Random matrix theory and stochastic geometry in CS

Jared Tanner

Probability and geometry in high dimensions University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho

Compressed Sensing - Encoder

- Data acquisition at the information rate
 - When it is "costly" to acquire information use CS
 - Transform workload from sensor to computing resources
 - Reduced sampling possible by exploiting simplicity
- ▶ Linear Encoder: Discrete signal of length *N*, *x*
 - \bullet Transform matrix under which class of signals are sparse, Φ
 - "Random" matrix to mix transform coefficients, A
 - Measurements through $A\Phi$, $n \times N$ with $n \ll N$, $b := A\Phi x$

Compressed Sensing - Decoder

- Data acquisition at the information rate
 - When it is "costly" to acquire information use CS
 - Transform workload from sensor to computing resources
 - Reduced sampling possible by exploiting simplicity
- Linear Encoder: Discrete signal of length N, x
 - \bullet Transform matrix under which class of signals are sparse, Φ
 - "Random" matrix to mix transform coefficients, A
 - Measurements through $A\Phi$, $n \times N$ with $n \ll N$, $b := A\Phi x$
- Decoder: Reconstruct an approximation of x from (b, A)
 - Thresholding: take large coefficients of A^*b
 - Greedy Algorithms: OMP, CoSaMP, SP, IHT, StOMP, ...
 - Regularization: $\min_{y} \|\Phi y\|_{1}$ subject to $\|A\Phi y b\|_{2} \leq \eta$

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - *n*, number of inner product measurements
 - k, signal complexity, sparsity

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - n, number of inner product measurements
 - k, signal complexity, sparsity
- For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A)?
 - $n \sim k^2$ sufficient for many encoder/decoder pairs
 - n = k is the optimal oracle rate
 - $n \sim k$ possible using computationally efficient algorithms

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - n, number of inner product measurements
 - k, signal complexity, sparsity
- For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A)?
 - $n \sim k^2$ sufficient for many encoder/decoder pairs
 - n = k is the optimal oracle rate
 - $n \sim k$ possible using computationally efficient algorithms
- Mixed under/over-sampling rates compared to naive/optimal

Undersampling:
$$\delta := \frac{n}{N}$$
, Oversampling: $\rho := \frac{k}{n}$

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + R_k) \|x\|_2^2$$
 for x k-sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + R_k) \|x\|_2^2$$
 for x k-sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

- Algorithm specific:
 - False Alarm/Discovery Rate: Stagewise OMP (StOMP)
 - Convex Polytopes (face counting): ℓ^1 -regularization

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + R_k) \|x\|_2^2$$
 for x k -sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

- Algorithm specific:
 - False Alarm/Discovery Rate: Stagewise OMP (StOMP)
 - Convex Polytopes (face counting): ℓ^1 -regularization
- Measures of success:
 - Success for all k-sparse signals (RIP, polytopes)
 - Success for *most* signals (coherence, FAR, polytopes)

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

 $(1 - L(k, n, N; A)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N; A)) ||x||_2^2$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0, 1)$.
- What do we know about bounds on RICs?

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

 $(1 - L(k, n, N; A)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N; A)) ||x||_2^2$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0, 1)$.
- What do we know about bounds on RICs?
- ▶ No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

$$P(|||Ax||_2^2 - ||x||_2^2| \ge \epsilon ||x||_2^2) \le e^{-n \cdot c(\epsilon)} \quad c(\epsilon) > 0.$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

 $(1 - L(k, n, N; A)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N; A)) ||x||_2^2$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0, 1)$.
- What do we know about bounds on RICs?
- ▶ No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

$$P(|||Ax||_2^2 - ||x||_2^2| \ge \epsilon ||x||_2^2) \le e^{-n \cdot c(\epsilon)} \quad c(\epsilon) > 0.$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

► How large are these RICs? When do we have guarantees for sparsity recovery? max(U(k, n, N; A), L(k, n, N; A)) ≤ √2 − 1

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [Candés and Tao 05]

 $(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$

- ► Always stated as "δ_k := max(L(k, n, N; A), U(k, n, N; A))"
- Bound: concentration of measure $+ \binom{N}{k}$ union bound

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [BI-Ca-Ta 09]

