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Want to estimate a parameter β ∈ Rp

Example: How is a response y ∈ R related to the
Parkinson’s disease affected by a set of genes among the
Chinese population?

Construct a linear model: y = βT~x + ǫ, where
E (y |~x) = βT~x .

Parameter: Non-zero entries in β (sparsity of β) identify a
subset of genes and indicate how much they influence y .

Take a random sample of (X , Y ), and use the sample to
estimate β; that is, we have Y = Xβ + ǫ.
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where we assume p ≫ n (i.e. given high-dimensional data).

The paradigm has shifted to the setting where the dimensionality
is much larger than the number of observations. Think of n, p as
moderately large, e.g., between 103 to 106.
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High dimensional linear model

Goal: to recover the unknown β ∈ Rp approximately from noisy
data using computational feasible strategies,
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High dimensional linear model

Goal: to recover the unknown β ∈ Rp approximately from noisy
data using computational feasible strategies,




Y




n

=




X




n×p




β




p

+




ǫ




n

where we assume p ≥ n (i.e., given high-dimensional data X ).

X has columns normalized to have ℓ2 norm
√

n, and ǫ is
the Gaussian noise: ǫ ∼ N(0, σ2In).
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observations Y ?

Questions: How many measurements n do we need in
order to recover the non-zero positions in β?
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Model selection and parameter estimation

When can we approximately recover β from n noisy
observations Y ?

Questions: How many measurements n do we need in
order to recover the non-zero positions in β?

How does n scale with p or s, where s is the number of
non-zero entries of β?

What if some non-zero entries are really small, say within
noise level?

What assumptions about the data matrix X are
reasonable?
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Sparse recovery

When β is known to be s-sparse for some 1 ≤ s ≤ n, which
means that at most s of the coefficients of β can be non-zero:

Assume every 2s columns of X are linearly independent:
Identifiability condition (reasonable once n ≥ 2s)

Λmin(2s)
△
= min

υ 6=0,2s-sparse

‖Xυ‖2

n ‖υ‖2 > 0.
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Sparse recovery

When β is known to be s-sparse for some 1 ≤ s ≤ n, which
means that at most s of the coefficients of β can be non-zero:

Assume every 2s columns of X are linearly independent:
Identifiability condition (reasonable once n ≥ 2s)

Λmin(2s)
△
= min

υ 6=0,2s-sparse

‖Xυ‖2

n ‖υ‖2 > 0.

Proposition: (Candès-Tao 05). Suppose that any 2s
columns of the n × p matrix X are linearly independent.
Then, any s-sparse signal β ∈ Rp can be reconstructed
uniquely from Xβ.
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measurements Y = Xβ given Λmin(2s) > 0?

Let β be the unique sparsest solution to Xβ = Y :
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How to reconstruct an s-sparse signal β ∈ Rp from the
measurements Y = Xβ given Λmin(2s) > 0?

Let β be the unique sparsest solution to Xβ = Y :

β = arg minβ:Xβ=Y ‖β‖0

where ‖β‖0 := #{1 ≤ i ≤ p : βi 6= 0} is the sparsity of β.
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ℓ0-minimization

How to reconstruct an s-sparse signal β ∈ Rp from the
measurements Y = Xβ given Λmin(2s) > 0?

Let β be the unique sparsest solution to Xβ = Y :

β = arg minβ:Xβ=Y ‖β‖0

where ‖β‖0 := #{1 ≤ i ≤ p : βi 6= 0} is the sparsity of β.

Unfortunately, ℓ0-minimization is computationally
intractable; (in fact, it is an NP-complete problem).
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β∗ := arg minβ:Xβ=Y ‖β‖1 .

β*

Xβ=Y



Thresholded Lasso

Introduction
Sparse Recovery
Thresholding Procedure
Oracle Inequalities

Basis pursuit

We consider the following convex optimization problem
β∗ := arg minβ:Xβ=Y ‖β‖1 .

