Compressive Sensing and Structured Random Matrices

Holger Rauhut
Hausdorff Center for Mathematics
\& Institute for Numerical Simulation
University of Bonn

Probability \& Geometry in High Dimensions Marne la Vallée
May 19, 2010

Overview

- Compressive Sensing
- Random Sampling in Bounded Orthonormal Systems
- Partial Random Circulant Matrices
- Random Gabor Frames

Key Ideas of compressive sensing

- Many types of signals, images are sparse, or can be well-approximated by sparse ones.

Key Ideas of compressive sensing

- Many types of signals, images are sparse, or can be well-approximated by sparse ones.
- Question: Is it possible to recover such signals from only a small number of (linear) measurements, i.e., without measuring all entries of the signal?

Sparse Vectors in Finite Dimension

- coefficient vector: $\mathrm{x} \in \mathbb{C}^{N}, N \in \mathbb{N}$
- support of $\mathbf{x}: \operatorname{supp} \mathbf{x}:=\left\{j, x_{j} \neq 0\right\}$
- s - sparse vectors: $\|\mathbf{x}\|_{0}:=|\operatorname{supp} \mathbf{x}| \leq s$.

Sparse Vectors in Finite Dimension

- coefficient vector: $\mathrm{x} \in \mathbb{C}^{N}, N \in \mathbb{N}$
- support of $\mathbf{x}: \operatorname{supp} \mathbf{x}:=\left\{j, x_{j} \neq 0\right\}$
- s - sparse vectors: $\|\mathbf{x}\|_{0}:=|\operatorname{supp} \mathbf{x}| \leq s$.
s-term approximation error

$$
\sigma_{s}(\mathbf{x})_{q}:=\inf \left\{\|\mathbf{x}-\mathbf{z}\|_{q}, \mathbf{z} \text { is } s \text {-sparse }\right\}, \quad 0<q \leq \infty .
$$

\mathbf{x} is called compressible if $\sigma_{s}(\mathbf{x})_{q}$ decays quickly in s.

Compressed Sensing Problem

Reconstruct a s-sparse vector $\mathrm{x} \in \mathbb{C}^{N}$ (or a compressible vector) from its vector \mathbf{y} of m measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

Interesting case: $s<m \ll N$.
Underdetermined linear system of equations with a sparsity constraint.

Compressed Sensing Problem

Reconstruct a s-sparse vector $\mathrm{x} \in \mathbb{C}^{N}$ (or a compressible vector) from its vector \mathbf{y} of m measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

Interesting case: $s<m \ll N$.
Underdetermined linear system of equations with a sparsity constraint.

Preferably we would like to have a fast algorithm that performs the reconstruction.

ℓ_{0}-minimization

ℓ_{0}-minimization:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{0}-minimization

ℓ_{0}-minimization:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

Problem: ℓ_{0}-minimization is NP hard!

ℓ_{1}-minimization

ℓ_{1} minimization:

$$
\min _{x}\|\mathbf{x}\|_{1}=\sum_{j=1}^{N}\left|x_{j}\right| \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1}-minimization

ℓ_{1} minimization:

$$
\min _{\mathrm{x}}\|\mathbf{x}\|_{1}=\sum_{j=1}^{N}\left|x_{j}\right| \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

Convex relaxation of ℓ_{0}-minimization problem.
Efficient minimization methods available.

Restricted Isometry Property (RIP)

Definition

The restricted isometry constant δ_{s} of a matrix $A \in \mathbb{C}^{m \times N}$ is defined as the smallest δ_{s} such that

$$
\left(1-\delta_{s}\right)\|\mathbf{x}\|_{2}^{2} \leq\|A \mathbf{x}\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|\mathbf{x}\|_{2}^{2}
$$

for all s-sparse $\mathbf{x} \in \mathbb{C}^{N}$.
Requires that all s-column submatrices of A are well-conditioned.

RIP implies recovery by ℓ_{1}-minimization

Theorem (Candès, Romberg, Tao 2004 - Candès 2008 - Foucart, Lai 2009 - Foucart 2009)

Assume that the restricted isometry constant $\delta_{2 s}$ of $A \in \mathbb{C}^{m \times N}$ satisfies

$$
\delta_{2 s}<\frac{2}{3+\sqrt{7 / 4}} \approx 0.4627
$$

Then ℓ_{1}-minimization reconstructs every s-sparse vector $\mathbf{x} \in \mathbb{C}^{N}$ from $y=A x$.

