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Random Sampling in Bounded Orthonormal Systems

Partial Random Circulant Matrices

Random Gabor Frames
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Key ldeas of compressive sensing

e Many types of signals, images are sparse, or can be
well-approximated by sparse ones.
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Key ldeas of compressive sensing

e Many types of signals, images are sparse, or can be
well-approximated by sparse ones.

e Question: Is it possible to recover such signals from only a
small number of (linear) measurements, i.e., without
measuring all entries of the signal?

. hausdorff

= CENTER FOR MATHEMATICS

Holger Rauhut, University of Bonn Structured Random Matrices 3



Sparse Vectors in Finite Dimension

e coefficient vector: x e CN, N e N

e support of x: suppx := {j,x; # 0}
e s- sparse vectors: ||x|[op := [suppx| < s.
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Sparse Vectors in Finite Dimension

e coefficient vector: x e CN, N e N

e support of x: suppx := {j,x; # 0}
e s- sparse vectors: ||x||p := |suppx| < s.

s-term approximation error
0s(x)q == inf{||x — z||q,Z is s-sparse}, 0 < q < oo.

x is called compressible if o5(x)q decays quickly in s.
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Compressed Sensing Problem

Reconstruct a s-sparse vector x € CV (or a compressible vector)
from its vector y of m measurements

y = Ax, AeCmN,

Interesting case: s < m < N.

Underdetermined linear system of equations with a sparsity
constraint.
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Compressed Sensing Problem

Reconstruct a s-sparse vector x € CV (or a compressible vector)
from its vector y of m measurements

y = Ax, AeCmN,

Interesting case: s < m < N.

Underdetermined linear system of equations with a sparsity
constraint.

Preferably we would like to have a fast algorithm that performs the
reconstruction.
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fp-minimization:

min [x|lo subject to Ax =y.
xeCN
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lo-minimization

fo-minimization:

min ||x|lo subject to Ax=y.
xeCN

Problem: £g-minimization is NP hard!
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/1 minimization:

N
mx|n||x||1 = ZI|XJ| subjectto Ax =y
J_

: hausdorff

= CENTER FOR MATHEMATICS



/1-minimization

f1 minimization:

N
min ||x][; = Z]xj| subject to Ax =y
X

j=1

Convex relaxation of £p-minimization problem.

Efficient minimization methods available.
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Restricted Isometry Property (RIP)

Definition

The restricted isometry constant ds of a matrix A € C™*N s
defined as the smallest ds such that

(1= 05)lIxII3 < [|Ax]I3 < (1 + &s)lIx[13

for all s-sparse x € CV.

Requires that all s-column submatrices of A are well-conditioned.

. hausdorff

= CENTER FOR MATHEMATICS

Holger Rauhut, University of Bonn Structured Random Matrices 8



RIP implies recovery by ¢1-minimization

Theorem (Candeés, Romberg, Tao 2004 — Candes 2008 — Foucart,

Lai 2009 — Foucart 2009)

Assume that the restricted isometry constant §as of A € Cumehd
satisfies

~ 0.4627.

2
02s < ————
2s g /—7/4

Then (1-minimization reconstructs every s-sparse vector x € CN
from y = Ax.
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Stability

Theorem (Candés, Romberg, Tao 2004 — Candés 2008 — Foucart,

Lai 2009 — Foucart 2009)
Let A e C™N with 6o < —2— ~ 0.4627. Let x € CN, and

3++/7/4

assume that noisy data are observed, y = Ax + n with ||n
Let x7 by the solution of

2 <o.

min||z||s  such that ||Az —y|]2 < o.
Z

Then
os(x)1
ﬁ

for constants Cy, C; > 0, that depend only on ;.

Ix = x#|l2 < Go + G
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Random Matrices

Open problem: Give explicit matrices A € C™*N with small
02s < 0.46 for “large” s.
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Random Matrices

Open problem: Give explicit matrices A € C™*N with small
02s < 0.46 for “large” s.

Goal: 05 <4, if
m 2 C55|Oga(N)7

for constants Cs and «.

Deterministic matrices known, for which m > C(;s2 suffices.
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Random Matrices

Open problem: Give explicit matrices A € C™*N with small
02s < 0.46 for “large” s.

Goal: 05 <4, if
m 2 C55|Oga(N)7

for constants Cs and «.
Deterministic matrices known, for which m > C(;s2 suffices.

