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Compressed Sensing
Sparse Approximation Phase Transitions

Encoder–Decoder pair

Compressed Sensing - Encoder

I Data acquisition at the information rate

I When it is “costly” to acquire information use CS
I Transform workload from sensor to computing resources
I Reduced sampling possible by exploiting simplicity

I Linear Encoder: Discrete signal of length N, x
• Transform matrix under which class of signals are sparse, Φ
• “Random” matrix to mix transform coefficients, A
• Measurements through AΦ, n × N with n � N, b := AΦx
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Compressed Sensing
Sparse Approximation Phase Transitions

Encoder–Decoder pair

Compressed Sensing - Decoder

I Data acquisition at the information rate

I When it is “costly” to acquire information use CS
I Transform workload from sensor to computing resources
I Reduced sampling possible by exploiting simplicity

I Linear Encoder: Discrete signal of length N, x
• Transform matrix under which class of signals are sparse, Φ
• “Random” matrix to mix transform coefficients, A
• Measurements through AΦ, n × N with n � N, b := AΦx

I Decoder: Reconstruct an approximation of x from (b,A)
• Thresholding: take large coefficients of A∗b
• Greedy Algorithms: OMP, CoSaMP, SP, IHT, StOMP, ...
• Regularization: miny ‖Φy‖1 subject to ‖AΦy − b‖2 ≤ η

Jared Tanner Random matrix theory and stochastic geometry in CS



Compressed Sensing
Sparse Approximation Phase Transitions

Random Matrix Theory and the RIP
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Sparse Approximation Phase Transitions

I Problem characterized by three numbers: k ≤ n ≤ N
• N, Signal Length, “Nyquist” sampling rate
• n, number of inner product measurements
• k, signal complexity, sparsity

I For what (k, n,N) does an encoder/decoder pair recover a
suitable approximation of x from (b,A)?
• n ∼ k2 sufficient for many encoder/decoder pairs
• n = k is the optimal oracle rate
• n ∼ k possible using computationally efficient algorithms

I Mixed under/over-sampling rates compared to naive/optimal

Undersampling: δ :=
n

N
, Oversampling: ρ :=

k

n
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Methods of Analysis: conditions on encoder

I Generic measures of used to imply algorithm success:
• Coherence: maximum correlation of columns, maxi 6=j |a∗i aj |
• Restricted Isometry Property (RIP): sparse near isometry

(1− Rk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + Rk)‖x‖2
2 for x k-sparse

`1-regularization “works” if R2k < 0.45 (Foucart & Lai)

I Algorithm specific:
• False Alarm/Discovery Rate: Stagewise OMP (StOMP)
• Convex Polytopes (face counting): `1-regularization

I Measures of success:
• Success for all k-sparse signals (RIP, polytopes)
• Success for most signals (coherence, FAR, polytopes)
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Restricted Isometry Constants (RIC)

I Restricted Isometry Constants (RIC): for all k-sparse x

(1− L(k, n,N;A))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(k, n,N;A))‖x‖2
2

I Most sparsity algorithms have optimal recovery rate if RICs
remain bounded as k/n → ρ, n/N → δ, with ρ, δ ∈ (0, 1).

I What do we know about bounds on RICs?

I No known large deterministic rect. matrices with bounded RIC

I Ensembles with concentration of measure have bounded RIC

P(|‖Ax‖2
2 − ‖x‖2

2| ≥ ε‖x‖2
2) ≤ e−n·c(ε) c(ε) > 0.