Stability

Theorem (Candès, Romberg, Tao 2004 - Candès 2008 - Foucart, Lai 2009 - Foucart 2009)

Let $A \in \mathbb{C}^{m \times N}$ with $\delta_{2 s}<\frac{2}{3+\sqrt{7 / 4}} \approx 0.4627$. Let $x \in \mathbb{C}^{N}$, and assume that noisy data are observed, $y=A x+\eta$ with $\|\eta\|_{2} \leq \sigma$. Let $x^{\#}$ by the solution of

$$
\min _{z}\|z\|_{1} \quad \text { such that } \quad\|A z-y\|_{2} \leq \sigma .
$$

Then

$$
\left\|x-x^{\#}\right\|_{2} \leq C_{1} \sigma+C_{2} \frac{\sigma_{s}(x)_{1}}{\sqrt{s}}
$$

for constants $C_{1}, C_{2}>0$, that depend only on $\delta_{2 s}$.

Random Matrices

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2 s} \leq 0.46$ for "large" s.

Random Matrices

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2 s} \leq 0.46$ for "large" s.

Goal: $\delta_{s} \leq \delta$, if

$$
m \geq C_{\delta} s \log ^{\alpha}(N)
$$

for constants C_{δ} and α.
Deterministic matrices known, for which $m \geq \mathcal{C}_{\delta} s^{2}$ suffices.

Random Matrices

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2 s} \leq 0.46$ for "large" s.

Goal: $\delta_{s} \leq \delta$, if

$$
m \geq C_{\delta} s \log ^{\alpha}(N)
$$

for constants C_{δ} and α.
Deterministic matrices known, for which $m \geq C_{\delta} s^{2}$ suffices.
Way out: consider random matrices.

RIP for Gaussian and Bernoulli matrices

Gaussian: entries of A independent standard normal distributed random rv
Bernoulli : entries of A independent Bernoulli ± 1 distributed rv

Theorem

Let $A \in \mathbb{R}^{m \times N}$ be a Gaussian or Bernoulli random matrix and assume

$$
m \geq C \delta^{-2}\left(s \ln (N / s)+\ln \left(\varepsilon^{-1}\right)\right)
$$

for a universal constant $C>0$. Then with probability at least $1-\varepsilon$ the restricted isometry constant of $\frac{1}{\sqrt{m}} A$ satisfies $\delta_{s} \leq \delta$.

Consequence

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_{1}-minimization with probability at least $1-\varepsilon=1-\exp (-c m), c=1 /(2 C)$, provided

$$
m \geq C s \ln (N / s)
$$

Consequence

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_{1}-minimization with probability at least $1-\varepsilon=1-\exp (-c m), c=1 /(2 C)$, provided

$$
m \geq C s \ln (N / s)
$$

No quadratic bottleneck!

Consequence

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_{1}-minimization with probability at least $1-\varepsilon=1-\exp (-c m), c=1 /(2 C)$, provided

$$
m \geq C_{s} \ln (N / s)
$$

No quadratic bottleneck!
Bound is optimal as follows from bounds for Gelfand widths of ℓ_{p}^{N}-balls $(0<p \leq 1)$,
Kashin (1977), Gluskin - Garnaev (1984), Carl - Pajor (1988), Vybiral (2008), Foucart - Pajor - Rauhut - Ullrich (2010).

Structured Random Matrices

Why structure?

- Applications impose structure due to physical constraints, limited freedom to inject randomness.
- Fast matrix vector multiplies (FFT) in recovery algorithms, unstructured random matrices impracticable for large scale applications.
- Storage problems for unstructured matrices.

Bounded orthonormal systems (BOS)

$\mathcal{D} \subset \mathbb{R}^{d}$ endowed with probability measure ν. $\psi_{1}, \ldots, \psi_{N}: \mathcal{D} \rightarrow \mathbb{C}$ function system on \mathcal{D}.

