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Covariance matrix

Basic problem in multivariate statistics:
by sampling from a high-dimensional distribution, determine
its covariance structure.

Principal Component Analysis (PCA): detect the principal
axes along which most dependence occurs:

PCA of a multivariate Gaussian distribution. [Gaël Varoquaux’s blog gael-varoquaux.info]
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Covariance matrix

The covariance structure of a high-dimensional distribution µ
is captured by its covariance matrix Σ.

Let X be a random vector in Rp distributed according to µ.
We may assume that X is centered (by estimating and
subtracting EX). The covariance matrix of X is defined as

Σ = EXXT = EX⊗ X = (EXiXj)
p
i ,j=1 = (cov(Xi ,Xj))pi ,j=1

Σ = Σ(X) is a symmetric, positive semi-definite p × p matrix.
It is a multivariate version of the variance Var(X ).

If Σ(X) = I we say that X is isotropic. Every full dimensional
random vector X can be made into an isotropic one by the
linear transformation: Σ−1/2X .
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Estimation of covariance matrices

Estimation of covariance matrices is a basic problem in
multivariate statistics. It arises in signal processing, genomics,
nancial mathematics, pattern recognition, computational
convex geometry.

We take a sample of n independent points X1, . . . ,Xn from
the distribution and form the sample covariance matrix

Σn =
1

n

n∑
i=1

XkX
T
k .

Σn is a random matrix. Hopefully it approximates Σ well:
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Estimation of covariance matrices

Covariance Estimation Problem. Determine the minimal sample
size n = n(p) that guarantees with high probability (say, 0.99) that
the sample covariance matrix Σn estimates the actual covariance
matrix Σ with fixed accuracy (say, ε = 0.01) in the operator norm:

‖Σn − Σ‖ ≤ ε‖Σ‖.

PCA of a multivariate Gaussian distribution. [Gaël Varoquaux’s blog gael-varoquaux.info]
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Estimation problem and random matrices

Estimation problem can be stated as a problem on the
spectrum of random matrices.

Assume for simplicity that the distribution is isotropic, Σ = I .

Form our sample X1, . . . ,Xn into a n × p random matrix A
with independent rows:

Then the sample covariance matrix is

Σn =
1

n

n∑
i=1

XkX
T
k =

1

n
ATA.

Roman Vershynin Estimation of covariance matrices



Estimation problem and random matrices

Σn = 1
nA

TA.

The desired estimation ‖Σn − I‖ ≤ ε is equivalent to saying
that 1√

n
A is an almost isometric embedding Rp → Rn:

(1− ε)
√
n ≤ ‖Ax‖2 ≤ (1 + ε)

√
n for all x ∈ Sp−1.

Equivalently, the singular values si (A) = eig(ATA)1/2 are all
close to each other and to

√
n:

(1− ε)
√
n ≤ smin(A) ≤ smax(A) ≤ (1 + ε)

√
n.

Question. What random matrices with independent rows are
almost isometric embeddings?
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Random matrices with independent entries

Simplest example: Gaussian distributions.
A is a p × n random matrix with independent N(0, 1) entries.
Σn is called Wishart matrix.

Random matrix theory in the asymptotic regime n, p →∞:

Theorem (Bai-Yin Law) When n, p →∞, n/p → const, one has

smin(A)→
√
n −√p, smax(A)→

√
n +
√
p a.s.
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Random matrices with independent entries

Bai-Yin: smin(A)→
√
n −√p, smax(A)→

√
n +
√
p.

Thus making n slightly bigger than p we force both extreme
values to be close to each other, and make A an almost
isometric embedding.

Formally, the sample covariance matrix Σn = 1
nA

TA nicely
approximates the actual covariance matrix I :

‖Σn − I‖ ≈ 2

√
p

n
+

p

n
.

Answer to the Estimation Problem for Gaussian distributions:
sample size n(p) ∼ p suffices to estimate the covariance matrix by
a sample covariance matrix.
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Random matrices with independent rows

However, many distributions of interest do not have
independent coordinates. Thus the random matrix A has
independent rows (samples), but not independent entries in
each row.