Way out: consider random matrices.
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RIP for Gaussian and Bernoulli matrices

Gaussian: entries of A independent standard normal distributed
random rv
Bernoulli : entries of A independent Bernoulli =1 distributed rv

Theorem

Let A € R™N be 3 Gaussian or Bernoulli random matrix and
assume
m > C52(sIn(N/s) + In(e 1))

for a universal constant C > 0. Then with probability at least
1 — ¢ the restricted isometry constant of ﬁA satisfies 05 < §.
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Consequence

Gaussian or Bernoulli matrices A € R™* allow (stable) sparse
recovery using £1-minimization with probability at least
l-e=1—exp(—cm), c =1/(2C), provided

m > CsIn(N/s).
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Consequence

Gaussian or Bernoulli matrices A € R™* allow (stable) sparse
recovery using £1-minimization with probability at least
l-e=1—exp(—cm), c =1/(2C), provided

m > CsIn(N/s).

No quadratic bottleneck!

. hausdorff

= CENTER FOR MATHEMATICS

Holger Rauhut, University of Bonn Structured Random Matrices 13



Consequence

Gaussian or Bernoulli matrices A € R™* allow (stable) sparse
recovery using £1-minimization with probability at least
l1-e=1—exp(—cm), c =1/(2C), provided

m > CsIn(N/s).

No quadratic bottleneck!

Bound is optimal as follows from bounds for Gelfand widths of
(N-balls (0 < p < 1),

Kashin (1977), Gluskin — Garnaev (1984), Carl — Pajor (1988),
Vybiral (2008), Foucart — Pajor — Rauhut — Ullrich (2010).
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Structured Random Matrices

Why structure?

e Applications impose structure due to physical constraints,
limited freedom to inject randomness.

e Fast matrix vector multiplies (FFT) in recovery algorithms,
unstructured random matrices impracticable for large scale
applications.

e Storage problems for unstructured matrices.
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Bounded orthonormal systems (BOS)

D C RY endowed with probability measure v.
Y1,...,9n : D — C function system on D.
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Bounded orthonormal systems (BOS)

D C RY endowed with probability measure v.
Y1,...,9n : D — C function system on D.
Orthonormality

(0 ifj#k
[uontam=s.={ 9 75

. hausdorff

= CENTER FOR MATHEMATICS

Holger Rauhut, University of Bonn Structured Random Matrices 15



Bounded orthonormal systems (BOS)
D C RY endowed with probability measure v.

Y1,...,9n : D — C function system on D.
Orthonormality

.
[uontam=s.={ 9 75

Uniform bound in L*:

[jlle = sup |;(t)] < K for all j € [N].
teD
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Bounded orthonormal systems (BOS)
D C RY endowed with probability measure v.

Y1,...,9n : D — C function system on D.
Orthonormality

.
[uontam=s.={ 9 75

Uniform bound in L*:
[9jlloc = sup [¥;(t)] < K for all j € [N].
teD

It always holds K > 1:

1:/ s (8) 2o ) Ssup\wj(tﬂz/ 1du(t) < K2.
D teD D
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Consider functions

N
f(t) = ZXdek(t), teD.

k=1
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Sampling
Consider functions

N
F(t)=> xth(t), teD.
k=1

f is called s-sparse if x is s-sparse.
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Sampling

Consider functions
N
F(t) = xu(t), teD.
k=1

f is called s-sparse if x is s-sparse.
Sampling points t1, ..., t, € D. Sample values:

N
ye=F(t) =Y xctu(te), €€ [m].
k=1
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Sampling

Consider functions
N
F(t) = xu(t), teD.
k=1

f is called s-sparse if x is s-sparse.
Sampling points t1, ..., t, € D. Sample values:

N
ye=F(t) =Y xctu(te), €€ [m].
k=1

Sampling matrix A € C™*N with entries

Ak = Vi(te), ¢ e [m], k € [N].
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Sampling

Consider functions
N
F(t) = xu(t), teD.
k=1

f is called s-sparse if x is s-sparse.
Sampling points t1, ..., t, € D. Sample values:

N
ye=F(t) =Y xctu(te), €€ [m].
k=1

Sampling matrix A € C™*N with entries
A@k = /L;Dk(tg), le [m], k e [N]

Then
y = Ax.
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Sparse Recovery

Problem: Reconstruct s-sparse f — equivalently x — from its
sample values y = Ax.
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Sparse Recovery

Problem: Reconstruct s-sparse f — equivalently x — from its
sample values y = Ax.