Bounded orthonormal systems (BOS)

$\mathcal{D} \subset \mathbb{R}^{d}$ endowed with probability measure ν. $\psi_{1}, \ldots, \psi_{N}: \mathcal{D} \rightarrow \mathbb{C}$ function system on \mathcal{D}.
Orthonormality

$$
\int_{\mathcal{D}} \psi_{j}(t) \overline{\psi_{k}(t)} d \nu(t)=\delta_{j, k}= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k\end{cases}
$$

Bounded orthonormal systems (BOS)

$\mathcal{D} \subset \mathbb{R}^{d}$ endowed with probability measure ν. $\psi_{1}, \ldots, \psi_{N}: \mathcal{D} \rightarrow \mathbb{C}$ function system on \mathcal{D}.
Orthonormality

$$
\int_{\mathcal{D}} \psi_{j}(t) \overline{\psi_{k}(t)} d \nu(t)=\delta_{j, k}= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k\end{cases}
$$

Uniform bound in L^{∞} :

$$
\left\|\psi_{j}\right\|_{\infty}=\sup _{t \in \mathcal{D}}\left|\psi_{j}(t)\right| \leq K \quad \text { for all } j \in[N] .
$$

Bounded orthonormal systems (BOS)

$\mathcal{D} \subset \mathbb{R}^{d}$ endowed with probability measure ν.
$\psi_{1}, \ldots, \psi_{N}: \mathcal{D} \rightarrow \mathbb{C}$ function system on \mathcal{D}.
Orthonormality

$$
\int_{\mathcal{D}} \psi_{j}(t) \overline{\psi_{k}(t)} d \nu(t)=\delta_{j, k}=\left\{\begin{array}{cc}
0 & \text { if } j \neq k, \\
1 & \text { if } j=k .
\end{array}\right.
$$

Uniform bound in L^{∞} :

$$
\left\|\psi_{j}\right\|_{\infty}=\sup _{t \in \mathcal{D}}\left|\psi_{j}(t)\right| \leq K \quad \text { for all } j \in[N] .
$$

It always holds $K \geq 1$:

$$
1=\int_{\mathcal{D}}\left|\psi_{j}(t)\right|^{2} d \nu(t) \leq \sup _{t \in \mathcal{D}}\left|\psi_{j}(t)\right|^{2} \int_{\mathcal{D}} 1 d \nu(t) \leq K^{2}
$$

Sampling

Consider functions

$$
f(t)=\sum_{k=1}^{N} x_{k} \psi_{k}(t), \quad t \in \mathcal{D}
$$

Sampling

Consider functions

$$
f(t)=\sum_{k=1}^{N} x_{k} \psi_{k}(t), \quad t \in \mathcal{D}
$$

f is called s-sparse if \mathbf{x} is s-sparse.

Sampling

Consider functions

$$
f(t)=\sum_{k=1}^{N} x_{k} \psi_{k}(t), \quad t \in \mathcal{D}
$$

f is called s-sparse if \mathbf{x} is s-sparse.
Sampling points $t_{1}, \ldots, t_{m} \in \mathcal{D}$. Sample values:

$$
y_{\ell}=f\left(t_{\ell}\right)=\sum_{k=1}^{N} x_{k} \psi_{k}\left(t_{\ell}\right), \quad \ell \in[m]
$$

Sampling

Consider functions

$$
f(t)=\sum_{k=1}^{N} x_{k} \psi_{k}(t), \quad t \in \mathcal{D}
$$

f is called s-sparse if \mathbf{x} is s-sparse.
Sampling points $t_{1}, \ldots, t_{m} \in \mathcal{D}$. Sample values:

$$
y_{\ell}=f\left(t_{\ell}\right)=\sum_{k=1}^{N} x_{k} \psi_{k}\left(t_{\ell}\right), \quad \ell \in[m]
$$

Sampling matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$
A_{\ell, k}=\psi_{k}\left(t_{\ell}\right), \quad \ell \in[m], k \in[N] .
$$