Problem. Study the spectrum properties of random matrices with
independent rows. When do such n× p matrices A produce almost
isometric embeddings?
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High dimensional distributions

Under appropriate moment assumptions on the distribution (of the
rows), are there results similar to Bai-Yin?

Definition. A distribution of X in Rp is subgaussian if all its
one-dimensional marginals are subgaussian random variables:

P{|〈X, x〉| ≥ t} ≤ 2 exp(−ct2).

Similarly we define subexponential distributions (with tails
2 exp(−ct)), distributions with finite moments, etc. We thus
always assess a distribution by its one-dimensional marginals.
Examples: The standard normal distribution, the uniform
distributions on round ball, cube of unit vol are subgaussian.
The uniform distribution on any convex body of unit volume
is sub-exponential (follows from Brunn-Minkowski inequality,
see Borell’s lemma). Discrete distributions are usually not
even subexponential unless they are supported by
exponentially many points.
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Random matrices with independent subgaussian rows

Proposition (Random matrices with subgaussian rows). Let A be
an n × p matrix whose rows Xk are independent sub-gaussian
isotropic random vectors in Rp. Then with high probability,

√
n − C

√
p ≤ smin(A) ≤ smax(A) ≤

√
n + C

√
p.

As before, this yields that the sample covariance matrix
Σn = 1

nA
TA approximates the actual covariance matrix I :

‖Σn − I‖ ≤ C

√
p

n
+ C

p

n
.

Answer to the Estimation Problem for subgaussian
distributions is same as for Gaussian ones: sample size
n(p) ∼ p suffices to estimate the covariance matrix by a
sample covariance matrix.
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Random matrices with independent subgaussian rows

Proposition (Random matrices with subgaussian rows). Let A be
an n × p matrix whose rows Xk are independent sub-gaussian
isotropic random vectors in Rp. Then with high probability,

√
n − C

√
p ≤ smin(A) ≤ smax(A) ≤

√
n + C

√
p.

Proof (ε-net argument). As we know, the conclusion is equivalent
to saying that 1√

n
A is an almost isometric embedding.

Equivalently, we need to show that ‖Ax‖22 is close to its expected
value n for every unit vector x . But

‖Ax‖22 =
n∑

k=1

〈Xk , x〉2

is a sum of independent subexponential random variables.
Exponential deviation inequalities (Bernstein’s) yield that
‖Ax‖2 ≈ n with high probability. Conclude by taking union bound
over x in some fixed net of the sphere Sp−1 and approximation.

Roman Vershynin Estimation of covariance matrices



Beyond sub-subgaussian

This argument fails for anything weaker than sub-gaussian
distributions – exponential deviation inequalities will fail.
Different ideas are needed to address the Estimation Problem
for distributions with heavier tails.

Boundedness assumption: we will assume throughout the rest
of this talk that the distribution is supported in a centered ball
of radius O(

√
p). Most of the (isotropic) distribution always

lies in that ball, as E‖X‖22 = p.
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Random matrices with heavy-tailed rows

Under no moment assumptions at all, we have:

Theorem (Random matrices with heavy tails). Let A be an n × p
matrix whose rows Xk are independent isotropic random vectors in
Rp. Then with high probability,

√
n − C

√
p log p ≤ smin(A) ≤ smax(A) ≤

√
n + C

√
p log p.

log p is needed (uniform distribution on p orthogonal vectors).
As before, this yields that the sample covariance matrix
Σn = 1

nA
TA approximates the actual covariance matrix I :

‖Σn − I‖ ≤ C

√
p log p

n
for n ≥ p.

This result was proved by Rudelson’00 (Bourgain’99: log3 p).
The answer to the Estimation Problem for heavy-tailed
distributions is requires a logarithmic oversampling: a sample
size n(p) ∼ p log p suffices to estimate the covariance matrix.
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Random matrices with heavy-tailed rows

Theorem (Random matrices with heavy tails). Let A be an n × p
matrix whose rows Xk are independent isotropic random vectors in
Rp. Then with high probability,

√
n − C

√
p log p ≤ smin(A) ≤ smax(A) ≤

√
n + C

√
p log p.

