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Overview

• Compressive Sensing

• Random Sampling in Bounded Orthonormal Systems

• Partial Random Circulant Matrices

• Random Gabor Frames
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Key Ideas of compressive sensing

• Many types of signals, images are sparse, or can be
well-approximated by sparse ones.

• Question: Is it possible to recover such signals from only a
small number of (linear) measurements, i.e., without
measuring all entries of the signal?
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Sparse Vectors in Finite Dimension

• coefficient vector: x ∈ CN , N ∈ N
• support of x: supp x := {j , xj 6= 0}
• s- sparse vectors: ‖x‖0 := |supp x| ≤ s.

s-term approximation error

σs(x)q := inf{‖x− z‖q, z is s-sparse}, 0 < q ≤ ∞.

x is called compressible if σs(x)q decays quickly in s.
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Compressed Sensing Problem

Reconstruct a s-sparse vector x ∈ CN (or a compressible vector)
from its vector y of m measurements

y = Ax, A ∈ Cm×N .

Interesting case: s < m� N.

Underdetermined linear system of equations with a sparsity
constraint.

Preferably we would like to have a fast algorithm that performs the
reconstruction.
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`0-minimization

`0-minimization:

min
x∈CN

‖x‖0 subject to Ax = y.

Problem: `0-minimization is NP hard!
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`1-minimization

`1 minimization:

min
x
‖x‖1 =

N∑
j=1

|xj | subject to Ax = y

Convex relaxation of `0-minimization problem.

Efficient minimization methods available.
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Restricted Isometry Property (RIP)

Definition

The restricted isometry constant δs of a matrix A ∈ Cm×N is
defined as the smallest δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse x ∈ CN .

Requires that all s-column submatrices of A are well-conditioned.
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RIP implies recovery by `1-minimization

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart,
Lai 2009 – Foucart 2009)

Assume that the restricted isometry constant δ2s of A ∈ Cm×N

satisfies

δ2s <
2

3 +
√

7/4
≈ 0.4627.

Then `1-minimization reconstructs every s-sparse vector x ∈ CN

from y = Ax.
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Stability

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart,
Lai 2009 – Foucart 2009)

Let A ∈ Cm×N with δ2s <
2

3+
√

7/4
≈ 0.4627. Let x ∈ CN , and

assume that noisy data are observed, y = Ax + η with ‖η‖2 ≤ σ.
Let x# by the solution of

min
z
‖z‖1 such that ‖Az − y‖2 ≤ σ.

Then

‖x − x#‖2 ≤ C1σ + C2
σs(x)1√

s

for constants C1,C2 > 0, that depend only on δ2s .
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Random Matrices

Open problem: Give explicit matrices A ∈ Cm×N with small
δ2s ≤ 0.46 for “large” s.

Goal: δs ≤ δ, if
m ≥ Cδs logα(N),

for constants Cδ and α.

Deterministic matrices known, for which m ≥ Cδs
2 suffices.

Way out: consider random matrices.
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RIP for Gaussian and Bernoulli matrices

Gaussian: entries of A independent standard normal distributed
random rv
Bernoulli : entries of A independent Bernoulli ±1 distributed rv

Theorem

Let A ∈ Rm×N be a Gaussian or Bernoulli random matrix and
assume

m ≥ Cδ−2(s ln(N/s) + ln(ε−1))

for a universal constant C > 0. Then with probability at least
1− ε the restricted isometry constant of 1√

m
A satisfies δs ≤ δ.
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Consequence

Gaussian or Bernoulli matrices A ∈ Rm× allow (stable) sparse
recovery using `1-minimization with probability at least
1− ε = 1− exp (−cm), c = 1/(2C ), provided

m ≥ Cs ln(N/s).

No quadratic bottleneck!

Bound is optimal as follows from bounds for Gelfand widths of
`Np -balls (0 < p ≤ 1),
Kashin (1977), Gluskin – Garnaev (1984), Carl – Pajor (1988),
Vybiral (2008), Foucart – Pajor – Rauhut – Ullrich (2010).
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Structured Random Matrices

Why structure?

• Applications impose structure due to physical constraints,
limited freedom to inject randomness.

• Fast matrix vector multiplies (FFT) in recovery algorithms,
unstructured random matrices impracticable for large scale
applications.

• Storage problems for unstructured matrices.
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Bounded orthonormal systems (BOS)

D ⊂ Rd endowed with probability measure ν.
ψ1, . . . , ψN : D → C function system on D.

Orthonormality∫
D
ψj(t)ψk(t)dν(t) = δj ,k =

{
0 if j 6= k,
1 if j = k.

Uniform bound in L∞:

‖ψj‖∞ = sup
t∈D
|ψj(t)| ≤ K for all j ∈ [N].

It always holds K ≥ 1:

1 =

∫
D
|ψj(t)|2dν(t) ≤ sup

t∈D
|ψj(t)|2

∫
D

1dν(t) ≤ K 2.
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Sampling

Consider functions

f (t) =
N∑

k=1

xkψk(t), t ∈ D.

f is called s-sparse if x is s-sparse.
Sampling points t1, . . . , tm ∈ D. Sample values:

y` = f (t`) =
N∑

k=1

xkψk(t`) , ` ∈ [m].