Sampling

Consider functions

$$
f(t)=\sum_{k=1}^{N} x_{k} \psi_{k}(t), \quad t \in \mathcal{D}
$$

f is called s-sparse if \mathbf{x} is s-sparse.
Sampling points $t_{1}, \ldots, t_{m} \in \mathcal{D}$. Sample values:

$$
y_{\ell}=f\left(t_{\ell}\right)=\sum_{k=1}^{N} x_{k} \psi_{k}\left(t_{\ell}\right), \quad \ell \in[m]
$$

Sampling matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$
A_{\ell, k}=\psi_{k}\left(t_{\ell}\right), \quad \ell \in[m], k \in[N] .
$$

Then

$$
\mathbf{y}=A \mathbf{x} .
$$

Sparse Recovery

Problem: Reconstruct s-sparse f - equivalently \mathbf{x} - from its sample values $\mathbf{y}=A \mathbf{x}$.

Sparse Recovery

Problem: Reconstruct s-sparse f - equivalently \mathbf{x} - from its sample values $\mathbf{y}=A \mathbf{x}$.

We consider ℓ_{1}-minimization as recovery method.
Behavior of A as measurement matrix?

Random Sampling

Choose sampling points t_{1}, \ldots, t_{ℓ} independently at random according to the measure ν, that is,

$$
\mathbb{P}\left(t_{\ell} \in B\right)=\nu(B), \quad \text { for all measurable } B \subset \mathcal{D}
$$

Random Sampling

Choose sampling points t_{1}, \ldots, t_{ℓ} independently at random according to the measure ν, that is,

$$
\mathbb{P}\left(t_{\ell} \in B\right)=\nu(B), \quad \text { for all measurable } B \subset \mathcal{D}
$$

The sampling matrix A is then a structured random matrix.

Examples of Bounded Orthonormal Systems

Trigonometric System. $\mathcal{D}=[0,1]$ with Lebesgue measure.

$$
\psi_{k}(t)=e^{2 \pi i k t}, \quad t \in[0,1]
$$

The trigonometric system is orthonormal with $K=1$.

Examples of Bounded Orthonormal Systems

Trigonometric System. $\mathcal{D}=[0,1]$ with Lebesgue measure.

$$
\psi_{k}(t)=e^{2 \pi i k t}, \quad t \in[0,1]
$$

The trigonometric system is orthonormal with $K=1$. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$
f(t)=\sum_{k \in \Gamma} x_{k} \psi_{k}(t)=\sum_{k \in \Gamma} x_{k} e^{2 \pi i k t}
$$

Examples of Bounded Orthonormal Systems

Trigonometric System. $\mathcal{D}=[0,1]$ with Lebesgue measure.

$$
\psi_{k}(t)=e^{2 \pi i k t}, \quad t \in[0,1]
$$

The trigonometric system is orthonormal with $K=1$. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$
f(t)=\sum_{k \in \Gamma} x_{k} \psi_{k}(t)=\sum_{k \in \Gamma} x_{k} e^{2 \pi i k t}
$$

Samples t_{1}, \ldots, t_{m} are chosen indendepently and uniformly at random from $[0,1]$.

Examples of Bounded Orthonormal Systems

Trigonometric System. $\mathcal{D}=[0,1]$ with Lebesgue measure.

$$
\psi_{k}(t)=e^{2 \pi i k t}, \quad t \in[0,1]
$$

The trigonometric system is orthonormal with $K=1$. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$
f(t)=\sum_{k \in \Gamma} x_{k} \psi_{k}(t)=\sum_{k \in \Gamma} x_{k} e^{2 \pi i k t}
$$

Samples t_{1}, \ldots, t_{m} are chosen indendepently and uniformly at random from $[0,1]$. Nonequispaced random Fourier matrix

$$
A_{\ell, k}=e^{2 \pi i k t_{\ell}}, \quad \ell \in[m], k \in \Gamma .
$$

Examples of Bounded Orthonormal Systems

Trigonometric System. $\mathcal{D}=[0,1]$ with Lebesgue measure.

$$
\psi_{k}(t)=e^{2 \pi i k t}, \quad t \in[0,1]
$$

The trigonometric system is orthonormal with $K=1$. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$
f(t)=\sum_{k \in \Gamma} x_{k} \psi_{k}(t)=\sum_{k \in \Gamma} x_{k} e^{2 \pi i k t}
$$

Samples t_{1}, \ldots, t_{m} are chosen indendepently and uniformly at random from $[0,1]$. Nonequispaced random Fourier matrix

$$
A_{\ell, k}=e^{2 \pi i k t_{\ell}}, \quad \ell \in[m], k \in \Gamma .
$$

Fast matrix vector multiply using the nonequispaced fast Fourier transform (NFFT).