Proof There are now several ways to prove this result. The most
straightforward argument: Ashlwede-Winter’s approach. It directly
addresses the Estimation Problem. The sample covariance matrix

Σn =
1

n

n∑
k=1

XkX
T
k

is a sum of independent random matrices XkX
T
k . One can prove

and use versions of classical deviation inequalities (Chernoff,
Hoeffding, Bernstein, Bennett . . . ) for sums of random matrices.
Proofs are similar – exponentiating and estimating m.g.f. using
trace inequalities (Golden-Thompson). See Tropp’10.
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When is the logarithmic oversampling needed?

Problem (when is logarithmic oversampling needed?) Classify the
distributions in Rp for which the sample size n(p) ∼ p suffices to
estimate the covariance matrix by the sample covariance matrix.

What we know: for general distributions, logarithmic
oversampling is needed: n(p) ∼ p log p by Rudelson’s
theorem. For subgaussian distributions, not needed: n(p) ∼ p.

It was recently shown that n(p) ∼ p for sub-exponential
distributions: Adamczak, Litvak, Pajor, Tomczak’09. This
includes uniform distributions on all convex bodies.

But there is still a big gap between the distributions that do
not require the logarithmic oversampling (convex bodies) and
those that do require (very discrete).

How to close this gap? We conjecture that for most
distributions, n(p) ∼ p. For example, this should hold under
any non-trivial moment assumptions:
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The logarithmic oversampling is almost never needed?

Conjecture. Consider a distribution in Rp with bounded q-th
moment for some q > 2, i.e. E|〈X, x〉|q ≤ Cq for all unit vectors x .
Then the sample size n ∼ p suffices for estimation of the
covariance matrix Σ by the sample covariance matrix Σn w.h.p.:

‖Σn − Σ‖ ≤ ε.

Recall that any isotropic distributions has a bounded second
moment. The conjecture says that a slightly higher moment
should suffice for estimation without logarithmic oversampling.
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The logarithmic oversampling is almost never needed

Theorem (Covariance). Consider a distribution in Rp with bounded
q-th moment for some q > 4. Then the sample covariance matrix
Σn approximates covariance matrix: with high probability,

‖Σn − Σ‖ ≤ (log log p)2
(p
n

) 1
2
− 2

q
.

As a consequence, the sample size n ∼ (log log p)Cqp suffices
for covariance estimation: ‖Σn − Σ‖ ≤ ε.
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Estimation of moments of marginals

Once we know Σ we know the variances of all one-dimensional
marginals: 〈Σx , x〉 = 〈EXXT x , x〉 = E〈X, x〉2.
More generally, we can estimate r -th moments of marginals:

Theorem (Marginals). Consider a random vector X in Rp with
bounded 4r -th moment. Take a sample of size n ∼ p if r ∈ [1, 2)
and n ∼ pr/2 if r ∈ (2,∞). Then with high probability,

sup
x∈Sp−1

∣∣∣1
n

n∑
k=1

|〈X, x〉|r − E|〈X, x〉|r
∣∣∣ ≤ ε.

The sample size n has optimal order for all r .
For subexponential distributions, this result is due to
Adamczak, Litvak, Pajor, Tomczak’09. Without extra
moment assumptions (except the r -th), a logarithmic
oversampling is needed as before. The optimal sample size in
this case is n ∼ pr/2 log p due to Guedon, Rudelson’07.
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Norms of random operators

Corollary (Norms of random operators). Let A be an n × p matrix
whose rows Xk are independent random vectors in Rp with
bounded 4r -th moment, r ≥ 2. Then with high probability,

‖A‖`2→`r . n1/2 + p1/r .

This result is also optimal. Conjectured to hold for r = 2.

