Thresholded Lasso for High Dimensional Variable Selection

Shuheng Zhou

Seminar for Statistics, ETH Zürich, Switzerland
Department of Statistics, University of California, Berkeley

Universit Paris-Est Marne-la-Vallée

May 20, 2010

Want to estimate a parameter $\beta \in \mathbf{R}^{p}$

Want to estimate a parameter $\beta \in \mathbf{R}^{p}$

- Example: How is a response $y \in \mathbf{R}$ related to the Parkinson's disease affected by a set of genes among the Chinese population?

Want to estimate a parameter $\beta \in \mathbf{R}^{p}$

- Example: How is a response $y \in \mathbf{R}$ related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y=\beta^{T} \vec{x}+\epsilon$, where $\mathbb{E}(y \mid \vec{x})=\beta^{T} \vec{x}$.

Want to estimate a parameter $\beta \in \mathbf{R}^{p}$

- Example: How is a response $y \in \mathbf{R}$ related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y=\beta^{T} \vec{x}+\epsilon$, where $\mathbb{E}(y \mid \vec{x})=\beta^{T} \vec{x}$.
- Parameter: Non-zero entries in β (sparsity of β) identify a subset of genes and indicate how much they influence y.

Want to estimate a parameter $\beta \in \mathbf{R}^{p}$

- Example: How is a response $y \in \mathbf{R}$ related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y=\beta^{T} \vec{x}+\epsilon$, where $\mathbb{E}(y \mid \vec{x})=\beta^{T} \vec{x}$.
- Parameter: Non-zero entries in β (sparsity of β) identify a subset of genes and indicate how much they influence y.
- Take a random sample of (X, Y), and use the sample to estimate β; that is, we have $Y=X \beta+\epsilon$.

High dimensional linear model

Consider recovering $\beta \in \mathbf{R}^{p}$ in the following noisy linear model:

$$
[]_{n}=[]_{n \times p}[]_{p}[]_{n}
$$

where we assume $p \gg n$ (i.e. given high-dimensional data).

High dimensional linear model

Consider recovering $\beta \in \mathbf{R}^{p}$ in the following noisy linear model:

$$
[Y]_{n}=[]_{n \times p}[]_{p}+[\epsilon]_{n}
$$

where we assume $p \gg n$ (i.e. given high-dimensional data).

- The paradigm has shifted to the setting where the dimensionality is much larger than the number of observations. Think of n, p as moderately large, e.g., between 10^{3} to 10^{6}.

High dimensional linear model

Goal: to recover the unknown $\beta \in \mathbf{R}^{p}$ approximately from noisy data using computational feasible strategies,

$$
[Y]_{n}=[]_{n \times p}[]_{p}+[\epsilon]_{n}
$$

where we assume $p \geq n$ (i.e., given high-dimensional data X).

High dimensional linear model

Goal: to recover the unknown $\beta \in \mathbf{R}^{p}$ approximately from noisy data using computational feasible strategies,

$$
[Y]_{n}=[]_{n \times p}[]_{p}+[\epsilon]_{n}
$$

where we assume $p \geq n$ (i.e., given high-dimensional data X).

- X has columns normalized to have ℓ_{2} norm \sqrt{n}, and ϵ is the Gaussian noise: $\epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$.

Model selection and parameter estimation

When can we approximately recover β from n noisy observations Y ?

- Questions: How many measurements n do we need in order to recover the non-zero positions in β ?

Model selection and parameter estimation

When can we approximately recover β from n noisy observations Y ?

- Questions: How many measurements n do we need in order to recover the non-zero positions in β ?
- How does n scale with p or s, where s is the number of non-zero entries of β ?

Model selection and parameter estimation

When can we approximately recover β from n noisy observations Y ?

- Questions: How many measurements n do we need in order to recover the non-zero positions in β ?
- How does n scale with p or s, where s is the number of non-zero entries of β ?
- What if some non-zero entries are really small, say within noise level?

Model selection and parameter estimation

When can we approximately recover β from n noisy observations Y ?

- Questions: How many measurements n do we need in order to recover the non-zero positions in β ?
- How does n scale with p or s, where s is the number of non-zero entries of β ?
- What if some non-zero entries are really small, say within noise level?
- What assumptions about the data matrix X are reasonable?