β*

Xβ=Y

By standard linear programming tools, this problem is
computational feasible for n, p ∼ 106. (This is studied by Chen,

Donoho, Huo, Logan, Saunders, Candes, Romberg, Tao and others.)
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To acquire the sparse signal β

Basis pursuit works whenever the n × p measurement
matrix X is sufficiently incoherent:

RIP (Candès-Tao 05) requires that for all T ⊂ {1, . . . , p}
with |T | ≤ s and for all coefficients sequences (cj)j∈T ,
(1 − δs) ‖c‖2 ≤ ‖XT c/n‖2 ≤ (1 + δs) ‖c‖2 holds for some
0 < δs < 1 (s-restricted isometry constant).
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The “good” matrices for compressed sensing should
satisfy the inequalities for the largest possible s:
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The “good” matrices for compressed sensing should
satisfy the inequalities for the largest possible s:

For example, for Gaussian random matrix, or any
sub-Gaussian ensemble, for 0 < δs < 1, it holds with
s ≍ n/ log(p/n).
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Restricted Isometry Property (RIP)

The “good” matrices for compressed sensing should
satisfy the inequalities for the largest possible s:

For example, for Gaussian random matrix, or any
sub-Gaussian ensemble, for 0 < δs < 1, it holds with
s ≍ n/ log(p/n).

These algorithms are also robust with regards to noise,
and RIP will be replaced by more relaxed conditions.
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Sparse recovery for Y = Xβ + ǫ

Lasso (Tibshirani 96), a.k.a. Basis Pursuit (Chen, Donoho
and Saunders 98, and others):

β̃ = arg min
β

‖Y − Xβ‖2/2n + λn‖β‖1,

where the scaling factor 1/(2n) is chosen by convenience.

Dantzig selector (Candès-Tao 07):

(DS) arg min
eβ∈Rp

‖β̃‖1 subject to ‖X T (Y − X β̃)/n‖∞ ≤ λn.

References: Greenshtein-Ritov 04, Meinshausen-Bühlmann 06,

Zhao-Yu 06, Candès-Tao 07, van de Geer 08, Wainwright 09,

Koltchinskii 09, Meinshausen-Yu 09, Bickel-Ritov-Tsybakov 09, and

others.
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When X is a Gaussian random matrix

Numerical experiments suggest that in practice, most
s-sparse signals are in fact recovered exactly once n ≥ 4s
or so for noiseless model Y = Xβ;
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or so for noiseless model Y = Xβ;

This shows a strong contrast with the ordinary Lasso’s
behavior in the noisy case:
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When X is a Gaussian random matrix

Numerical experiments suggest that in practice, most
s-sparse signals are in fact recovered exactly once n ≥ 4s
or so for noiseless model Y = Xβ;

This shows a strong contrast with the ordinary Lasso’s
behavior in the noisy case:
The lower bound for the Lasso: (Wainwright 09). For the
noisy linear model Y = Xβ + ǫ, where ǫ ∼ N(0, Ip). Then
the probability of success in terms of exact recovery of the
sparsity pattern tends to zero when n < 2s log(p − s), for
any s-sparse vector.
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Linear sparsity: How can we design an estimator to can
recover a sparse model using nearly a constant number of
measurements per non-zero element despite noise?
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Prelude

Is there a way to bridge the difference?

Linear sparsity: How can we design an estimator to can
recover a sparse model using nearly a constant number of
measurements per non-zero element despite noise?

More generally: How to design a sparse estimator whose
accuracy depends upon the information content of the
object we wish to recover?
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Linear sparsity
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Compare probability of success for s = 8 and 64
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The Thresholded Lasso estimator

Define S = supp (β) :=
{

j : βj 6= 0
}

, Let s = |S|. For some
s0 ≤ s to be defined.

First we obtain an initial estimator βinit using the Lasso with
λn = cσ

√
2 log p/n for some constant c.
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The Thresholded Lasso estimator

Define S = supp (β) :=
{

j : βj 6= 0
}

, Let s = |S|. For some
s0 ≤ s to be defined.

First we obtain an initial estimator βinit using the Lasso with
λn = cσ

√
2 log p/n for some constant c.

