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Overview

• Compressive Sensing

• Random Sampling in Bounded Orthonormal Systems

• Partial Random Circulant Matrices

• Random Gabor Frames
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Key Ideas of compressive sensing

• Many types of signals, images are sparse, or can be
well-approximated by sparse ones.

• Question: Is it possible to recover such signals from only a
small number of (linear) measurements, i.e., without
measuring all entries of the signal?
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Sparse Vectors in Finite Dimension

• coefficient vector: x ∈ CN , N ∈ N
• support of x: supp x := {j , xj 6= 0}
• s- sparse vectors: ‖x‖0 := |supp x| ≤ s.

s-term approximation error

σs(x)q := inf{‖x− z‖q, z is s-sparse}, 0 < q ≤ ∞.

x is called compressible if σs(x)q decays quickly in s.
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Compressed Sensing Problem

Reconstruct a s-sparse vector x ∈ CN (or a compressible vector)
from its vector y of m measurements

y = Ax, A ∈ Cm×N .

Interesting case: s < m� N.

Underdetermined linear system of equations with a sparsity
constraint.

Preferably we would like to have a fast algorithm that performs the
reconstruction.
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`0-minimization

`0-minimization:

min
x∈CN

‖x‖0 subject to Ax = y.

Problem: `0-minimization is NP hard!
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`1-minimization

`1 minimization:

min
x
‖x‖1 =

N∑
j=1

|xj | subject to Ax = y

Convex relaxation of `0-minimization problem.

Efficient minimization methods available.
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Restricted Isometry Property (RIP)

Definition

The restricted isometry constant δs of a matrix A ∈ Cm×N is
defined as the smallest δs such that

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2

for all s-sparse x ∈ CN .

Requires that all s-column submatrices of A are well-conditioned.
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RIP implies recovery by `1-minimization

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart,
Lai 2009 – Foucart 2009)

Assume that the restricted isometry constant δ2s of A ∈ Cm×N

satisfies

δ2s <
2

3 +
√

7/4
≈ 0.4627.

Then `1-minimization reconstructs every s-sparse vector x ∈ CN

from y = Ax.
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Stability

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart,
Lai 2009 – Foucart 2009)

Let A ∈ Cm×N with δ2s <
2

3+
√

7/4
≈ 0.4627. Let x ∈ CN , and

assume that noisy data are observed, y = Ax + η with ‖η‖2 ≤ σ.
Let x# by the solution of

min
z
‖z‖1 such that ‖Az − y‖2 ≤ σ.

Then

‖x − x#‖2 ≤ C1σ + C2
σs(x)1√

s

for constants C1,C2 > 0, that depend only on δ2s .
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Random Matrices

Open problem: Give explicit matrices A ∈ Cm×N with small
δ2s ≤ 0.46 for “large” s.

Goal: δs ≤ δ, if
m ≥ Cδs logα(N),

for constants Cδ and α.

Deterministic matrices known, for which m ≥ Cδs
2 suffices.

Way out: consider random matrices.
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RIP for Gaussian and Bernoulli matrices

Gaussian: entries of A independent standard normal distributed
random rv
Bernoulli : entries of A independent Bernoulli ±1 distributed rv

Theorem

Let A ∈ Rm×N be a Gaussian or Bernoulli random matrix and
assume

m ≥ Cδ−2(s ln(N/s) + ln(ε−1))

for a universal constant C > 0. Then with probability at least
1− ε the restricted isometry constant of 1√

m
A satisfies δs ≤ δ.
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Consequence

Gaussian or Bernoulli matrices A ∈ Rm× allow (stable) sparse
recovery using `1-minimization with probability at least
1− ε = 1− exp (−cm), c = 1/(2C ), provided

m ≥ Cs ln(N/s).

No quadratic bottleneck!

