Compressive Sensing and Structured Random Matrices

Holger Rauhut Hausdorff Center for Mathematics & Institute for Numerical Simulation University of Bonn

Probability & Geometry in High Dimensions Marne la Vallée May 19, 2010

- Compressive Sensing
- Random Sampling in Bounded Orthonormal Systems
- Partial Random Circulant Matrices
- Random Gabor Frames

Key Ideas of compressive sensing

 Many types of signals, images are sparse, or can be well-approximated by sparse ones.

Key Ideas of compressive sensing

- Many types of signals, images are sparse, or can be well-approximated by sparse ones.
- Question: Is it possible to recover such signals from only a small number of (linear) measurements, i.e., without measuring all entries of the signal?

Sparse Vectors in Finite Dimension

- coefficient vector: $\mathbf{x} \in \mathbb{C}^N$, $N \in \mathbb{N}$
- support of **x**: supp $\mathbf{x} := \{j, x_j \neq 0\}$
- *s* sparse vectors: $\|\mathbf{x}\|_0 := |\operatorname{supp} \mathbf{x}| \le s$.

Sparse Vectors in Finite Dimension

- coefficient vector: $\mathbf{x} \in \mathbb{C}^N$, $N \in \mathbb{N}$
- support of **x**: supp $\mathbf{x} := \{j, x_j \neq 0\}$
- *s* sparse vectors: $\|\mathbf{x}\|_0 := |\operatorname{supp} \mathbf{x}| \le s$.

s-term approximation error

$$\sigma_s(\mathbf{x})_q := \inf\{\|\mathbf{x} - \mathbf{z}\|_q, \mathbf{z} \text{ is } s\text{-sparse}\}, \quad 0 < q \leq \infty.$$

x is called compressible if $\sigma_s(\mathbf{x})_q$ decays quickly in *s*.

Reconstruct a *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ (or a compressible vector) from its vector \mathbf{y} of *m* measurements

$$\mathbf{y} = A\mathbf{x}, \qquad A \in \mathbb{C}^{m \times N}.$$

Interesting case: $s < m \ll N$.

Underdetermined linear system of equations with a sparsity constraint.

Reconstruct a *s*-sparse vector $\mathbf{x} \in \mathbb{C}^N$ (or a compressible vector) from its vector \mathbf{y} of *m* measurements

$$\mathbf{y} = A\mathbf{x}, \qquad A \in \mathbb{C}^{m \times N}.$$

Interesting case: $s < m \ll N$.

Underdetermined linear system of equations with a sparsity constraint.

Preferably we would like to have a fast algorithm that performs the reconstruction.

ℓ_0 -minimization

 ℓ_0 -minimization:

$$\min_{\mathbf{x}\in\mathbb{C}^N}\|\mathbf{x}\|_0 \quad \text{subject to} \quad A\mathbf{x}=\mathbf{y}.$$

ℓ_0 -minimization

 ℓ_0 -minimization:

$$\min_{\mathbf{x}\in\mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text{subject to} \quad A\mathbf{x}=\mathbf{y}.$$

Problem: ℓ_0 -minimization is NP hard!

ℓ_1 -minimization

ℓ_1 minimization:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1} = \sum_{j=1}^{N} |x_{j}| \text{ subject to } A\mathbf{x} = \mathbf{y}$$

ℓ_1 -minimization

ℓ_1 minimization:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1} = \sum_{j=1}^{N} |x_{j}| \text{ subject to } A\mathbf{x} = \mathbf{y}$$

Convex relaxation of ℓ_0 -minimization problem.

Efficient minimization methods available.

Restricted Isometry Property (RIP)

Definition

The restricted isometry constant δ_s of a matrix $A \in \mathbb{C}^{m \times N}$ is defined as the smallest δ_s such that

$$(1 - \delta_s) \|\mathbf{x}\|_2^2 \le \|A\mathbf{x}\|_2^2 \le (1 + \delta_s) \|\mathbf{x}\|_2^2$$

for all *s*-sparse $\mathbf{x} \in \mathbb{C}^N$.

Requires that all s-column submatrices of A are well-conditioned.