Sampling matrix A ∈ Cm×N with entries

A`,k = ψk(t`), ` ∈ [m], k ∈ [N].

Then
y = Ax.
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Sparse Recovery

Problem: Reconstruct s-sparse f — equivalently x — from its
sample values y = Ax.

We consider `1-minimization as recovery method.

Behavior of A as measurement matrix?
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Random Sampling

Choose sampling points t1, . . . , t` independently at random
according to the measure ν, that is,

P(t` ∈ B) = ν(B), for all measurable B ⊂ D.

The sampling matrix A is then a structured random matrix.
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.

ψk(t) = e2πikt , t ∈ [0, 1].

The trigonometric system is orthonormal with K = 1.

Take subset
Γ ⊂ Z of cardinality N; trigonometric polynomials

f (t) =
∑
k∈Γ

xkψk(t) =
∑
k∈Γ

xke2πikt .

Samples t1, . . . , tm are chosen indendepently and uniformly at
random from [0, 1]. Nonequispaced random Fourier matrix

A`,k = e2πikt` , ` ∈ [m], k ∈ Γ.

Fast matrix vector multiply using the nonequispaced fast Fourier
transform (NFFT).
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Fourier coefficients

Time domain signal with 30 sam-

ples

`2-minimization `1-minimization
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Further examples

• Real trigonometric polynomials

• Discrete systems – Random rows of bounded orthogonal
matrices

• Random partial Fourier matrices

• Legendre polynomials (needs a “twist”, see below)

Holger Rauhut, University of Bonn Structured Random Matrices 21



RIP estimate

Theorem (Rauhut 2006, 2009)

Let A ∈ Cm×N be the random sampling matrix associated to a
bounded orthonormal system with constant K ≥ 1. Suppose

m

ln(m)
≥ CK 2δ−2s ln2(s) ln(N).

Then with probability at least 1− N−γ ln2(s) ln(m) the restricted
isometry constant of 1√

m
A satisfies δs ≤ δ.

Improvement of previous results for the discrete case due to
Candès – Tao (2005) and Rudelson – Vershynin (2006).
Explicit (but bad) constants.
Simplified condition

s ≥ CK 2s ln4(N)

for uniform s-sparse recovery with probability ≥ 1− N−γ ln3(N).
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Legendre Polynomials

Consider D = [−1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials φj = Pj ,
j = 0, . . . ,N − 1.

It holds ‖Pj‖∞ =
√

2j + 1, so K =
√

2N − 1.

The previous result yields the (almost) trivial bound

m ≥ C Ns log2(s) log(m) log(N) > N.

Can we do better?
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Random Chebyshev sampling

Do not sample uniformly, but with respect to the “Chebyshev”
probability measure

ν(dx) =
1

π
(1− x2)−1/2dx on [−1, 1].

The functions

gj(x) =

√
π

2
(1− x2)1/4Pj(x)

are orthonormal with respect to ν.

A classical estimate for Legendre polynomials states that

sup
x∈[−1,1]

|gj(x)| ≤
√

2 for all j ∈ N0.
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Random sampling of sparse Legendre expansions

Theorem (Rauhut – Ward 2010)

Let Pj , j = 0, . . . ,N − 1, be the normalized Legendre polynomials,
and let x`, ` = 1, . . . ,m, be sampling points in [−1, 1] which are
chosen independently at random according to Chebyshev
probability measure π−1(1− x2)−1/2dx on [−1, 1]. Assume

m ≥ Cs log4(N).

Then with probability at least 1− N−γ log3(N) every s-sparse
Legendre expansion

f (x) =
N−1∑
j=0

xjPj(x)

can be recovered from y = (f (x`))m
`=1 via `1-minimization.
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Proof Idea

Let D =
√
π/2 diag{(1− x2

` )1/4, ` = 1, . . . ,m} ∈ Rm×m

and A ∈ Rm×N , B ∈ Rm×N with entries

A`,j = Pj(x`), B`,j = gj(x`).

Then B = DA. Hence,

ker B = ker A.

Since the constant K ≤ C for the system {g`}, the matrix B
satisfies RIP under the stated condition.

Holger Rauhut, University of Bonn Structured Random Matrices 26



Circulant matrices

Circulant matrix: For b = (b0, b1, . . . , bN−1) ∈ CN let
Φ = Φ(b) ∈ CN×N be the matrix with entries Φi ,j = bj−i mod N ,

Φ(b) =


b0 b1 · · · · · · bN−1

bN−1 b0 b1 · · · bN−2
...

...
...

...
...

b1 b2 · · · bN−1 b0

 .

Holger Rauhut, University of Bonn Structured Random Matrices 27



Partial random circulant matrices

Let Θ ⊂ [N] arbitrary of cardinality m.
RΘ: operator that restricts a vector x ∈ CN to its entries in Θ.

Restrict Φ(b) to the rows indexed by Θ:
Partial circulant matrix: ΦΘ(b) = RΘΦ(b) ∈ Cm×N

Convolution followed by subsampling:
y = RΘΦ(b)x = RΘ(b ∗ x)
Matrix vector multiplication via the FFT!