Gaussian, uniform {−1, 1}, most any with i.i.d. mean zero

I How large are these RICs? When do we have guarantees for
sparsity recovery? max(U(k, n,N;A), L(k, n,N;A)) ≤

√
2− 1
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Random Matrix Theory and the RIC

I RIC bounds for Gaussian N (0, n−1) [Candés and Tao 05]

(1− L(δ, ρ))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(δ, ρ))‖x‖2
2

L(δ, ρ) U(δ, ρ)

I Always stated as “δk := max(L(k, n,N;A),U(k, n,N;A))”

I Bound: concentration of measure +
(N

k

)
union bound
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Random Matrix Theory and the RIC

I RIC bounds for Gaussian N (0, n−1) [Bl-Ca-Ta 09]

(1− L(δ, ρ))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(δ, ρ))‖x‖2
2

L(δ, ρ) U(δ, ρ)

I First asymmetric bounds, dramatic improvement for L(δ, ρ)

I Bound: Large deviation of Wishart PDFs +
(N

k

)
union bound

Jared Tanner Random matrix theory and stochastic geometry in CS



Compressed Sensing
Sparse Approximation Phase Transitions

Random Matrix Theory and the RIP
Stochastic Geometry for Regular Polytopes

Random Matrix Theory and the RIC

I RIC bounds for Gaussian N (0, n−1) [Bah-Ta 10]

(1− L(δ, ρ))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(δ, ρ))‖x‖2
2

L(δ, ρ) U(δ, ρ)

I Exploit eigenvalue “smoothness” for overlapping submatrices

I No more than 1.57 times empirically observations values
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Random Matrix Theory and the RIC

I Observed RIC for Gaussian N (0, n−1) [Bah-Ta 09]

(1− L(k, n,N))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(k, n,N))‖x‖2
2

L(k, n,N) U(k, n,N)

I Observed lower bounds for n = 400 and various (k,N)

I What do these RICs tell us for sparsity algorithms?
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Algorithms for Sparse Approximation

Input: A, b, and possibly tuning parameters

I `1-regularization:

min
x
‖x‖1 subject to ‖Ax − b‖2 ≤ τ

I Simple Iterated Thresholding:

x t+1 = Hk(x t + κAT (b − Ax t))

I Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

v t+1 = x t+1 = Hαk(x t + κAT (b − Ax t))

It = supp(v t) ∪ supp(x t) Join supp. sets

wIt = (AT
It AIt )

−1AT
It b Least squares fit

x t+1 = Hβk(w t) Second threshold

When does RIP guarantee they work?
Jared Tanner Random matrix theory and stochastic geometry in CS
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Best known bounds implied by RIP
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I Lower bounds on the Strong exact recovery phase transition
for Gaussian random matrices for the algorithms
`1-regularization, IHT, SP, and CoSaMP (black).
• Unfortunately recovery thresholds are impractically low.
n > 317k, n > 907k, n > 3124k, n > 4925k

I Larger phase transitions appear only possible by using
algorithm specific techniques of analysis.
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Geometry of `1-regularization, RN

I Sparsity: x ∈ RN with k < n nonzeros on k − 1 face of `1 ball.

I Null space of A intersects CN at only x , or pierces CN

`1 ball ∈ RN x +N (A) ‖A(x − y)‖ ≤ η

I If {x +N (A)}
⋂

CN = x , `1 minimization recovers x

I Faces pierced by x +N (A) do not recover k sparse x
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Geometry of `1-regularization, Rn

I Sparsity: x ∈ RN with k < n nonzeros on k − 1 face of `1 ball.

I Matrix A projects face of `1 ball either onto or into conv(±A).

`1 ball ∈ RN edge onto conv(±A) edge into conv(±A)

I Survived faces are sparsity patterns in x where `1 → `0

I Faces which fall inside conv(±A) are not solutions to `1

I Neighborliness of random polytopes [Affentranger & Schneider]

I Exact recoverability of k sparse signals by “counting faces”
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Phase Transition: `1 ball, CN

I With overwhelming probability on measurements An,N :
for any ε > 0, as (k, n,N) →∞
• All k-sparse signals if k/n ≤ ρS(n/N,C )(1− ε)
• Most k-sparse signals if k/n ≤ ρW (n/N,C )(1− ε)
• Failure typical if k/n ≥ ρW (n/N,C )(1 + ε)
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Recovery: all signals