RIP implies recovery by ℓ_1 -minimization

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart, Lai 2009 – Foucart 2009)

Assume that the restricted isometry constant δ_{2s} of $A \in \mathbb{C}^{m \times N}$ satisfies

$$\delta_{2s} < rac{2}{3+\sqrt{7/4}} pprox 0.4627.$$

Then ℓ_1 -minimization reconstructs every s-sparse vector $\mathbf{x} \in \mathbb{C}^N$ from y = Ax.

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart, Lai 2009 – Foucart 2009)

Let $A \in \mathbb{C}^{m \times N}$ with $\delta_{2s} < \frac{2}{3+\sqrt{7/4}} \approx 0.4627$. Let $x \in \mathbb{C}^N$, and assume that noisy data are observed, $y = Ax + \eta$ with $\|\eta\|_2 \leq \sigma$. Let $x^{\#}$ by the solution of

 $\min_{z} \|z\|_1 \quad such that \quad \|Az - y\|_2 \le \sigma.$

Then

$$\|x - x^{\#}\|_{2} \le C_{1}\sigma + C_{2}\frac{\sigma_{s}(x)_{1}}{\sqrt{s}}$$

for constants $C_1, C_2 > 0$, that depend only on δ_{2s} .

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2s} \leq 0.46$ for "large" s.

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2s} \leq 0.46$ for "large" s.

Goal: $\delta_s \leq \delta$, if

 $m \geq C_{\delta} s \log^{\alpha}(N),$

for constants C_{δ} and α .

Deterministic matrices known, for which $m \ge C_{\delta} s^2$ suffices.

Open problem: Give explicit matrices $A \in \mathbb{C}^{m \times N}$ with small $\delta_{2s} \leq 0.46$ for "large" s.

Goal: $\delta_s \leq \delta$, if

 $m \geq C_{\delta} s \log^{\alpha}(N),$

for constants C_{δ} and α .

Deterministic matrices known, for which $m \ge C_{\delta}s^2$ suffices.

Way out: consider random matrices.

RIP for Gaussian and Bernoulli matrices

Gaussian: entries of \boldsymbol{A} independent standard normal distributed random $\mathbf{r}\mathbf{v}$

Bernoulli : entries of A independent Bernoulli ± 1 distributed rv

Theorem

Let $A \in \mathbb{R}^{m \times N}$ be a Gaussian or Bernoulli random matrix and assume

$$m \ge C\delta^{-2}(s\ln(N/s) + \ln(\varepsilon^{-1}))$$

for a universal constant C > 0. Then with probability at least $1 - \varepsilon$ the restricted isometry constant of $\frac{1}{\sqrt{m}}A$ satisfies $\delta_s \leq \delta$.

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_1 -minimization with probability at least $1 - \varepsilon = 1 - \exp(-cm)$, c = 1/(2C), provided

 $m \geq Cs \ln(N/s).$

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_1 -minimization with probability at least $1 - \varepsilon = 1 - \exp(-cm)$, c = 1/(2C), provided

 $m \geq Cs \ln(N/s).$

No quadratic bottleneck!

Gaussian or Bernoulli matrices $A \in \mathbb{R}^{m \times}$ allow (stable) sparse recovery using ℓ_1 -minimization with probability at least $1 - \varepsilon = 1 - \exp(-cm)$, c = 1/(2C), provided

 $m \geq Cs \ln(N/s).$

No quadratic bottleneck!

Bound is optimal as follows from bounds for Gelfand widths of ℓ_p^N -balls (0 < $p \le 1$), Kashin (1977), Gluskin – Garnaev (1984), Carl – Pajor (1988), Vybiral (2008), Foucart – Pajor – Rauhut – Ullrich (2010).

Why structure?

- Applications impose structure due to physical constraints, limited freedom to inject randomness.
- Fast matrix vector multiplies (FFT) in recovery algorithms, unstructured random matrices impracticable for large scale applications.
- Storage problems for unstructured matrices.

 $\mathcal{D} \subset \mathbb{R}^d$ endowed with probability measure ν . $\psi_1, \ldots, \psi_N : \mathcal{D} \to \mathbb{C}$ function system on \mathcal{D} .