Bound is optimal as follows from bounds for Gelfand widths of
`Np -balls (0 < p ≤ 1),
Kashin (1977), Gluskin – Garnaev (1984), Carl – Pajor (1988),
Vybiral (2008), Foucart – Pajor – Rauhut – Ullrich (2010).
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Structured Random Matrices

Why structure?

• Applications impose structure due to physical constraints,
limited freedom to inject randomness.

• Fast matrix vector multiplies (FFT) in recovery algorithms,
unstructured random matrices impracticable for large scale
applications.

• Storage problems for unstructured matrices.
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Bounded orthonormal systems (BOS)

D ⊂ Rd endowed with probability measure ν.
ψ1, . . . , ψN : D → C function system on D.

Orthonormality∫
D
ψj(t)ψk(t)dν(t) = δj ,k =

{
0 if j 6= k,
1 if j = k.

Uniform bound in L∞:

‖ψj‖∞ = sup
t∈D
|ψj(t)| ≤ K for all j ∈ [N].

It always holds K ≥ 1:

1 =

∫
D
|ψj(t)|2dν(t) ≤ sup

t∈D
|ψj(t)|2

∫
D

1dν(t) ≤ K 2.
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Sampling

Consider functions

f (t) =
N∑

k=1

xkψk(t), t ∈ D.

f is called s-sparse if x is s-sparse.
Sampling points t1, . . . , tm ∈ D. Sample values:

y` = f (t`) =
N∑

k=1

xkψk(t`) , ` ∈ [m].

Sampling matrix A ∈ Cm×N with entries

A`,k = ψk(t`), ` ∈ [m], k ∈ [N].

Then
y = Ax.
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Sparse Recovery

Problem: Reconstruct s-sparse f — equivalently x — from its
sample values y = Ax.

We consider `1-minimization as recovery method.

Behavior of A as measurement matrix?
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Random Sampling

Choose sampling points t1, . . . , t` independently at random
according to the measure ν, that is,

P(t` ∈ B) = ν(B), for all measurable B ⊂ D.

The sampling matrix A is then a structured random matrix.
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Examples of Bounded Orthonormal Systems

Trigonometric System. D = [0, 1] with Lebesgue measure.

ψk(t) = e2πikt , t ∈ [0, 1].

The trigonometric system is orthonormal with K = 1.

Take subset
Γ ⊂ Z of cardinality N; trigonometric polynomials

f (t) =
∑
k∈Γ

xkψk(t) =
∑
k∈Γ

xke2πikt .

Samples t1, . . . , tm are chosen indendepently and uniformly at
random from [0, 1]. Nonequispaced random Fourier matrix

A`,k = e2πikt` , ` ∈ [m], k ∈ Γ.

Fast matrix vector multiply using the nonequispaced fast Fourier
transform (NFFT).
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Fourier coefficients

Time domain signal with 30 sam-

ples

`2-minimization `1-minimization
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Further examples

• Real trigonometric polynomials

• Discrete systems – Random rows of bounded orthogonal
matrices

• Random partial Fourier matrices

• Legendre polynomials (needs a “twist”, see below)
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RIP estimate

Theorem (Rauhut 2006, 2009)

Let A ∈ Cm×N be the random sampling matrix associated to a
bounded orthonormal system with constant K ≥ 1. Suppose

m

ln(m)
≥ CK 2δ−2s ln2(s) ln(N).

Then with probability at least 1− N−γ ln2(s) ln(m) the restricted
isometry constant of 1√

m
A satisfies δs ≤ δ.

Improvement of previous results for the discrete case due to
Candès – Tao (2005) and Rudelson – Vershynin (2006).
Explicit (but bad) constants.
Simplified condition

s ≥ CK 2s ln4(N)

for uniform s-sparse recovery with probability ≥ 1− N−γ ln3(N).
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Legendre Polynomials

Consider D = [−1, 1] with normalized Lebesgue measure and
orthonormal system of Legendre polynomials φj = Pj ,
j = 0, . . . ,N − 1.