Threshold the estimator βinit with t0, and set
I =

{
j ∈ {1, . . . , p} : βj ,init ≥ t0

}
with the general goal such

that, we get an set I with cardinality at most 2s0.
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The Thresholded Lasso estimator

Define S = supp (β) :=
{

j : βj 6= 0
}

, Let s = |S|. For some
s0 ≤ s to be defined.

First we obtain an initial estimator βinit using the Lasso with
λn = cσ

√
2 log p/n for some constant c.

Threshold the estimator βinit with t0, and set
I =

{
j ∈ {1, . . . , p} : βj ,init ≥ t0

}
with the general goal such

that, we get an set I with cardinality at most 2s0.

Feed (Y , XI) to the ordinary least squares (OLS)
estimator: β̂I = (X T

I XI)−1X T
I Y to obtain β̂, where β̂Ic = 0.
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Variable selection under the RE condition

Restricted eigenvalue assumption RE(s, k0, X ):
(Bickel-Ritov-Tsybakov 09). For some integer 1 ≤ s ≤ p
and a positive number k0, the following holds for all υ 6= 0

1
K (s, k0)

△
= min

J0⊆{1,...,p},|J0|≤s

‖υJc
0
‖1≤k0‖υJ0

‖1

‖Xυ‖2√
n

∥∥υJ0

∥∥
2

> 0.
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Variable selection under the RE condition

Restricted eigenvalue assumption RE(s, k0, X ):
(Bickel-Ritov-Tsybakov 09). For some integer 1 ≤ s ≤ p
and a positive number k0, the following holds for all υ 6= 0

1
K (s, k0)

△
= min

J0⊆{1,...,p},|J0|≤s

‖υJc
0
‖1≤k0‖υJ0

‖1

‖Xυ‖2√
n

∥∥υJ0

∥∥
2

> 0.

Theorem (BRT 09). It is sufficient for the Lasso and the
Dantzig selector to achieve squared ℓ2 loss ‖βinit − β‖2 of
O(sσ2 log p/n) with high probability.
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Theorem (Z 09): Suppose that RE(s, k0, X ) condition holds.
Suppose βmin := minj∈S |βj | ≥ Cλn

√
s for λn chosen below.

Then with P (Ta) ≥ 1 − (
√

π log ppa)−1, the multi-step
procedure returns β̂ with supp(β̂) := I such that
S ⊆ I and |I \ S| < c1 and ‖β̂ − β‖2 ≤ O(sσ2 log p/n),
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Theorem (Z 09): Suppose that RE(s, k0, X ) condition holds.
Suppose βmin := minj∈S |βj | ≥ Cλn

√
s for λn chosen below.

Then with P (Ta) ≥ 1 − (
√

π log ppa)−1, the multi-step
procedure returns β̂ with supp(β̂) := I such that
S ⊆ I and |I \ S| < c1 and ‖β̂ − β‖2 ≤ O(sσ2 log p/n),

where λn ≥ 2σ
√

1 + a
√

2 log p/n, where a ≥ 0; and



Thresholded Lasso

Introduction
Sparse Recovery
Thresholding Procedure
Oracle Inequalities

Theorem (Z 09): Suppose that RE(s, k0, X ) condition holds.
Suppose βmin := minj∈S |βj | ≥ Cλn

√
s for λn chosen below.

Then with P (Ta) ≥ 1 − (
√

π log ppa)−1, the multi-step
procedure returns β̂ with supp(β̂) := I such that
S ⊆ I and |I \ S| < c1 and ‖β̂ − β‖2 ≤ O(sσ2 log p/n),

where λn ≥ 2σ
√

1 + a
√

2 log p/n, where a ≥ 0; and

Ta :=

{
ǫ :

∥∥X T ǫ/n
∥∥
∞

≤ σ
√

1 + a
√

2 log p/n
}

.
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Theorem (Z 09): Suppose that RE(s, k0, X ) condition holds.
Suppose βmin := minj∈S |βj | ≥ Cλn

√
s for λn chosen below.