Fourier coefficients

Fourier coefficients

Time domain signal with 30 samples

Fourier coefficients

ℓ_{2}-minimization

Time domain signal with 30 samples

Fourier coefficients

ℓ_{2}-minimization

Time domain signal with 30 samples

ℓ_{1}-minimization

Further examples

- Real trigonometric polynomials
- Discrete systems - Random rows of bounded orthogonal matrices
- Random partial Fourier matrices
- Legendre polynomials (needs a "twist", see below)

RIP estimate

Theorem (Rauhut 2006, 2009)

Let $A \in \mathbb{C}^{m \times N}$ be the random sampling matrix associated to a bounded orthonormal system with constant $K \geq 1$. Suppose

$$
\frac{m}{\ln (m)} \geq C K^{2} \delta^{-2} s \ln ^{2}(s) \ln (N)
$$

Then with probability at least $1-N^{-\gamma} \ln ^{2}(s) \ln (m)$ the restricted isometry constant of $\frac{1}{\sqrt{m}} A$ satisfies $\delta_{s} \leq \delta$.

Improvement of previous results for the discrete case due to Candès - Tao (2005) and Rudelson - Vershynin (2006). Explicit (but bad) constants.
Simplified condition

$$
s \geq C K^{2} s \ln ^{4}(N)
$$

for uniform s-sparse recovery with probability $\geq 1-N^{-\gamma \ln ^{3}(N)}$.

Legendre Polynomials

Consider $\mathcal{D}=[-1,1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_{j}=P_{j}$, $j=0, \ldots, N-1$.

Legendre Polynomials

Consider $\mathcal{D}=[-1,1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_{j}=P_{j}$,
$j=0, \ldots, N-1$.
It holds $\left\|P_{j}\right\|_{\infty}=\sqrt{2 j+1}$, so $K=\sqrt{2 N-1}$.

Legendre Polynomials

Consider $\mathcal{D}=[-1,1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_{j}=P_{j}$,
$j=0, \ldots, N-1$.
It holds $\left\|P_{j}\right\|_{\infty}=\sqrt{2 j+1}$, so $K=\sqrt{2 N-1}$.
The previous result yields the (almost) trivial bound

$$
m \geq C N s \log ^{2}(s) \log (m) \log (N)>N
$$

Legendre Polynomials

Consider $\mathcal{D}=[-1,1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_{j}=P_{j}$,
$j=0, \ldots, N-1$.
It holds $\left\|P_{j}\right\|_{\infty}=\sqrt{2 j+1}$, so $K=\sqrt{2 N-1}$.
The previous result yields the (almost) trivial bound

$$
m \geq C N s \log ^{2}(s) \log (m) \log (N)>N
$$

Can we do better?

Random Chebyshev sampling

Do not sample uniformly, but with respect to the "Chebyshev" probability measure

$$
\nu(d x)=\frac{1}{\pi}\left(1-x^{2}\right)^{-1 / 2} d x \quad \text { on }[-1,1] .
$$

The functions

$$
g_{j}(x)=\sqrt{\frac{\pi}{2}}\left(1-x^{2}\right)^{1 / 4} P_{j}(x)
$$

are orthonormal with respect to ν.