 $(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$

- First asymmetric bounds, dramatic improvement for $L(\delta, \rho)$
- ▶ Bound: Large deviation of Wishart PDFs + $\binom{N}{k}$ union bound

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [Bah-Ta 10]

 $(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$

- Exploit eigenvalue "smoothness" for overlapping submatrices
- ▶ No more than 1.57 times empirically observations values

▶ Observed RIC for Gaussian $\mathcal{N}(0, n^{-1})$ [Bah-Ta 09]

 $(1 - L(k, n, N)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(k, n, N)) \|x\|_2^2$

- Observed lower bounds for n = 400 and various (k, N)
- What do these RICs tell us for sparsity algorithms?

Algorithms for Sparse Approximation

Input: A, b, and possibly tuning parameters

ℓ¹-regularization:

$$\min_{x} \|x\|_1 \quad \text{subject to} \quad \|Ax - b\|_2 \leq \tau$$

Simple Iterated Thresholding:

$$x^{t+1} = H_k(x^t + \kappa A^T(b - Ax^t))$$

Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

$$egin{aligned} &v^{t+1} = x^{t+1} = H_{lpha k}(x^t + \kappa A^T(b - Ax^t)) \ &I_t = supp(v^t) \cup supp(x^t) & ext{Join supp. sets} \ &w_{I_t} = (A_{I_t}^T A_{I_t})^{-1} A_{I_t}^T b & ext{Least squares fit} \ &x^{t+1} = H_{eta k}(w^t) & ext{Second threshold} \end{aligned}$$

When does RIP guarantee they work?

Best known bounds implied by RIP

- Lower bounds on the Strong exact recovery phase transition for Gaussian random matrices for the algorithms ¹-regularization, IHT, SP, and CoSaMP (black).
 - Unfortunately recovery thresholds are impractically low. n > 317k, n > 907k, n > 3124k, n > 4925k
- Larger phase transitions appear only possible by using algorithm specific techniques of analysis.

Geometry of ℓ^1 -regularization, \mathbb{R}^N

- Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- Null space of A intersects C^N at only x, or pierces C^N

Geometry of ℓ^1 -regularization, \mathbb{R}^N

- Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Null space of A intersects C^N at only x, or pierces C^N

 $\ell^1 ext{ ball } \in \mathbb{R}^N ext{ } x + \mathcal{N}(\mathcal{A}) ext{ } \|\mathcal{A}(x-y)\| \leq \eta$

• If $\{x + \mathcal{N}(A)\} \bigcap C^N = x$, ℓ^1 minimization recovers x

Faces pierced by $x + \mathcal{N}(\mathcal{A})$ do not recover k sparse x

Geometry of ℓ^1 -regularization, \mathbb{R}^n

- Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.

Geometry of ℓ^1 -regularization, \mathbb{R}^n

- Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.

- Survived faces are sparsity patterns in x where $\ell^1 \rightarrow \ell^0$
- Faces which fall inside $conv(\pm A)$ are not solutions to ℓ^1

Geometry of ℓ^1 -regularization, \mathbb{R}^n

- Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.

- Survived faces are sparsity patterns in x where $\ell^1 \rightarrow \ell^0$
- Faces which fall inside $conv(\pm A)$ are not solutions to ℓ^1
- Neighborliness of random polytopes [Affentranger & Schneider]
- Exact recoverability of k sparse signals by "counting faces"

Phase Transition: ℓ^1 ball, C^N

<u>k</u> n

- With overwhelming probability on measurements A_{n,N}: for any ε > 0, as (k, n, N) → ∞
 - All k-sparse signals if $k/n \le \rho_S(n/N, C)(1-\epsilon)$
 - Most k-sparse signals if $k/n \le \rho_W(n/N, C)(1-\epsilon)$
 - Failure typical if $k/n \ge \rho_W(n/N, C)(1+\epsilon)$

$$\delta = n/N$$

▶ Asymptotic behavior $\delta \rightarrow 0$: $\rho(n/N) \sim [2(e) \log(N/n)]^{-1}$