Then with P (Ta) ≥ 1 − (
√

π log ppa)−1, the multi-step
procedure returns β̂ with supp(β̂) := I such that
S ⊆ I and |I \ S| < c1 and ‖β̂ − β‖2 ≤ O(sσ2 log p/n),

where λn ≥ 2σ
√

1 + a
√

2 log p/n, where a ≥ 0; and

Ta :=

{
ǫ :

∥∥X T ǫ/n
∥∥
∞

≤ σ
√

1 + a
√

2 log p/n
}

.
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Compare probability of success for p = 1024
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Sample size increases almost linearly with s
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Linear sparsity result: summary

The thresholded Lasso requires that n ≍ s log(p/n), in
order to achieve (almost) exact recovery of the sparsity
pattern for (sub)Gaussian random matrix when βmin is
sufficiently large.

This shows a strong contrast with the ordinary Lasso: to
reach the same goal, the required sample size is much
larger.
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Detection limit
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Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable
selection when some non-zero elements are well below σ/

√
n;
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Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable
selection when some non-zero elements are well below σ/

√
n;

Identify the relevant set of variables that are significant;

Estimation accuracy: recovers a good approximation β̂ to
β, with ℓ2 loss tightly bounded – in an “oracle” sense.
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Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable
selection when some non-zero elements are well below σ/

√
n;

Identify the relevant set of variables that are significant;

Estimation accuracy: recovers a good approximation β̂ to
β, with ℓ2 loss tightly bounded – in an “oracle” sense.

In addition to RE, we assume

Λmax(2s)
△
= max

υ 6=0,2s-sparse

‖Xυ‖2

n ‖υ‖2 < ∞.
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Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :
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Nearly ideal model selection

Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :

Question: How to find a sparse subset I such that
|I| ≤ 2s0 and E‖β̂I − β‖2 = O(log p)E ‖β⋆ − β‖2,
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Nearly ideal model selection

Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :

Question: How to find a sparse subset I such that
|I| ≤ 2s0 and E‖β̂I − β‖2 = O(log p)E ‖β⋆ − β‖2,
where β⋆ is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E ‖β⋆ − β‖2 = arg min I⊂{1,...,p} E‖β̂I − β‖2.
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Nearly ideal model selection

Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :

Question: How to find a sparse subset I such that
|I| ≤ 2s0 and E‖β̂I − β‖2 = O(log p)E ‖β⋆ − β‖2,
where β⋆ is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E ‖β⋆ − β‖2 = arg min I⊂{1,...,p} E‖β̂I − β‖2.

We show ‖β̂I − β‖2 = O(log p)
∑p

i=1 min(β2
i , σ2/n),
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Nearly ideal model selection

Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :

Question: How to find a sparse subset I such that
|I| ≤ 2s0 and E‖β̂I − β‖2 = O(log p)E ‖β⋆ − β‖2,
where β⋆ is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E ‖β⋆ − β‖2 = arg min I⊂{1,...,p} E‖β̂I − β‖2.

We show ‖β̂I − β‖2 = O(log p)
∑p

i=1 min(β2
i , σ2/n), given

Proposition: (Candès-Tao 07). For Λmax(s) < ∞, then
E ‖β − β⋆‖2 ≥ min (1, 1/Λmax(s))

∑p
i=1 min(β2

i , σ2/n).
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Nearly ideal model selection

Consider subset least squares estimators β̂I = (X T
I XI)

−1X T
I Y :

Question: How to find a sparse subset I such that
|I| ≤ 2s0 and E‖β̂I − β‖2 = O(log p)E ‖β⋆ − β‖2,
where β⋆ is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E ‖β⋆ − β‖2 = arg min I⊂{1,...,p} E‖β̂I − β‖2.

We show ‖β̂I − β‖2 = O(log p)
∑p

i=1 min(β2
i , σ2/n), given

Proposition: (Candès-Tao 07). For Λmax(s) < ∞, then
E ‖β − β⋆‖2 ≥ min (1, 1/Λmax(s))

∑p
i=1 min(β2

i , σ2/n).