 $\mathcal{D} \subset \mathbb{R}^d$ endowed with probability measure ν . $\psi_1, \ldots, \psi_N : \mathcal{D} \to \mathbb{C}$ function system on \mathcal{D} . Orthonormality

$$\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{j,k} = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

 $\mathcal{D} \subset \mathbb{R}^d$ endowed with probability measure ν . $\psi_1, \ldots, \psi_N : \mathcal{D} \to \mathbb{C}$ function system on \mathcal{D} . Orthonormality

$$\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{j,k} = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

Uniform bound in L^{∞} :

$$\|\psi_j\|_{\infty} = \sup_{t\in\mathcal{D}} |\psi_j(t)| \le K$$
 for all $j\in[N]$.

 $\mathcal{D} \subset \mathbb{R}^d$ endowed with probability measure ν . $\psi_1, \ldots, \psi_N : \mathcal{D} \to \mathbb{C}$ function system on \mathcal{D} . Orthonormality

$$\int_{\mathcal{D}} \psi_j(t) \overline{\psi_k(t)} d\nu(t) = \delta_{j,k} = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

Uniform bound in L^{∞} :

$$\|\psi_j\|_{\infty} = \sup_{t\in\mathcal{D}} |\psi_j(t)| \le K$$
 for all $j\in[N]$.

It always holds $K \ge 1$:

$$1=\int_{\mathcal{D}}|\psi_j(t)|^2d
u(t)\leq \sup_{t\in\mathcal{D}}|\psi_j(t)|^2\int_{\mathcal{D}}1d
u(t)\leq \mathcal{K}^2,$$

$$f(t) = \sum_{k=1}^{N} x_k \psi_k(t), \quad t \in \mathcal{D}.$$

$$f(t) = \sum_{k=1}^{N} x_k \psi_k(t), \quad t \in \mathcal{D}.$$

f is called s-sparse if **x** is s-sparse.

$$f(t) = \sum_{k=1}^{N} x_k \psi_k(t), \quad t \in \mathcal{D}.$$

f is called *s*-sparse if **x** is *s*-sparse. Sampling points $t_1, \ldots, t_m \in \mathcal{D}$. Sample values:

$$y_\ell = f(t_\ell) = \sum_{k=1}^N x_k \psi_k(t_\ell) , \quad \ell \in [m].$$

$$f(t) = \sum_{k=1}^{N} x_k \psi_k(t), \quad t \in \mathcal{D}.$$

f is called *s*-sparse if **x** is *s*-sparse. Sampling points $t_1, \ldots, t_m \in \mathcal{D}$. Sample values:

$$y_\ell = f(t_\ell) = \sum_{k=1}^N x_k \psi_k(t_\ell) , \quad \ell \in [m].$$

Sampling matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \psi_k(t_\ell), \qquad \ell \in [m], k \in [N].$$

$$f(t) = \sum_{k=1}^{N} x_k \psi_k(t), \quad t \in \mathcal{D}.$$

f is called *s*-sparse if **x** is *s*-sparse. Sampling points $t_1, \ldots, t_m \in \mathcal{D}$. Sample values:

$$y_\ell = f(t_\ell) = \sum_{k=1}^N x_k \psi_k(t_\ell) , \quad \ell \in [m].$$

Sampling matrix $A \in \mathbb{C}^{m \times N}$ with entries

$$A_{\ell,k} = \psi_k(t_\ell), \qquad \ell \in [m], k \in [N].$$

Then

$$\mathbf{y} = A\mathbf{x}.$$

Problem: Reconstruct *s*-sparse f — equivalently **x** — from its sample values $\mathbf{y} = A\mathbf{x}$.

Problem: Reconstruct *s*-sparse f — equivalently \mathbf{x} — from its sample values $\mathbf{y} = A\mathbf{x}$.

We consider ℓ_1 -minimization as recovery method.

Behavior of A as measurement matrix?

Choose sampling points t_1, \ldots, t_ℓ independently at random according to the measure ν , that is,

 $\mathbb{P}(t_{\ell} \in B) = \nu(B),$ for all measurable $B \subset \mathcal{D}.$

Choose sampling points t_1,\ldots,t_ℓ independently at random according to the measure ν , that is,

 $\mathbb{P}(t_{\ell} \in B) = \nu(B),$ for all measurable $B \subset \mathcal{D}.$

The sampling matrix A is then a structured random matrix.

Trigonometric System. $\mathcal{D} = [0, 1]$ with Lebesgue measure.

$$\psi_k(t)=e^{2\pi ikt},\quad t\in[0,1].$$

The trigonometric system is orthonormal with K = 1.