For subexponential distributions, this result is due to
Adamczak, Litvak, Pajor, Tomczak’09. Without extra
moment assumptions (except the r -th), a logarithmic
oversampling is needed as before.
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Heuristics of the argument: structure of divergent series

Two new ingredients in the proofs of these results:
(1) structure of slowly divergent series;
(2) a new decoupling technique.

Consider a simpler problem: for a random vector with heavy
tails, we want to show that ‖Σn‖ = O(1):

‖Σn‖ = sup
x∈Sn−1

1

n

n∑
k=1

〈Xk , x〉2 = O(1).

This is a stochastic process indexed by vectors x ∈ Sn−1.

For each fixed x , we have to control the sum of independent
random variables

∑
k〈Xk , x〉2. Unfortunately, because of the

heavy tails of these random variables, we can only control the
sum with a polynomial rather than exponential probability
1− n−O(1). This is too weak for uniform control over x in the
sphere Sp−1 where ε-nets have exponential sizes in p.
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Sums of independent heavy-tailed random variables

This brings us to a basic question in probability theory: control
a sum of independent heavy-tailed random variables Zk .

Here we follow a simple “combinatorial” approach. Suppose

1

n

n∑
k=1

Zk � 1.

Try and locate some structure in the terms Zk that is
responsible for the largeness of the sum.

Often one can find an ideal structure: a subset of very large
terms Zk . Namely, suppose there is I ⊂ [n], |I | = n0 such that

Zk ≥ 4
n

n0
for k ∈ I .

(we can always locate an ideal structure loosing log n).
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Sums of independent heavy-tailed random variables

Ideal structure: a subset I , |I | = n0, such that Zk ≥ 4 n
n0

for k ∈ I .

Advantage of the ideal structure: the probability that it exists
can be easily bounded. Even if Zk have just the first moment,
say EZk = 1:

By independence, Markov’s inequality and union bound over I ,

P{ideal structure exists} ≤
(
n

n0

)(n0
4n

)n0
≤ e−2n0 .

We get an exponential probability despite the heavy tails.
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Combinatorial approach for stochastic processes

Let us see how the combinatorial approach works for
controlling stochastic processes. Assume for some x ∈ Sn−1

1

n

n∑
k=1

〈Xk , x〉2 � 1.

Suppose we can locate an ideal structure responsible for this:
a subset I , |I | = n0, such that 〈Xk , x〉2 ≥ 4 n

n0
for k ∈ I . As

we know,
P{ideal structure} ≤ e−2n0 .

This is still not strong enough to take union bound over all x
in some net of the sphere Sp−1 which has cardinality en.
Dimension reduction: By projecting x onto E = span(Xk)k∈I
we can automatically assume that x ∈ E . This subspace has
dimension n0. Its ε-net has cardinality en0 which is OK!
Unfortunately, x ∈ E becomes random, correlated with Xk ’s.
Decoupling can make x depend on a half of Xk ’s (random
selection a la Maurey). Condition on this half, finish the proof.
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Combinatorial approach for stochastic processes

This argument yields the optimal Marginal Theorem (on
estimation of r -th moments of one-dimensional marginals).

Generally, in locating the ideal structure one looses a log p
factor. To loose just log log p as in the Covariance Theorem,
one has to locate a structure that’s weaker (thus harder to
find) than the ideal structure. This requires a structural
theorem for series that diverge slower than the iterated
logarithm.
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Sparse estimation of covariance matrices

A variety of practical applications (genomics, pattern
recognition, etc.) require very small sample sizes compared
with the number of parameters, calling for

n� p.

In this regime, covariance estimation is generally impossible
(for dimension reasons). But usually (in practice) one knows a
priori some structure of the covariance matrix Σ.

For example, Σ is often known to be sparse, having few
non-zero entries (i.e. most random variables are uncorrelated).
Example:
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Covariance graph

Gene association network of E. coli [J. Schäfer, K. Strimmer’05]
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Sparse estimation of covariance matrices

Sparse Estimation Problem. Consider a distribution in Rp whose
covariance matrix Σ has at most s ≤ p nonzero entries in each
column (equivalently, each component of the distribution is
correlated with at most s other components). Determine the
minimal sample size n = n(p, s) needed to estimate Σ with a fixed
error in the operator norm, and with high probability.