Recovery: most signals
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S

!
W

δ = n/N

k
n

I Asymptotic behavior δ → 0: ρ(n/N) ∼ [2(e) log(N/n)]−1
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Phase Transition: Simplex, TN−1, x ≥ 0

I With overwhelming probability on measurements An,N :
for any ε > 0, x ≥ 0, as (k, n,N) →∞
• All k-sparse signals if k/n ≤ ρS(n/N,T )(1− ε)
• Most k-sparse signals if k/n ≤ ρW (n/N,T )(1− ε)
• Failure typical if k/n ≥ ρW (n/N,T )(1 + ε)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recovery: all signals

Recovery: most signals

!
W

!
S

δ = n/N

k
n

I Asymptotic behavior δ → 0: ρ(n/N) ∼ [2(e) log(N/n)]−1
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Weak Phase Transitions: Visual agreement

I Black: Weak phase transition: x ≥ 0 (top), x signed (bot.)

I Overlaid empirical evidence of 50% success rate:
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ρ=k/n

 

 
Gaussian
Bernoulli
Fourier
Ternary p=2/3
Ternary p=2/5
Ternary p=1/10
Hadamard
Expander p=1/5
Rademacher
ρ(δ,Q)

I Gaussian, Bernoulli, Fourier, Hadamard, Rademacher

I Ternary (p): P(0) = 1− p and P(±1) = p/2

I Expander (p): dp · ne ones per column, otherwise zeros

I Rigorous statistical comparison shows N−1/2 convergence
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Bulk Z -scores
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(c) Ternary (1/3) (d) Rademacher

I N = 200, N = 400 and N = 1600

I Linear trend with δ = n/N, decays at rate N−1/2
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Phase Transition: Hypercube, HN

I Let 0 ≤ x ≤ 1 have k entries 6= 0, 1 and form b = Ax .

I Are there other y ∈ HN [0, 1] such that Ay = b, y 6= x?

I As n,N →∞, Typically No provided k/n < ρW (δ;H)
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Unique: most signals
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W

I Unlike T and C : no strong phase transition

I Universal: A need only be in general position

I Simplicity beyond sparsity: Hypercube k-faces correspond to
vectors with only k entries away from the bounds (not 0 or 1).
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Phase Transition: Orthant, RN
+

I Let x ≥ 0 be k-sparse and form b = Ax .

I Are there other y ∈ RN
+ such that Ay = b, y ≥ 0, y 6= x?

I As n,N →∞, Typically No provided k/n < ρW (δ; R+)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

all signals

Unique: most signals

!
S

!
W

I Universal: A columns centrally symmetric and exchangeable
Not universal to all A in general position–design possible.

I For k/n < ρW (δ, R+) := [2− 1/δ]+ and x ≥ 0,
any “feasible” method will work, e.g. WCP (Cartis & Gould)
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Phase Transition: Orthant, RN
+, matrix design

I Let x ≥ 0 be k-sparse and form b = Ax .

I Are there other y ∈ RN
+ such that Ay = b, y ≥ 0, y 6= x?

I As n,N →∞, Typically No provided k/n < ρW (δ; R+)
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S

I Gaussian and measuring the mean (row of ones):
ρW (n/N; R+) → ρW (n/N;T )

I Simple modification of A makes profound difference
Unique even for n/N → 0 with n > 2(e)k log(N/n)
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Orthant matrix design, it’s really true

I Let x ≥ 0 be k-sparse and form b = Ax .

I Not `1, but: maxy ‖x − y‖ subject to Ay = Ax and y ≥ 0

I Good empirical agreement for N = 200.
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Rademacher Rademacher and row of ones

SUMMARY Simplex `1 ball Hypercube Orthant

Matrix class Gaussian Gaussian gen. pos. sym. exch.
Design Vandermonde unknown not possible row ones
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Orthant matrix design, it’s really true

I Let x ≥ 0 be k-sparse and form b = Ax .

I Not `1, but: maxy ‖x − y‖ subject to Ay = Ax and y ≥ 0

I Good empirical agreement for N = 200.
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