Random Chebyshev sampling

Do not sample uniformly, but with respect to the "Chebyshev" probability measure

$$
\nu(d x)=\frac{1}{\pi}\left(1-x^{2}\right)^{-1 / 2} d x \quad \text { on }[-1,1] .
$$

The functions

$$
g_{j}(x)=\sqrt{\frac{\pi}{2}}\left(1-x^{2}\right)^{1 / 4} P_{j}(x)
$$

are orthonormal with respect to ν.
A classical estimate for Legendre polynomials states that

$$
\sup _{x \in[-1,1]}\left|g_{j}(x)\right| \leq \sqrt{2} \quad \text { for all } j \in N_{0} .
$$

Random sampling of sparse Legendre expansions

Theorem (Rauhut - Ward 2010)

Let $P_{j}, j=0, \ldots, N-1$, be the normalized Legendre polynomials, and let $x_{\ell}, \ell=1, \ldots, m$, be sampling points in $[-1,1]$ which are chosen independently at random according to Chebyshev probability measure $\pi^{-1}\left(1-x^{2}\right)^{-1 / 2} d x$ on $[-1,1]$. Assume

$$
m \geq C s \log ^{4}(N)
$$

Then with probability at least $1-N^{-\gamma} \log ^{3}(N)$ every s-sparse Legendre expansion

$$
f(x)=\sum_{j=0}^{N-1} x_{j} P_{j}(x)
$$

can be recovered from $y=\left(f\left(x_{\ell}\right)\right)_{\ell=1}^{m}$ via ℓ_{1}-minimization.

Proof Idea

Let $D=\sqrt{\pi / 2} \operatorname{diag}\left\{\left(1-x_{\ell}^{2}\right)^{1 / 4}, \ell=1, \ldots, m\right\} \in \mathbb{R}^{m \times m}$ and $A \in \mathbb{R}^{m \times N}, B \in \mathbb{R}^{m \times N}$ with entries

$$
A_{\ell, j}=P_{j}\left(x_{\ell}\right), \quad B_{\ell, j}=g_{j}\left(x_{\ell}\right) .
$$

Then $B=D A$. Hence,

$$
\operatorname{ker} B=\operatorname{ker} A \text {. }
$$

Since the constant $K \leq C$ for the system $\left\{g_{\ell}\right\}$, the matrix B satisfies RIP under the stated condition.

Circulant matrices

Circulant matrix: For $\mathbf{b}=\left(b_{0}, b_{1}, \ldots, b_{N-1}\right) \in \mathbb{C}^{N}$ let $\Phi=\Phi(\mathbf{b}) \in \mathbb{C}^{N \times N}$ be the matrix with entries $\Phi_{i, j}=b_{j-i} \bmod N$,

$$
\Phi(\mathbf{b})=\left(\begin{array}{ccccc}
b_{0} & b_{1} & \cdots & \cdots & b_{N-1} \\
b_{N-1} & b_{0} & b_{1} & \cdots & b_{N-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
b_{1} & b_{2} & \cdots & b_{N-1} & b_{0}
\end{array}\right)
$$

Partial random circulant matrices

Let $\Theta \subset[N]$ arbitrary of cardinality m.
R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ.
Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ :
Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b})=R_{\Theta} \Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$

Partial random circulant matrices

Let $\Theta \subset[N]$ arbitrary of cardinality m.
R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ.
Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ :
Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b})=R_{\ominus} \Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$
Convolution followed by subsampling:
$\mathbf{y}=R_{\Theta} \Phi(\mathbf{b}) \mathbf{x}=R_{\Theta}(\mathbf{b} * \mathbf{x})$

Partial random circulant matrices

Let $\Theta \subset[N]$ arbitrary of cardinality m.
R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ.
Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ :
Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b})=R_{\Theta} \Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$
Convolution followed by subsampling:
$\mathbf{y}=R_{\Theta} \Phi(\mathbf{b}) \mathbf{x}=R_{\Theta}(\mathbf{b} * \mathbf{x})$
Matrix vector multiplication via the FFT!

Partial random circulant matrices

Let $\Theta \subset[N]$ arbitrary of cardinality m.
R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ.
Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ :
Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b})=R_{\Theta} \Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$
Convolution followed by subsampling:
$\mathbf{y}=R_{\Theta} \Phi(\mathbf{b}) \mathbf{x}=R_{\Theta}(\mathbf{b} * \mathbf{x})$
Matrix vector multiplication via the FFT!
We choose the vector $\mathbf{b} \in \mathbb{C}^{N}$ at random, in particular, as Rademacher sequence $\mathbf{b}=\epsilon$, that is, $\epsilon_{\ell}= \pm 1$.

Performance of $\Phi^{\Theta}(\epsilon)$ in compressive sensing?