We consider /1-minimization as recovery method.

Behavior of A as measurement matrix?
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Random Sampling

Choose sampling points t1, ..., t; independently at random
according to the measure v, that is,

P(t, € B) = v(B), for all measurable B C D.
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Random Sampling

Choose sampling points t1, ..., t; independently at random
according to the measure v, that is,

P(t, € B) = v(B), for all measurable B C D.

The sampling matrix A is then a structured random matrix.
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.
d(t) =™, teo,1].

The trigonometric system is orthonormal with K = 1.
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.
d(t) =™, teo,1].

The trigonometric system is orthonormal with K = 1. Take subset
' C Z of cardinality N; trigonometric polynomials

§ :Xk¢k 2 :X e27rlkt

kel kel
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.
d(t) =™, teo,1].

The trigonometric system is orthonormal with K = 1. Take subset
' C Z of cardinality N; trigonometric polynomials

§ :Xk¢k 2 :X e27rlkt

kel kel

Samples ti,..., t, are chosen indendepently and uniformly at
random from [0, 1].
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.
d(t) =™, teo,1].

The trigonometric system is orthonormal with K = 1. Take subset
' C Z of cardinality N; trigonometric polynomials

§ :Xk¢k § :X e27rlkt

kel kel

Samples ti,..., t, are chosen indendepently and uniformly at
random from [0, 1]. Nonequispaced random Fourier matrix

A&k = ezm‘ktl, le [m], kerl.
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.
d(t) =™, teo,1].

The trigonometric system is orthonormal with K = 1. Take subset
' C Z of cardinality N; trigonometric polynomials

§ :Xk¢k § :X e27rlkt

kel kel

Samples ti,..., t, are chosen indendepently and uniformly at
random from [0, 1]. Nonequispaced random Fourier matrix

A&k = ezm‘ktl, le [m], kerl.

Fast matrix vector multiply using the nonequispaced fast Fourier
transform (NFFT).
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Further examples

Real trigonometric polynomials

Discrete systems — Random rows of bounded orthogonal
matrices

Random partial Fourier matrices

Legendre polynomials (needs a “twist”, see below)
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RIP estimate

Theorem (Rauhut 2006, 2009)

Let A € C™*N be the random sampling matrix associated to a
bounded orthonormal system with constant K > 1. Suppose

m

in(m) > CK?6%s1n(s) In(N).

Then with probability at least 1 — N=YI"*(S)In(m) the restricted
isometry constant of %A satisfies 65 < §.

Improvement of previous results for the discrete case due to
Candes — Tao (2005) and Rudelson — Vershynin (2006).
Explicit (but bad) constants.
Simplified condition

s> CK?sIn*(N)

for uniform s-sparse recovery with probability > 1 — N=In*(N),
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Legendre Polynomials

Consider D = [—1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials ¢; = P},
Jj=0,....,N—-1.
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Legendre Polynomials

Consider D = [—1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials ¢; = P},
Jj=0,....,N—-1.

It holds ||Pj|lec = v/2j +1, 50 K = 2N — 1.
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Legendre Polynomials

Consider D = [—1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials ¢; = P},
j=0,...,N—1

It holds ||Pj|lec = v/2j +1, 50 K = 2N — 1.
The previous result yields the (almost) trivial bound

m > CNslog?(s) log(m) log(N) > N.
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Legendre Polynomials

Consider D = [—1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials ¢; = P},
j=0,...,N—1

It holds ||Pj|lec = v/2j +1, 50 K = 2N — 1.
The previous result yields the (almost) trivial bound
m > CNslog?(s) log(m) log(N) > N.

Can we do better?

. hausdorff

= CENTER FOR MATHEMATICS

Holger Rauhut, University of Bonn Structured Random Matrices 23



Random Chebyshev sampling

Do not sample uniformly, but with respect to the “Chebyshev”
probability measure

U(dx) = %(1 — ) M2 on [=1,1].

The functions
7T
) =[5~ xR

are orthonormal with respect to v.
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Random Chebyshev sampling

Do not sample uniformly, but with respect to the “Chebyshev”
probability measure

U(dx) = %(1 — ) M2 on [=1,1].