Trigonometric System. $\mathcal{D} = [0, 1]$ with Lebesgue measure.

$$\psi_k(t)=e^{2\pi ikt},\quad t\in[0,1].$$

The trigonometric system is orthonormal with K = 1. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$f(t) = \sum_{k\in\Gamma} x_k \psi_k(t) = \sum_{k\in\Gamma} x_k e^{2\pi i k t}$$

Trigonometric System. $\mathcal{D} = [0, 1]$ with Lebesgue measure.

$$\psi_k(t)=e^{2\pi ikt},\quad t\in[0,1].$$

The trigonometric system is orthonormal with K = 1. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$f(t) = \sum_{k\in\Gamma} x_k \psi_k(t) = \sum_{k\in\Gamma} x_k e^{2\pi i k t}.$$

Samples t_1, \ldots, t_m are chosen indendepently and uniformly at random from [0, 1].

Trigonometric System. $\mathcal{D} = [0, 1]$ with Lebesgue measure.

$$\psi_k(t)=e^{2\pi ikt},\quad t\in[0,1].$$

The trigonometric system is orthonormal with K = 1. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$f(t) = \sum_{k\in\Gamma} x_k \psi_k(t) = \sum_{k\in\Gamma} x_k e^{2\pi i k t}.$$

Samples t_1, \ldots, t_m are chosen indendepently and uniformly at random from [0, 1]. Nonequispaced random Fourier matrix

$$A_{\ell,k}=e^{2\pi i k t_\ell}, \quad \ell\in [m], k\in \Gamma.$$

Trigonometric System. $\mathcal{D} = [0, 1]$ with Lebesgue measure.

$$\psi_k(t)=e^{2\pi ikt},\quad t\in[0,1].$$

The trigonometric system is orthonormal with K = 1. Take subset $\Gamma \subset \mathbb{Z}$ of cardinality N; trigonometric polynomials

$$f(t) = \sum_{k\in\Gamma} x_k \psi_k(t) = \sum_{k\in\Gamma} x_k e^{2\pi i k t}.$$

Samples t_1, \ldots, t_m are chosen indendepently and uniformly at random from [0, 1]. Nonequispaced random Fourier matrix

$$A_{\ell,k} = e^{2\pi i k t_{\ell}}, \quad \ell \in [m], k \in \Gamma.$$

Fast matrix vector multiply using the nonequispaced fast Fourier transform (NFFT).

Fourier coefficients

Fourier coefficients

Time domain signal with 30 samples

Holger Rauhut, University of Bonn

Structured Random Matrices 20

- Real trigonometric polynomials
- Discrete systems Random rows of bounded orthogonal matrices
- Random partial Fourier matrices
- Legendre polynomials (needs a "twist", see below)

RIP estimate

Theorem (Rauhut 2006, 2009)

Let $A \in \mathbb{C}^{m \times N}$ be the random sampling matrix associated to a bounded orthonormal system with constant $K \ge 1$. Suppose

$$\frac{m}{\ln(m)} \ge CK^2 \delta^{-2} s \ln^2(s) \ln(N).$$

Then with probability at least $1 - N^{-\gamma \ln^2(s) \ln(m)}$ the restricted isometry constant of $\frac{1}{\sqrt{m}}A$ satisfies $\delta_s \leq \delta$.

Improvement of previous results for the discrete case due to Candès – Tao (2005) and Rudelson – Vershynin (2006). Explicit (but bad) constants. Simplified condition

$$s \ge CK^2 s \ln^4(N)$$

for uniform *s*-sparse recovery with probability $\geq 1 - N^{-\gamma \ln^3(N)}$.

Consider $\mathcal{D} = [-1, 1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_j = P_j$, $j = 0, \dots, N - 1$.

Consider $\mathcal{D} = [-1, 1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_j = P_j$, $j = 0, \dots, N - 1$.

It holds $||P_j||_{\infty} = \sqrt{2j+1}$, so $K = \sqrt{2N-1}$.

Consider $\mathcal{D} = [-1, 1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_j = P_j$, $j = 0, \dots, N - 1$.

It holds
$$||P_j||_{\infty} = \sqrt{2j+1}$$
, so $K = \sqrt{2N-1}$.