Nonuniform recovery result for circulant matrices

Theorem (Rauhut 2009)

Let $\Theta \subset[N]$ be an arbitrary (deterministic) set of cardinality m.
Let $\mathbf{x} \in \mathbb{C}^{N}$ be s-sparse such that the signs of its non-zero entries form a Rademacher or Steinhaus sequence. Choose $\epsilon \in \mathbb{R}^{N}$ to be a Rademacher sequence. Let $\mathbf{y}=\Phi^{\Theta}(\epsilon) \mathbf{x} \in \mathbb{C}^{m}$. If

$$
m \geq 57 s \ln ^{2}\left(17 N^{2} / \varepsilon\right)
$$

then \mathbf{x} can be recovered from \mathbf{y} via ℓ_{1}-minimization with probability at least $1-\varepsilon$.

RIP estimate for partial circulant matrices

Theorem (Rauhut - Romberg - Tropp 2010)

Let $\Theta \subset[N]$ be an arbitrary (deterministic) set of cardinality m. Let $\epsilon \in \mathbb{R}^{N}$ be a Rademacher sequence. Assume that

$$
m \geq C \delta^{-1} s^{3 / 2} \log ^{3 / 2}(N)
$$

and, for $\varepsilon \in(0,1)$,

$$
m \geq C \delta^{-2} s \log ^{2}(s) \log ^{2}(N) \log \left(\varepsilon^{-1}\right)
$$

Then with probability at least $1-\varepsilon$ the restricted isometry constants of $\frac{1}{\sqrt{m}} \phi^{\Theta}(\epsilon)$ satisfy $\delta_{s} \leq \delta$.

Theorem is also valid for Steinhaus or Gaussian sequence.

Proof Idea

With translation operators $S_{\ell}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N},\left(S_{\ell} h\right)_{k}=h_{k-\ell} \bmod N$ we can write

$$
A=\frac{1}{\sqrt{m}} \Phi^{\Theta}(\epsilon)=\frac{1}{\sqrt{m}} \sum_{\ell=1}^{N} \epsilon_{\ell} R_{\Theta} S_{\ell} .
$$

Proof Idea

With translation operators $S_{\ell}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N},\left(S_{\ell} h\right)_{k}=h_{k-\ell} \bmod N$ we can write

$$
A=\frac{1}{\sqrt{m}} \Phi^{\Theta}(\epsilon)=\frac{1}{\sqrt{m}} \sum_{\ell=1}^{N} \epsilon_{\ell} R_{\Theta} S_{\ell}
$$

Denote $T_{s}:=\left\{x \in \mathbb{R}^{N},\|x\|_{2} \leq 1,\|x\|_{0} \leq s\right\}$. Then

$$
\delta_{s}=\sup _{x \in T_{s}}\left|\left\langle\left(A^{*} A-I\right) x, x\right\rangle\right|=\sup _{x \in T_{s}} \frac{1}{m}\left|\sum_{k \neq j} \epsilon_{j} \epsilon_{k} x^{*} Q_{j, k} x\right|
$$

with $Q_{j, k}=S_{j}^{*} P_{\Theta} S_{k}$ and $P_{\Theta}=R_{\Theta}^{*} R_{\Theta}$ is the projection of a vector in \mathbb{R}^{N} onto its entries in Θ.
We arrive at estimating the supremum of a Rademacher chaos process of order 2.

Dudley type inequality for chaos processes

Theorem (Talagrand)

Let $Y_{x}=\sum_{k, j} \epsilon_{j} \epsilon_{k} Z_{j k}(x)$ be a scalar Rademacher chaos process indexed by $x \in T$, with $Z_{j j}(x)=0$ and $Z_{j k}(x)=Z_{k j}(x)$. Introduce two metrics on T, with $(Z(x))_{j, k}=Z_{j k}(x)_{j, k}$,

$$
\begin{aligned}
& d_{1}(x, y)=\|Z(x)-Z(y)\|_{F}, \\
& d_{2}(x, y)=\|Z(x)-Z(y)\|_{2 \rightarrow 2} .
\end{aligned}
$$