We choose the vector b ∈ CN at random, in particular, as
Rademacher sequence b = ε, that is, ε` = ±1.

Performance of ΦΘ(ε) in compressive sensing?

Holger Rauhut, University of Bonn Structured Random Matrices 28
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Nonuniform recovery result for circulant matrices

Theorem (Rauhut 2009)

Let Θ ⊂ [N] be an arbitrary (deterministic) set of cardinality m.
Let x ∈ CN be s-sparse such that the signs of its non-zero entries
form a Rademacher or Steinhaus sequence. Choose ε ∈ RN to be a
Rademacher sequence. Let y = ΦΘ(ε)x ∈ Cm. If

m ≥ 57s ln2(17N2/ε)

then x can be recovered from y via `1-minimization with
probability at least 1− ε.
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RIP estimate for partial circulant matrices

Theorem (Rauhut – Romberg – Tropp 2010)

Let Θ ⊂ [N] be an arbitrary (deterministic) set of cardinality m.
Let ε ∈ RN be a Rademacher sequence. Assume that

m ≥ Cδ−1s3/2 log3/2(N),

and, for ε ∈ (0, 1),

m ≥ Cδ−2s log2(s) log2(N) log(ε−1)

Then with probability at least 1− ε the restricted isometry
constants of 1√

m
ΦΘ(ε) satisfy δs ≤ δ.

Theorem is also valid for Steinhaus or Gaussian sequence.
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Proof Idea

With translation operators S` : CN → CN , (S`h)k = hk−` mod N we
can write

A =
1√
m

ΦΘ(ε) =
1√
m

N∑
`=1

ε`RΘS`.

Denote Ts := {x ∈ RN , ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. Then

δs = sup
x∈Ts

|〈(A∗A− I )x , x〉| = sup
x∈Ts

1

m
|
∑
k 6=j

εjεkx∗Qj ,kx |

with Qj ,k = S∗j PΘSk and PΘ = R∗ΘRΘ is the projection of a vector

in RN onto its entries in Θ.
We arrive at estimating the supremum of a Rademacher chaos
process of order 2.
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Dudley type inequality for chaos processes

Theorem (Talagrand)

Let Yx =
∑

k,j εj εkZjk(x) be a scalar Rademacher chaos process
indexed by x ∈ T , with Zjj(x) = 0 and Zjk(x) = Zkj(x). Introduce
two metrics on T , with (Z (x))j ,k = Zjk(x)j ,k ,

d1(x , y) = ‖Z (x)− Z (y)‖F ,
d2(x , y) = ‖Z (x)− Z (y)‖2→2.

Let N(T , di , u) denote the minimal number of balls of radius u in
the metric di necessary to cover T . There exists a universal
constant K such that, for an arbitrary x0 ∈ T ,

E sup
x∈T
|Yx − Yx0 | ≤

K max

{∫ ∞
0

√
log(N(T , d1, u))du,

∫ ∞
0

log(N(T , d2, u))du

}
.
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Estimates of entropy integrals

In our situation,

∫ ∞
0

√
log(N(Ts , d1, u))du ≤ C

√
s log2(s) log2(N)

m
,

and ∫ ∞
0

log(N(Ts , d2, u))du ≤ C
s3/2 log3/2(N)

m
.

Technique: Pass to Fourier transform, and use estimates due to
Rudelson and Vershynin.

Probability estimate:
Concentration inequality due to Talagrand (1996),
with improvements due to Boucheron, Lugosi, Massart (2003).
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Random Gabor Frames

Translation and Modulation on Cn

(Sph)q = h(p+q) mod n and (M`h)q = e2πi`q/nhq.

For h ∈ Cn define Gabor system (Gabor synthesis matrix)

Ah = (M`Sph)`,p=0,...,n−1 ∈ Cn×n2

Motivation: Wireless communications and sonar.

Choose h ∈ Cn at random, more precisely as a Steinhaus sequence:
All entries hq, q = 0, . . . , n − 1, are chosen independently and
uniformly at random from the torus {z ∈ C, |z | = 1}.

Performance of Ah ∈ Cn×n2
for sparse recovery?
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Nonuniform recovery

Theorem (Pfander – Rauhut 2007)

Let x ∈ Cn2
be s-sparse. Choose Ah ∈ Cn×n2

at random (that is,
let h be a Steinhaus sequence). Assume that

s ≤ C
n

log(n/ε)
.

Then with probability at least 1− ε `1-minimization recovers x
from y = Ahx.
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RIP estimate

Theorem (June 2010)

Choose Ah ∈ Cn×n2
at random (this is, let h be a Steinhaus

sequence). Assume that

n ≥ Cδ−1s3/2 log3/2(n),

and, for ε ∈ (0, 1),

n ≥ Cδ−2s log2(s) log2(n) log(ε−1).

Then with probability at least 1− ε the restricted isometry
constants of 1√

n
Ah satisfy δs ≤ δ.

Result is valid also for Rademacher or Gaussian generator h.
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THAT’S ALL

THANKS!
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