subset of [-2,2].

in which case

(o]

1
ly=inf | — Ba(V) = = V)2
= gl M) = BoV) =5 X (V)

xV'( sx)dx) ( 2V’(sx)dx)2 )
on\/4 X2 f [(fzzn va—xz) \emvaoe) |




A More Familiar Look

[se]

2 Vi(x) = V'(y)  dy
1—§nﬁn<V)Tn(g)=[2 e o

Proof: Linearity + check for V(x) = Tk (g)




BolV) = 3 Y nBa(V)
n=1

B fz V(x)dx 13 (fz xV’(sx)dx )2 +(f2 V’(sx)dx )2
2nV4-x2 Jo -2 2t V4 — x? -2 T V4 — x2
Proof: Polarization reduces this to

WA

nx1

- Lo ri)

[ e e

Check this for Vi(x) = x™, Vo(x) = x".
The rest of the proof reduces to the following:

ds.




A EARES

Y (2p+ 1)(2m+ 1)(2n+ 1) _(em+ H@n+ 1)(2m)(2n)

> m—-p/\n-p m+n+1 mj\n

with the convention that (}) = 0 forq < 0 or g > j.

Proved using the wzb method implemented for Mathematica.



The real line case

V € C3(R). Then the equilibrium measure on R has support
the interval [-2c + b, 2c + b] if and only if (¢, b) is the unique
absolute maximizer of

a 1 (2 V(cx + b)dx
H(c,b) :=logc - 5[2 m

and for x in a dense set of [-2, 2],

2 \/r _\/
l#b,c(X):I V'(ex +b)-V'(cy +b) dy

> 0.
X=y A4 -y?
In addition,
2 V(cx + bydx  (° 2 xV'(sx + b)dx\’
ly=-logc+ | ——--] s =
-2 V4 - x2 0 -2 2nV4-x2

2 V’(sx+b)dx)2]
+(I2—n Ty as.



Critical Point System

{fzcxv cx+b)nm:2
[ (cx +b)—2— = 0.



Critical Point System

I
no

Tk

0.

{fzch’ cx+b)n .
f2V cx+b)nm

In the physics literature, R = ¢2, S = b.

{fz\/_xV’ \/_X+S

[5V(VRx +8) \/_—0.

ﬂ



Analytic Perturbations

@ Let V be analytic on a neighborhood of the one interval
support [b —2c¢, b + 2c¢].

@ u — V, “analytic” with u in a “good” Banach space B,
Vo= V.
Theorem
Near 0,

e the equilibrium measure of V,, has support one interval
[bu —2¢cy, by + 2¢,]

e u— (by,cy) is analytic.

e [(u) depends analytically on u.

v

Example: V = x2/2 and Vi(x) = £ + ¥, ant"x" at least on a
neighborhood of [b — 2¢, b + 2c].

Example: V,(x) = Xé + Y1 @np"x" with p > 0 fixed and
u=(ay,az,...,an,...)€t".



Going Formal

2 n
X anX
V(x)=— - .
x) =73 Z -
nx1
R, S, uniquely solves as power series in aq, ao, . ..

2 : j
f—z \/ﬁX(V(\/ﬁx+S)m/4X_7:2

2 , d
L2 V(VRx +8) 2= =0

g
R=1+0(a),S = O(a).

Equivalently,

2 _
R=T 4B an ks, (”,1)(f’j+11 HRH1 S22
S = 22021 an ZJ:TO (n;1)(n—; —j)stn—1—2]
R =1+0(a),S = 0O(a)



Going Formal

X2 apx”"
V=3l
n=1

R, S, uniquely solves as power series in aq, ao, . ..

2 ’
5 \/ﬁx(V(\/ﬁx+S)nv%:2

2 ’ d _

N
R =1+ 0(a),S = O(a)).

Equivalently,

2 o
R=1+Y 4 a'j;j:zo (nl_1)(nj+11 NRi+181-2-2]
S = 22021 an Z]:TO (n;1)(n—; —j)stn—1—2]
R=1+40(aj),S=0(a)
It is known (J. Bouttier, P. Di Francesco, E. Guitter in 2002) that
R and S are the generating functions of connected planar
diagrams with one/two distinguished one/two vertices.



V) =F-) a”:n.

n>1

Define as a formal power series in ay, ao, . ..

2 P(VRx + S)dx

n Va4 - x2

(e ([ s

I :——IogRJr




Counting Planar Diagrams with a Fixed Number of

Edges

For

Fo(t) = 3/4 - I(t)
Fo(t) =Y fal".

n>1

We are interested in the growth of f, when nis large.



S.Gand I.P

Alternatively

(2F4 (1)) = 2R(1)S?(t) + RE(1).

Corollary

If V is a polynomial, then t3(t2F/(t))’ is an algebraic function.
In particular the coefficients f, of ¥o(t) satisfy a linear
recurrence relation with polynomial coefficients in n (f, are
holonomic).

N




Extreme Potentials, Counting All Diagrams

Counting diagrams with even valent vertices.

2 ny2n 2
(V(x):X——ZtX =X 1log(1 - ?)

2 2n 2
n>1

Sit) = 0

1+4t—Vi-8t
R(t) = 5
Folt) = 1 — 24t 4 72t — (1 — 20t) V1 - 8t
o= 12812

3, 1-4t+V1-8t
~g o9 >

1

3(2n - 1)120"
- §t23l—'2(1,1,3/2;2,4;8t):ZL "
n>1

nl(n+ 2)!
P 3 8n(1—§+ 945—16275+ (l))
"7 4ymrn’2\" " 8n " 128n2  1024n3 nt))




Extreme Potentials, Counting All Diagrams

Counting planar diagrams with arbitrary valency.

2 n/2yn 2
(V(x):%—zt nx :%+Iog(1— Vix)

nx>1

- Vi-12
Sty - 1—-Vi-12t
6Vt
1+12t— V1 -12t
R(t) 181 1)
Folt) = 1-36t+ 16212 — (1 —30t) V1 — 12t )
o 21612
1, 1-6t+ V112t
——log
2 2
. _i12”(_25+945_16275 (l))
! \r n?/2 16n = 256n2 2048n3 n4))’



t’Hooft’s conjecture in sharp form

Theorem
Assume that

x2 apx"
V(t) = 5 - Z =
n>1

and
(V) = sup|an|"/".

n>1

Then Fo(t) has radius of convergence at least . ! )
(24

equality for the extreme potential V = % — L %

with




Already done

@ Study the generating functions for the case of counting
planar diagrams with a certain number of faces.

@ Study the growth of the number of diagrams with certain
particular structure. For example the valency is only 3 or 4.

To think about
@ Genus one extension.
@ Extend this to multitrace matrix models.
@ Multiple matrix models.