Let $N\left(T, d_{i}, u\right)$ denote the minimal number of balls of radius u in the metric d_{i} necessary to cover T. There exists a universal constant K such that, for an arbitrary $x_{0} \in T$,

$$
\begin{aligned}
& \mathbb{E} \sup _{x \in T}\left|Y_{x}-Y_{x_{0}}\right| \leq \\
& K \max \left\{\int_{0}^{\infty} \sqrt{\log \left(N\left(T, d_{1}, u\right)\right)} d u, \int_{0}^{\infty} \log \left(N\left(T, d_{2}, u\right)\right) d u\right\} .
\end{aligned}
$$

Estimates of entropy integrals

In our situation,

$$
\int_{0}^{\infty} \sqrt{\log \left(N\left(T_{s}, d_{1}, u\right)\right)} d u \leq C \sqrt{\frac{s \log ^{2}(s) \log ^{2}(N)}{m}}
$$

and

$$
\int_{0}^{\infty} \log \left(N\left(T_{s}, d_{2}, u\right)\right) d u \leq C \frac{s^{3 / 2} \log ^{3 / 2}(N)}{m}
$$

Technique: Pass to Fourier transform, and use estimates due to Rudelson and Vershynin.

Probability estimate:
Concentration inequality due to Talagrand (1996), with improvements due to Boucheron, Lugosi, Massart (2003).

Random Gabor Frames

Translation and Modulation on \mathbb{C}^{n}

$$
\left(S_{p} h\right)_{q}=h_{(p+q)} \quad \bmod n \quad \text { and } \quad\left(M_{\ell} h\right)_{q}=e^{2 \pi i \ell q / n} h_{q}
$$

For $h \in \mathbb{C}^{n}$ define Gabor system (Gabor synthesis matrix)

$$
A_{h}=\left(M_{\ell} S_{p} h\right)_{\ell, p=0, \ldots, n-1} \in \mathbb{C}^{n \times n^{2}}
$$

Motivation: Wireless communications and sonar.

Random Gabor Frames

Translation and Modulation on \mathbb{C}^{n}

$$
\left(S_{p} h\right)_{q}=h_{(p+q)} \quad \bmod n \quad \text { and } \quad\left(M_{\ell} h\right)_{q}=e^{2 \pi i \ell q / n} h_{q}
$$

For $h \in \mathbb{C}^{n}$ define Gabor system (Gabor synthesis matrix)

$$
A_{h}=\left(M_{\ell} S_{p} h\right)_{\ell, p=0, \ldots, n-1} \in \mathbb{C}^{n \times n^{2}}
$$

Motivation: Wireless communications and sonar.
Choose $h \in \mathbb{C}^{n}$ at random, more precisely as a Steinhaus sequence: All entries $h_{q}, q=0, \ldots, n-1$, are chosen independently and uniformly at random from the torus $\{z \in \mathbb{C},|z|=1\}$.

Performance of $A_{h} \in \mathbb{C}^{n \times n^{2}}$ for sparse recovery?

Nonuniform recovery

Theorem (Pfander - Rauhut 2007)

Let $x \in \mathbb{C}^{n^{2}}$ be s-sparse. Choose $A_{h} \in \mathbb{C}^{n \times n^{2}}$ at random (that is, let h be a Steinhaus sequence). Assume that

$$
s \leq C \frac{n}{\log (n / \varepsilon)}
$$

Then with probability at least $1-\varepsilon \ell_{1}$-minimization recovers x from $y=A_{h} x$.

RIP estimate

Theorem (June 2010)

Choose $A_{h} \in \mathbb{C}^{n \times n^{2}}$ at random (this is, let h be a Steinhaus sequence). Assume that

$$
n \geq C \delta^{-1} s^{3 / 2} \log ^{3 / 2}(n)
$$

and, for $\varepsilon \in(0,1)$,

$$
n \geq C \delta^{-2} s \log ^{2}(s) \log ^{2}(n) \log \left(\varepsilon^{-1}\right)
$$

Then with probability at least $1-\varepsilon$ the restricted isometry constants of $\frac{1}{\sqrt{n}} A_{h}$ satisfy $\delta_{s} \leq \delta$.

Result is valid also for Rademacher or Gaussian generator h.

THAT'S ALL THANKS!