The previous result yields the (almost) trivial bound

 $m \geq C N s \log^2(s) \log(m) \log(N) > N.$

Consider $\mathcal{D} = [-1, 1]$ with normalized Lebesgue measure and orthonormal system of Legendre polynomials $\phi_j = P_j$, $j = 0, \dots, N - 1$.

It holds
$$||P_j||_{\infty} = \sqrt{2j+1}$$
, so $K = \sqrt{2N-1}$.

The previous result yields the (almost) trivial bound

$$m \geq CNs \log^2(s) \log(m) \log(N) > N.$$

Can we do better?

Do not sample uniformly, but with respect to the "Chebyshev" probability measure

$$u(dx) = \frac{1}{\pi}(1-x^2)^{-1/2}dx \quad \text{ on } [-1,1].$$

The functions

$$g_j(x) = \sqrt{\frac{\pi}{2}}(1-x^2)^{1/4}P_j(x)$$

are orthonormal with respect to ν .

Do not sample uniformly, but with respect to the "Chebyshev" probability measure

$$u(dx) = \frac{1}{\pi}(1-x^2)^{-1/2}dx \quad \text{ on } [-1,1].$$

The functions

$$g_j(x) = \sqrt{\frac{\pi}{2}}(1-x^2)^{1/4}P_j(x)$$

are orthonormal with respect to ν .

A classical estimate for Legendre polynomials states that

$$\sup_{x\in [-1,1]} |g_j(x)| \leq \sqrt{2} \quad \text{ for all } j\in \mathit{N}_0.$$

Random sampling of sparse Legendre expansions

Theorem (Rauhut – Ward 2010)

Let P_j , j = 0, ..., N - 1, be the normalized Legendre polynomials, and let x_{ℓ} , $\ell = 1, ..., m$, be sampling points in [-1, 1] which are chosen independently at random according to Chebyshev probability measure $\pi^{-1}(1 - x^2)^{-1/2} dx$ on [-1, 1]. Assume

 $m \geq Cs \log^4(N).$

Then with probability at least $1 - N^{-\gamma \log^3(N)}$ every s-sparse Legendre expansion

$$f(x) = \sum_{j=0}^{N-1} x_j P_j(x)$$

can be recovered from $y = (f(x_{\ell}))_{\ell=1}^{m}$ via ℓ_1 -minimization.

Proof Idea

Let $D = \sqrt{\pi/2} \operatorname{diag}\{(1 - x_{\ell}^2)^{1/4}, \ell = 1, \dots, m\} \in \mathbb{R}^{m \times m}$ and $A \in \mathbb{R}^{m \times N}$, $B \in \mathbb{R}^{m \times N}$ with entries

$$A_{\ell,j} = P_j(x_\ell), \qquad B_{\ell,j} = g_j(x_\ell).$$

Then B = DA. Hence,

$$\ker B = \ker A.$$

Since the constant $K \leq C$ for the system $\{g_{\ell}\}$, the matrix B satisfies RIP under the stated condition.

Circulant matrices

.

Circulant matrix: For $\mathbf{b} = (b_0, b_1, \dots, b_{N-1}) \in \mathbb{C}^N$ let $\Phi = \Phi(\mathbf{b}) \in \mathbb{C}^{N \times N}$ be the matrix with entries $\Phi_{i,j} = b_{j-i \mod N}$,

$$\Phi(\mathbf{b}) = \begin{pmatrix} b_0 & b_1 & \cdots & \cdots & b_{N-1} \\ b_{N-1} & b_0 & b_1 & \cdots & b_{N-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_1 & b_2 & \cdots & b_{N-1} & b_0 \end{pmatrix}$$

Let $\Theta \subset [N]$ arbitrary of cardinality m. R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ .

Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ : Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b}) = R_{\Theta}\Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$

Let $\Theta \subset [N]$ arbitrary of cardinality m. R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^N$ to its entries in Θ .

Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ : Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b}) = R_{\Theta}\Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$

Convolution followed by subsampling: $\mathbf{y} = R_{\Theta} \Phi(\mathbf{b}) \mathbf{x} = R_{\Theta}(\mathbf{b} * \mathbf{x})$

Let $\Theta \subset [N]$ arbitrary of cardinality m. R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ .

Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ : Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b}) = R_{\Theta}\Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$

Convolution followed by subsampling: $\mathbf{y} = R_{\Theta} \Phi(\mathbf{b}) \mathbf{x} = R_{\Theta}(\mathbf{b} * \mathbf{x})$ Matrix vector multiplication via the FFT!

Let $\Theta \subset [N]$ arbitrary of cardinality m. R_{Θ} : operator that restricts a vector $\mathbf{x} \in \mathbb{C}^{N}$ to its entries in Θ .

Restrict $\Phi(\mathbf{b})$ to the rows indexed by Θ : Partial circulant matrix: $\Phi^{\Theta}(\mathbf{b}) = R_{\Theta}\Phi(\mathbf{b}) \in \mathbb{C}^{m \times N}$

Convolution followed by subsampling: $\mathbf{y} = R_{\Theta} \Phi(\mathbf{b}) \mathbf{x} = R_{\Theta}(\mathbf{b} * \mathbf{x})$ Matrix vector multiplication via the FFT!

We choose the vector $\mathbf{b} \in \mathbb{C}^N$ at random, in particular, as Rademacher sequence $\mathbf{b} = \epsilon$, that is, $\epsilon_{\ell} = \pm 1$.

Performance of $\Phi^{\Theta}(\epsilon)$ in compressive sensing?

Theorem (Rauhut 2009)

Let $\Theta \subset [N]$ be an arbitrary (deterministic) set of cardinality *m*. Let $\mathbf{x} \in \mathbb{C}^N$ be *s*-sparse such that the signs of its non-zero entries form a Rademacher or Steinhaus sequence. Choose $\epsilon \in \mathbb{R}^N$ to be a Rademacher sequence. Let $\mathbf{y} = \Phi^{\Theta}(\epsilon)\mathbf{x} \in \mathbb{C}^m$. If

$m \geq 57 s \ln^2(17 N^2/arepsilon)$

then **x** can be recovered from **y** via ℓ_1 -minimization with probability at least $1 - \varepsilon$.

RIP estimate for partial circulant matrices

Theorem (Rauhut – Romberg – Tropp 2010)

Let $\Theta \subset [N]$ be an arbitrary (deterministic) set of cardinality m. Let $\epsilon \in \mathbb{R}^N$ be a Rademacher sequence. Assume that

 $m \ge C\delta^{-1}s^{3/2}\log^{3/2}(N),$

and, for $\varepsilon \in (0,1)$,

 $m \ge C\delta^{-2}s\log^2(s)\log^2(N)\log(\varepsilon^{-1})$

Then with probability at least $1 - \varepsilon$ the restricted isometry constants of $\frac{1}{\sqrt{m}} \Phi^{\Theta}(\epsilon)$ satisfy $\delta_s \leq \delta$.

Theorem is also valid for Steinhaus or Gaussian sequence.

Proof Idea

With translation operators $S_\ell: \mathbb{C}^N \to \mathbb{C}^N, (S_\ell h)_k = h_{k-\ell \mod N}$ we can write

$$A = rac{1}{\sqrt{m}} \Phi^{\Theta}(\epsilon) = rac{1}{\sqrt{m}} \sum_{\ell=1}^{N} \epsilon_{\ell} R_{\Theta} S_{\ell}.$$

Proof Idea

With translation operators $S_{\ell} : \mathbb{C}^N \to \mathbb{C}^N, (S_{\ell}h)_k = h_{k-\ell \mod N}$ we can write

$$A = rac{1}{\sqrt{m}} \Phi^{\Theta}(\epsilon) = rac{1}{\sqrt{m}} \sum_{\ell=1}^{N} \epsilon_{\ell} R_{\Theta} S_{\ell}.$$

Denote $T_s := \{x \in \mathbb{R}^N, \|x\|_2 \le 1, \|x\|_0 \le s\}$. Then

$$\delta_{s} = \sup_{x \in T_{s}} |\langle (A^{*}A - I)x, x \rangle| = \sup_{x \in T_{s}} \frac{1}{m} |\sum_{k \neq j} \epsilon_{j} \epsilon_{k} x^{*} Q_{j,k} x|$$

with $Q_{j,k} = S_j^* P_{\Theta} S_k$ and $P_{\Theta} = R_{\Theta}^* R_{\Theta}$ is the projection of a vector in \mathbb{R}^N onto its entries in Θ . We arrive at estimating the supremum of a Rademacher chaos process of order 2.