Phase Transition: Simplex, T^{N-1} , $x \ge 0$

- With overwhelming probability on measurements A_{n,N}: for any ε > 0, x ≥ 0, as (k, n, N) → ∞
 - All k-sparse signals if $k/n \le \rho_S(n/N, T)(1-\epsilon)$
 - Most k-sparse signals if $k/n \le \rho_W(n/N, T)(1-\epsilon)$
 - Failure typical if $k/n \ge \rho_W(n/N, T)(1+\epsilon)$

$$\delta = n/N$$

• Asymptotic behavior $\delta \rightarrow 0$: $\rho(n/N) \sim [2(e) \log(N/n)]^{-1}$

Weak Phase Transitions: Visual agreement

- ▶ Black: Weak phase transition: $x \ge 0$ (top), x signed (bot.)
- Overlaid empirical evidence of 50% success rate:

- Gaussian, Bernoulli, Fourier, Hadamard, Rademacher
- Ternary (p): P(0) = 1 p and $P(\pm 1) = p/2$
- Expander (p): $[p \cdot n]$ ones per column, otherwise zeros
- ▶ Rigorous statistical comparison shows $N^{-1/2}$ convergence

Bulk Z-scores

• Linear trend with $\delta = n/N$, decays at rate $N^{-1/2}$

Phase Transition: Hypercube, H^N

- Let $0 \le x \le 1$ have k entries $\ne 0, 1$ and form b = Ax.
- Are there other $y \in H^N[0,1]$ such that Ay = b, $y \neq x$?
- As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; H)$

- ▶ Unlike *T* and *C*: no strong phase transition
- Universal: A need only be in general position
- Simplicity beyond sparsity: Hypercube k-faces correspond to vectors with only k entries away from the bounds (not 0 or 1).

Phase Transition: Orthant, \mathbb{R}^{N}_{+}

- Let $x \ge 0$ be k-sparse and form b = Ax.
- Are there other $y \in \mathbb{R}^N_+$ such that Ay = b, $y \ge 0$, $y \ne x$?
- ► As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; \mathbb{R}_+)$

- Universal: A columns centrally symmetric and exchangeable Not universal to all A in general position-design possible.
- For k/n < ρ_W(δ, ℝ₊) := [2 − 1/δ]₊ and x ≥ 0, any "feasible" method will work, e.g. WCP (Cartis & Gould)

Phase Transition: Orthant, \mathbb{R}^{N}_{+} , matrix design

- Let $x \ge 0$ be k-sparse and form b = Ax.
- Are there other $y \in \mathbb{R}^N_+$ such that Ay = b, $y \ge 0$, $y \ne x$?
- As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; \mathbb{R}_+)$

- ► Gaussian and measuring the mean (row of ones): $\rho_W(n/N; \mathbb{R}_+) \rightarrow \rho_W(n/N; T)$
- Simple modification of A makes profound difference Unique even for n/N → 0 with n > 2(e)k log(N/n)

Orthant matrix design, it's really true

- Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Not ℓ^1 , but: max_y ||x y|| subject to Ay = Ax and $y \ge 0$
- ▶ Good empirical agreement for *N* = 200.

Orthant matrix design, it's really true

- Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Not ℓ^1 , but: max_y ||x y|| subject to Ay = Ax and $y \ge 0$
- ▶ Good empirical agreement for *N* = 200.

SUMMARY	Simplex	ℓ^1 ball	Hypercube	Orthant
Matrix class	Gaussian	Gaussian	gen. pos.	sym. exch.
Design	Vandermonde	unknown	not possible	row ones

Random matrix theory and stochastic geometry in CS

References

- Donoho (2005) High-Dimensional Centrosymmetric Polytopes with Neighborliness Proportional to Dimension. DCG.
- Donoho and Tanner
 - Counting faces of randomly-projected polytopes when projection radically lowers dimension (2006), J. AMS.
 - Counting the faces of randomly projected hypercubes and orthants, with applications (2008), *DCG*.
 - ▶ Precise Undersampling Theorems (2009), Proc. IEEE.
 - Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing (2009) *Phil. Trans. Roy. Soc. A.*
- Blanchard, Cartis, Tanner, Thompson (2009) Compressed Sensing: How sharp is the RIP?
- Bah, Tanner (2010) Improved RIC bounds for Gaussian Matrices.

Thanks for your time