It holds ‖Pj‖∞ =
√

2j + 1, so K =
√

2N − 1.

The previous result yields the (almost) trivial bound

m ≥ C Ns log2(s) log(m) log(N) > N.

Can we do better?
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Random Chebyshev sampling

Do not sample uniformly, but with respect to the “Chebyshev”
probability measure

ν(dx) =
1

π
(1− x2)−1/2dx on [−1, 1].

The functions

gj(x) =

√
π

2
(1− x2)1/4Pj(x)

are orthonormal with respect to ν.

A classical estimate for Legendre polynomials states that

sup
x∈[−1,1]

|gj(x)| ≤
√

2 for all j ∈ N0.
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Random sampling of sparse Legendre expansions

Theorem (Rauhut – Ward 2010)

Let Pj , j = 0, . . . ,N − 1, be the normalized Legendre polynomials,
and let x`, ` = 1, . . . ,m, be sampling points in [−1, 1] which are
chosen independently at random according to Chebyshev
probability measure π−1(1− x2)−1/2dx on [−1, 1]. Assume

m ≥ Cs log4(N).

Then with probability at least 1− N−γ log3(N) every s-sparse
Legendre expansion

f (x) =
N−1∑
j=0

xjPj(x)

can be recovered from y = (f (x`))m
`=1 via `1-minimization.

Holger Rauhut, University of Bonn Structured Random Matrices 25



Proof Idea

Let D =
√
π/2 diag{(1− x2

` )1/4, ` = 1, . . . ,m} ∈ Rm×m

and A ∈ Rm×N , B ∈ Rm×N with entries

A`,j = Pj(x`), B`,j = gj(x`).

Then B = DA. Hence,

ker B = ker A.

Since the constant K ≤ C for the system {g`}, the matrix B
satisfies RIP under the stated condition.

Holger Rauhut, University of Bonn Structured Random Matrices 26



Circulant matrices

Circulant matrix: For b = (b0, b1, . . . , bN−1) ∈ CN let
Φ = Φ(b) ∈ CN×N be the matrix with entries Φi ,j = bj−i mod N ,

Φ(b) =


b0 b1 · · · · · · bN−1

bN−1 b0 b1 · · · bN−2
...

...
...

...
...

b1 b2 · · · bN−1 b0

 .
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Partial random circulant matrices

Let Θ ⊂ [N] arbitrary of cardinality m.
RΘ: operator that restricts a vector x ∈ CN to its entries in Θ.

Restrict Φ(b) to the rows indexed by Θ:
Partial circulant matrix: ΦΘ(b) = RΘΦ(b) ∈ Cm×N

Convolution followed by subsampling:
y = RΘΦ(b)x = RΘ(b ∗ x)
Matrix vector multiplication via the FFT!

We choose the vector b ∈ CN at random, in particular, as
Rademacher sequence b = ε, that is, ε` = ±1.
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Nonuniform recovery result for circulant matrices

Theorem (Rauhut 2009)

Let Θ ⊂ [N] be an arbitrary (deterministic) set of cardinality m.
Let x ∈ CN be s-sparse such that the signs of its non-zero entries
form a Rademacher or Steinhaus sequence. Choose ε ∈ RN to be a
Rademacher sequence. Let y = ΦΘ(ε)x ∈ Cm. If

m ≥ 57s ln2(17N2/ε)

then x can be recovered from y via `1-minimization with
probability at least 1− ε.
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RIP estimate for partial circulant matrices

Theorem (Rauhut – Romberg – Tropp 2010)

Let Θ ⊂ [N] be an arbitrary (deterministic) set of cardinality m.
Let ε ∈ RN be a Rademacher sequence. Assume that

m ≥ Cδ−1s3/2 log3/2(N),

and, for ε ∈ (0, 1),

m ≥ Cδ−2s log2(s) log2(N) log(ε−1)

Then with probability at least 1− ε the restricted isometry
constants of 1√

m
ΦΘ(ε) satisfy δs ≤ δ.