Note
∑p

i=1 min(β2
i , σ2/n) = minI⊂{1,...,p} ‖β − βI‖2 + |I|σ2/n

represents the ideal squared bias and variance tradeoff.
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Defining 2s0

Let 0 ≤ s0 ≤ s be the smallest integer such that∑p
i=1 min(β2

i , λ2σ2) ≤ s0λ
2σ2, where λ =

√
2 log p/n.
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Defining 2s0

Let 0 ≤ s0 ≤ s be the smallest integer such that∑p
i=1 min(β2

i , λ2σ2) ≤ s0λ
2σ2, where λ =

√
2 log p/n.

If we order the βj ’s in decreasing order of magnitude
|β1| ≥ |β2|... ≥ |βp|, then |βj | < λσ ∀ j > s0.
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Nearly ideal model selection under the RE

Theorem: (Z 10) Suppose RE(s0, 6, X ) holds with K (s0, 6),
and 2s-sparse eigenvalue conditions hold. Then with
probability at least 1 − (

√
π log ppa)−1, the Thresholded Lasso

estimator achieves sparse oracle inequalities:

|I| ≤ 2s0 and |I \ S| ≤ s0 ≤ s and

‖β̂ − β‖2 ≤ O(log p)

p∑

i=1

min(β2
i , σ2/n).
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Nearly ideal model selection under the RE

Theorem: (Z 10) Suppose RE(s0, 6, X ) holds with K (s0, 6),
and 2s-sparse eigenvalue conditions hold. Then with
probability at least 1 − (

√
π log ppa)−1, the Thresholded Lasso

estimator achieves sparse oracle inequalities:

|I| ≤ 2s0 and |I \ S| ≤ s0 ≤ s and

‖β̂ − β‖2 ≤ O(log p)

p∑

i=1

min(β2
i , σ2/n).

Obtain βinit using the Lasso with λn ≥ 2σ
√

1 + aλ, where
λ =

√
2 log p/n; Threshold βinit with t0 chosen from

(D1λσ, C4λσ], where D1 = Λmax(s − s0) + 9K 2(s0, 6)/2 and
C4 ≥ D1; and refit with model I using OLS.
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Oracle inequalities for the Lasso

Theorem (Z 10). RE(s0, 6, X ) is a sufficient condition for
the Lasso to achieve squared ℓ2 loss of O(s0σ

2 log p/n) so
long as Λmax(2s) < ∞ and Λmin(2s0) > 0.
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Decompose the ℓ2 loss

∥∥∥β̂I − β
∥∥∥

2
=

∥∥∥β̂I − βI

∥∥∥
2

+ ‖βI − β‖2
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Each term above is bounded by O(s0λ
2σ2), where

s0λ
2σ2 ≤ O(logp)E ‖β − β⋆‖2.
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Theorem (Z 09). Under RIP type of condition, the
Gauss-Dantzig selector proposed by Candès-Tao 07
achieves such sparse oracle inequalities.

Analysis builds upon Candès-Tao’s result for the initial
Dantzig selector.
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Summary on the general thresholding rules

When βmin is well below the noise level

We show how to choose a sparse model I, upon which the
OLS estimator achieves the sparse oracle inequalities.

We consider the bound on ℓ2-loss as a natural criterion to
evaluate a sparse model when it is not exactly S.

Variables in model I are essential in predicting Xβ.
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Subset selection: related work

Oracle inequalities in ℓ2 loss have been studied in
Donoho-Johnstone 94 and Candès-Tao 07.

Also relevant is the work of Meinshausen and Yu 09,
Wasserman and Roeder 09, and Zhang 09.

A final note: this method was called “selection/estimation
(s/e) procedure” in Foster and George 94, and “subset
least squares” by Mallows 73.
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Conclusion

In the high dimensional linear model, it is possible to
estimate the parameter β and its significant set of variables
accurately using the Thresholded Lasso.
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Conclusion

In the high dimensional linear model, it is possible to
estimate the parameter β and its significant set of variables
accurately using the Thresholded Lasso.

In a joint work with Peter Buehlmann, Philipp Rutimann
and Min Xu, we apply the thresholding/re-estimation idea
to Gaussian graphical model selection and covariance
estimation.
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That is it! Thank you very much!
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