The functions
7T
) =[5~ xR

are orthonormal with respect to v.
A classical estimate for Legendre polynomials states that

sup |gi(x)| < V2 forall j € Np.
x€[-1,1]
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Random sampling of sparse Legendre expansions

Theorem (Rauhut — Ward 2010)

Let P;, j=0,...,N —1, be the normalized Legendre polynomials,
and let xg, ¢ = 1,..., m, be sampling points in [—1,1] which are
chosen independently at random according to Chebyshev
probability measure 7= (1 — x2)~1/2dx on [~1,1]. Assume

m > Cslog*(N).

Then with probability at least 1 — N7 log*(N) every s-sparse
Legendre expansion

N—1
f(x) =Y %Pi(x)
j=0

can be recovered from y = (f(x;))}"; via {1-minimization.

Holger Rauhut, University of Bonn Structured Random Matrices 25



Proof Idea

Let D = \/7/2diag{(1 — x})"* ¢ =1,...,m} € R™*m
and A e R™N B ¢ rmxN W|th entries

Ay = Pi(x0),  Buj=gi(x)
Then B = DA. Hence,
ker B = ker A.

Since the constant K < C for the system {g¢}, the matrix B
satisfies RIP under the stated condition.

Holger Rauhut, University of Bonn Structured Random Matrices 26



Circulant matrices

Circulant matrix: For b = (bg, by, ..., by_1) € CN let
= d)(b) e CN*N be the matrix with entries d),-d- = bj,,' mod N

by by --- - by_1
([)(b) _ bl\l.—l b.o b.l . .. . b[\[._2
b1 by --- by-1 o

Holger Rauhut, University of Bonn Structured Random Matrices 27



Partial random circulant matrices

Let © C [N] arbitrary of cardinality m.
Re: operator that restricts a vector x € CV to its entries in ©.

Restrict ®(b) to the rows indexed by ©:
Partial circulant matrix: ®(b) = Ro®(b) € C™*N

Holger Rauhut, University of Bonn Structured Random Matrices 28



Partial random circulant matrices

Let © C [N] arbitrary of cardinality m.
Re: operator that restricts a vector x € CV to its entries in ©.

Restrict ®(b) to the rows indexed by ©:
Partial circulant matrix: ®(b) = Ro®(b) € C™*N

Convolution followed by subsampling:
y = Ro®(b)x = Ro(b * x)
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Partial random circulant matrices

Let © C [N] arbitrary of cardinality m.
Re: operator that restricts a vector x € CV to its entries in ©.

Restrict ®(b) to the rows indexed by ©:
Partial circulant matrix: ®(b) = Ro®(b) € C™*N

Convolution followed by subsampling:

y = Ro®(b)x = Ro(b * x)
Matrix vector multiplication via the FFT!
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Partial random circulant matrices

Let © C [N] arbitrary of cardinality m.
Re: operator that restricts a vector x € CV to its entries in ©.

Restrict ®(b) to the rows indexed by ©:
Partial circulant matrix: ®(b) = Ro®(b) € C™*N

Convolution followed by subsampling:
y = Ro®(b)x = Ro(b * x)

Matrix vector multiplication via the FFT!

We choose the vector b € CN at random, in particular, as
Rademacher sequence b = ¢, that is, ¢ = £1.

Performance of ®©(¢) in compressive sensing?

Holger Rauhut, University of Bonn Structured Random Matrices 28



Nonuniform recovery result for circulant matrices

Theorem (Rauhut 2009)

Let © C [N] be an arbitrary (deterministic) set of cardinality m.
Let x € CN be s-sparse such that the signs of its non-zero entries
form a Rademacher or Steinhaus sequence. Choose € € RN to be a
Rademacher sequence. Lety = ®®(e)x € C™. If

m > 57sIn?(17N? /<)

then x can be recovered from y via {1-minimization with
probability at least 1 — €.

Holger Rauhut, University of Bonn Structured Random Matrices 29



RIP estimate for partial circulant matrices

Theorem (Rauhut — Romberg — Tropp 2010)

Let © C [N] be an arbitrary (deterministic) set of cardinality m.
Let € € RN be a Rademacher sequence. Assume that

m > Co 1532 10g3/2(N),
and, for e € (0,1),
m > C5 2slog?(s)log?(N) log(e ™)

Then with probability at least 1 — € the restricted isometry

constants of %Cbe(e) satisfy s < 9.