Theorem is also valid for Steinhaus or Gaussian sequence.
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Proof Idea

With translation operators S` : CN → CN , (S`h)k = hk−` mod N we
can write

A =
1√
m

ΦΘ(ε) =
1√
m

N∑
`=1

ε`RΘS`.

Denote Ts := {x ∈ RN , ‖x‖2 ≤ 1, ‖x‖0 ≤ s}. Then

δs = sup
x∈Ts

|〈(A∗A− I )x , x〉| = sup
x∈Ts

1

m
|
∑
k 6=j

εjεkx∗Qj ,kx |

with Qj ,k = S∗j PΘSk and PΘ = R∗ΘRΘ is the projection of a vector

in RN onto its entries in Θ.
We arrive at estimating the supremum of a Rademacher chaos
process of order 2.
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Dudley type inequality for chaos processes

Theorem (Talagrand)

Let Yx =
∑

k,j εj εkZjk(x) be a scalar Rademacher chaos process
indexed by x ∈ T , with Zjj(x) = 0 and Zjk(x) = Zkj(x). Introduce
two metrics on T , with (Z (x))j ,k = Zjk(x)j ,k ,

d1(x , y) = ‖Z (x)− Z (y)‖F ,
d2(x , y) = ‖Z (x)− Z (y)‖2→2.

Let N(T , di , u) denote the minimal number of balls of radius u in
the metric di necessary to cover T . There exists a universal
constant K such that, for an arbitrary x0 ∈ T ,

E sup
x∈T
|Yx − Yx0 | ≤

K max

{∫ ∞
0

√
log(N(T , d1, u))du,

∫ ∞
0

log(N(T , d2, u))du

}
.
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Estimates of entropy integrals

In our situation,

∫ ∞
0

√
log(N(Ts , d1, u))du ≤ C

√
s log2(s) log2(N)

m
,

and ∫ ∞
0

log(N(Ts , d2, u))du ≤ C
s3/2 log3/2(N)

m
.

Technique: Pass to Fourier transform, and use estimates due to
Rudelson and Vershynin.

Probability estimate:
Concentration inequality due to Talagrand (1996),
with improvements due to Boucheron, Lugosi, Massart (2003).

Holger Rauhut, University of Bonn Structured Random Matrices 33



Random Gabor Frames

Translation and Modulation on Cn

(Sph)q = h(p+q) mod n and (M`h)q = e2πi`q/nhq.

For h ∈ Cn define Gabor system (Gabor synthesis matrix)

Ah = (M`Sph)`,p=0,...,n−1 ∈ Cn×n2

Motivation: Wireless communications and sonar.

Choose h ∈ Cn at random, more precisely as a Steinhaus sequence:
All entries hq, q = 0, . . . , n − 1, are chosen independently and
uniformly at random from the torus {z ∈ C, |z | = 1}.

Performance of Ah ∈ Cn×n2
for sparse recovery?
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Nonuniform recovery

Theorem (Pfander – Rauhut 2007)

Let x ∈ Cn2
be s-sparse. Choose Ah ∈ Cn×n2

at random (that is,
let h be a Steinhaus sequence). Assume that

s ≤ C
n

log(n/ε)
.

Then with probability at least 1− ε `1-minimization recovers x
from y = Ahx.
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RIP estimate

Theorem (June 2010)

Choose Ah ∈ Cn×n2
at random (this is, let h be a Steinhaus

sequence). Assume that

n ≥ Cδ−1s3/2 log3/2(n),

and, for ε ∈ (0, 1),

n ≥ Cδ−2s log2(s) log2(n) log(ε−1).

Then with probability at least 1− ε the restricted isometry
constants of 1√

n
Ah satisfy δs ≤ δ.

Result is valid also for Rademacher or Gaussian generator h.
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THAT’S ALL

THANKS!
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