A variety of techniques has been proposed in statistics,
notably the shrinkage methods going back to Stein.
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Sparse estimation of covariance matrices

The problem is nontrivial even for Gaussian distributions, and
even if we know the location of the non-zero entries of Σ.
Let’s assume this (otherwise take the biggest entries of Σn).

Method: compute the sample covariance matrix Σn. Zero out
all entries that are a priori known to be zero. The resulting
sparse matrix M · Σn should be a good estimator for Σ.

Zeroing out amounts to taking Hadamard product (entrywise)
M · Σn with a given sparse 0/1 matrix M (mask).

Does this method work? Yes:
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Sparse estimation of covariance matrices

Theorem (Sparse Estimation). [Levina-V’10] Consider a centered
Gaussian distribution in Rp with covariance matrix Σ. Let M be a
symmetric p × p “mask” matrix with 0, 1 entries and with at most
s nonzero entries in each column. Then

E‖M · Σn −M · Σ‖ ≤ C log3 p
(√ s

n
+

s

n

)
· ‖Σ‖.

Compare this with the consequence of the Bai-Yin law:

E‖Σn − Σ‖ ≈
(

2

√
p

n
+

p

n

)
‖Σ‖.

This matches the Theorem in the non-sparse case s = p.
Note the mild, logarithmic dependence on the dimension p
and the optimal dependence on the sparsity s.
A logarithmic factor is needed for s = 1, when M = I .
As a consequence, sample size n ∼ s log6 p suffices for sparse
estimation. In the sparse case s � p, we have n� p.
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Sparse estimation of covariance matrices

More generally,

Theorem (Estimation of Hadamard Products). [Levina-V’10]
Consider a centered Gaussian distribution on Rp with covariance
matrix Σ. Then for every symmetric p × p matrix M we have

E‖M · Σn −M · Σ‖ ≤ C log3 p
(‖M‖1,2√

n
+
‖M‖
n

)
· ‖Σ‖.

where ‖M‖1,2 = maxj(
∑

i m
2
ij)

1/2 is the `1 → `2 operator norm.

This result is quite general. Applies for arbitrary Gaussian
distributions (no covariance structure assumed), arbitrary
mask matrices M.
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Complexity of matrix norm

Sparse Estimation Theorem would follow by an ε-net
argument if the norm of a sparse matrix can be computed on
a small set.
As is well known, the operator norm of an p × p matrix A can
be computed on an 1

2 -net N of the unit sphere Sp−1

‖A‖ ∼ max
x∈N
‖Ax‖2

and one can construct such net with cardinality |N | ≤ ecp.
Can one reduce the size of N for sparse matrices?

Question (discretizing the norm of sparse matrices). Does there
exist a subset N of Sp−1 such that, for every p × p matrix A with
at most s nonzero entries in each row and column, one has

‖A‖ ∼ max
x∈N
‖Ax‖2

and with cardinality |N | ≤ (Cp/s)s ≤ pCs ?
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Gaussian Chaos

Since we don’t know how to answer this question, the proof of
the estimation theorem takes a different route – through
estimating a Gaussian chaos.

A gaussian chaos arises naturally when one tries to compute
the operator norm of a sample covariance matrix
Σn = 1

n

∑n
k=1XkX

T
k :

‖Σn‖ = sup
x∈Sp−1

〈Σnx , x〉 =
∑
i ,j=1

Σn(i , j)xixj =
1

n

∑
k,i ,j

XkiXkjxixj

where Xkj are Gaussian random variables (the coordinates of
the sampled points from the Gaussian distribution).

Argument: (1) decoupling; (2) “combinatorial” approach to
estimation, classifying x according to the measure of its
sparsity – similar to [Schechtman’04] and many later papers.
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