Dudley type inequality for chaos processes

Theorem (Talagrand)

Let $Y_x = \sum_{k,j} \epsilon_j \epsilon_k Z_{jk}(x)$ be a scalar Rademacher chaos process indexed by $x \in T$, with $Z_{jj}(x) = 0$ and $Z_{jk}(x) = Z_{kj}(x)$. Introduce two metrics on T, with $(Z(x))_{j,k} = Z_{jk}(x)_{j,k}$,

$$d_1(x, y) = \|Z(x) - Z(y)\|_F,$$

$$d_2(x, y) = \|Z(x) - Z(y)\|_{2 \to 2}.$$

Let $N(T, d_i, u)$ denote the minimal number of balls of radius u in the metric d_i necessary to cover T. There exists a universal constant K such that, for an arbitrary $x_0 \in T$,

$$\mathbb{E} \sup_{x \in T} |Y_x - Y_{x_0}| \le \\ K \max\left\{\int_0^\infty \sqrt{\log(N(T, d_1, u))} du, \int_0^\infty \log(N(T, d_2, u)) du\right\}.$$

Estimates of entropy integrals

In our situation,

$$\int_0^\infty \sqrt{\log(N(T_s, d_1, u))} du \le C \sqrt{\frac{s \log^2(s) \log^2(N)}{m}},$$

and

$$\int_0^\infty \log(N(T_s, d_2, u)) du \le C \frac{s^{3/2} \log^{3/2}(N)}{m}$$

Technique: Pass to Fourier transform, and use estimates due to Rudelson and Vershynin.

Probability estimate:

Concentration inequality due to Talagrand (1996),

with improvements due to Boucheron, Lugosi, Massart (2003).

Random Gabor Frames

Translation and Modulation on \mathbb{C}^n

 $(S_ph)_q = h_{(p+q) \mod n}$ and $(M_\ell h)_q = e^{2\pi i \ell q/n} h_q.$

For $h \in \mathbb{C}^n$ define Gabor system (Gabor synthesis matrix)

$$A_h = (M_\ell S_p h)_{\ell,p=0,...,n-1} \in \mathbb{C}^{n \times n^2}$$

Motivation: Wireless communications and sonar.

Random Gabor Frames

Translation and Modulation on \mathbb{C}^n

 $(S_ph)_q = h_{(p+q) \mod n}$ and $(M_\ell h)_q = e^{2\pi i \ell q/n} h_q.$

For $h \in \mathbb{C}^n$ define Gabor system (Gabor synthesis matrix)

 $A_h = (M_\ell S_\rho h)_{\ell, \rho=0,...,n-1} \in \mathbb{C}^{n \times n^2}$

Motivation: Wireless communications and sonar.

Choose $h \in \mathbb{C}^n$ at random, more precisely as a Steinhaus sequence: All entries h_q , q = 0, ..., n - 1, are chosen independently and uniformly at random from the torus $\{z \in \mathbb{C}, |z| = 1\}$.

Performance of $A_h \in \mathbb{C}^{n \times n^2}$ for sparse recovery?

Theorem (Pfander – Rauhut 2007)

Let $x \in \mathbb{C}^{n^2}$ be s-sparse. Choose $A_h \in \mathbb{C}^{n \times n^2}$ at random (that is, let h be a Steinhaus sequence). Assume that

$$s \leq C \frac{n}{\log(n/\varepsilon)}.$$

Then with probability at least $1 - \varepsilon \ell_1$ -minimization recovers x from $y = A_h x$.

RIP estimate

Theorem (June 2010)

Choose $A_h \in \mathbb{C}^{n \times n^2}$ at random (this is, let h be a Steinhaus sequence). Assume that

 $n \ge C\delta^{-1}s^{3/2}\log^{3/2}(n),$

and, for $\varepsilon \in (0,1)$,

 $n \ge C\delta^{-2}s\log^2(s)\log^2(n)\log(\varepsilon^{-1}).$

Then with probability at least $1 - \varepsilon$ the restricted isometry constants of $\frac{1}{\sqrt{n}}A_h$ satisfy $\delta_s \leq \delta$.

Result is valid also for Rademacher or Gaussian generator h.

THAT'S ALL THANKS!