Theorem is also valid for Steinhaus or Gaussian sequence.

Holger Rauhut, University of Bonn Structured Random Matrices 30



Proof Idea

With translation operators Sy : CV — CN, (Sph) i = hk—¢ mod N We
can write

N
1
— © — E
A= \/7(]) (6) = \/7 2 GKRGSK.

Holger Rauhut, University of Bonn Structured Random Matrices 31



Proof Idea

With translation operators Sy : CV — CN, (Sph) i = hk—¢ mod N We
can write

6
A= ﬁcb ZezRese

Denote T, := {x € RN |x|[2 < 1,||x]lo < s}. Then

ds = sup [{((A*A — )x,x)| = sup —]Zejekx Q) kX|
x€Ts x€Ts m k#f

with Qj x = SJTKPQSk and Pg = R3Rg is the projection of a vector
in RN onto its entries in ©.

We arrive at estimating the supremum of a Rademacher chaos
process of order 2.

Holger Rauhut, University of Bonn Structured Random Matrices 31



Dudley type inequality for chaos processes

Theorem (Talagrand)

Let Yi = ) 4 €j eZjk(x) be a scalar Rademacher chaos process
indexed by x € T, with Zjj(x) = 0 and Zjy(x) = Zij(x). Introduce
two metrics on T, with (Z(x))jx = Zjk(x)j k.,

di(x,y) = 1Z(x) = Z(¥)|F,
b (x,y) = 1Z(x) = Z(y)ll2—2-

Let N(T,d;, u) denote the minimal number of balls of radius u in
the metric d; necessary to cover T. There exists a universal
constant K such that, for an arbitrary xo € T,

E sup | Vs — Yo <
xeT

K max {/OOO V0og(N(T, di, u))du, /OOO log(N(T, da, u))du} :

Holger Rauhut, University of Bonn Structured Random Matrices 32



Estimates of entropy integrals

In our situation,

/oo \/Iog(N( T57 dl’ u))du < C\/S |Og2(s) IOg2(N)7
0 m

and
§3/2 Iog3/2(N)
—

/ log(N(Ts, d2, u))du < C
0

Technique: Pass to Fourier transform, and use estimates due to
Rudelson and Vershynin.

Probability estimate:

Concentration inequality due to Talagrand (1996),
with improvements due to Boucheron, Lugosi, Massart (2003).
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Random Gabor Frames

Translation and Modulation on C”
(Sph)g = h(piq) modn and (Mgh)g = €™/ h,.
For h € C" define Gabor system (Gabor synthesis matrix)

Ay = (MySph)gp—o... .n1 € C™"

Motivation: Wireless communications and sonar.

Holger Rauhut, University of Bonn Structured Random Matrices 34



Random Gabor Frames

Translation and Modulation on C”
(Sph)g = h(piq) modn and (Mgh)g = €™/ h,.
For h € C" define Gabor system (Gabor synthesis matrix)

Ay = (MySph)gp—o... .n1 € C™"

Motivation: Wireless communications and sonar.

Choose h € C" at random, more precisely as a Steinhaus sequence:
All entries hg, g =0,...,n — 1, are chosen independently and
uniformly at random from the torus {z € C, |z| = 1}.

2
Performance of A, € C"*" for sparse recovery?

Holger Rauhut, University of Bonn Structured Random Matrices 34



Nonuniform recovery

Theorem (Pfander — Rauhut 2007)

Let x € C™ be s-sparse. Choose Ay, € (C”X”2 at random (that is,
let h be a Steinhaus sequence). Assume that

* = Clogln/e)

Then with probability at least 1 — € £1-minimization recovers x
from y = Apx.
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RIP estimate

Theorem (June 2010)

Choose A), € €1 at random (this is, let h be a Steinhaus
sequence). Assume that

n> Co1s3210g%?(n),
and, for e € (0,1),
n> Co 2slog?(s) log?(n)log(e~1).

Then with probability at least 1 — e the restricted isometry
constants of \%Ah satisfy 05 < 0.

Result is valid also for Rademacher or Gaussian generator h.
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THAT'S ALL
THANKS!