Sparse recovery

When β is known to be s-sparse for some $1 \leq s \leq n$, which means that at most s of the coefficients of β can be non-zero:

- Assume every $2 s$ columns of X are linearly independent: Identifiability condition (reasonable once $n \geq 2 s$)

$$
\Lambda_{\min }(2 s) \triangleq \min _{v \neq 0,2 s \text { sparse }} \frac{\|X v\|^{2}}{n\|v\|^{2}}>0
$$

Sparse recovery

When β is known to be s-sparse for some $1 \leq s \leq n$, which means that at most s of the coefficients of β can be non-zero:

- Assume every $2 s$ columns of X are linearly independent: Identifiability condition (reasonable once $n \geq 2 s$)

$$
\Lambda_{\min }(2 s) \triangleq \min _{v \neq 0,2 s \text { sparse }} \frac{\|X v\|^{2}}{n\|v\|^{2}}>0
$$

- Proposition: (Candès-Tao 05). Suppose that any $2 s$ columns of the $n \times p$ matrix X are linearly independent. Then, any s-sparse signal $\beta \in \mathbf{R}^{p}$ can be reconstructed uniquely from $X \beta$.

ℓ_{0}-minimization

How to reconstruct an s-sparse signal $\beta \in \mathbf{R}^{p}$ from the measurements $Y=X \beta$ given $\Lambda_{\text {min }}(2 s)>0$?

- Let β be the unique sparsest solution to $X \beta=Y$:

ℓ_{0}-minimization

How to reconstruct an s-sparse signal $\beta \in \mathbf{R}^{p}$ from the measurements $Y=X \beta$ given $\Lambda_{\text {min }}(2 s)>0$?

- Let β be the unique sparsest solution to $X \beta=Y$:

$$
\beta=\arg \min _{\beta: X \beta=\gamma}\|\beta\|_{0}
$$

where $\|\beta\|_{0}:=\#\left\{1 \leq i \leq p: \beta_{i} \neq 0\right\}$ is the sparsity of β.

ℓ_{0}-minimization

How to reconstruct an s-sparse signal $\beta \in \mathbf{R}^{p}$ from the measurements $Y=X \beta$ given $\Lambda_{\text {min }}(2 s)>0$?

- Let β be the unique sparsest solution to $X \beta=Y$:

$$
\beta=\arg \min _{\beta: X \beta=\gamma}\|\beta\|_{0}
$$

where $\|\beta\|_{0}:=\#\left\{1 \leq i \leq p: \beta_{i} \neq 0\right\}$ is the sparsity of β.

- Unfortunately, ℓ_{0}-minimization is computationally intractable; (in fact, it is an NP-complete problem).

Basis pursuit

- We consider the following convex optimization problem

$$
\beta^{*}:=\arg \min _{\beta: X \beta=Y}\|\beta\|_{1} .
$$

Basis pursuit

- We consider the following convex optimization problem

$$
\beta^{*}:=\arg \min _{\beta: X \beta=Y}\|\beta\|_{1} .
$$

By standard linear programming tools, this problem is computational feasible for $n, p \sim 10^{6}$. (This is studied by Chen, Donoho, Huo, Logan, Saunders, Candes, Romberg, Tao and others.)

To acquire the sparse signal β

- Basis pursuit works whenever the $n \times p$ measurement matrix X is sufficiently incoherent:

To acquire the sparse signal β

- Basis pursuit works whenever the $n \times p$ measurement matrix X is sufficiently incoherent:
- RIP (Candès-Tao 05) requires that for all $T \subset\{1, \ldots, p\}$ with $|T| \leq s$ and for all coefficients sequences $\left(c_{j}\right)_{j \in T}$, $\left(1-\delta_{s}\right)\|c\|^{2} \leq\left\|X_{T} c / n\right\|^{2} \leq\left(1+\delta_{s}\right)\|c\|^{2}$ holds for some $0<\delta_{s}<1$ (s-restricted isometry constant).

Restricted Isometry Property (RIP)

- The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible s :

Restricted Isometry Property (RIP)

- The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible s :
- For example, for Gaussian random matrix, or any sub-Gaussian ensemble, for $0<\delta_{s}<1$, it holds with $s \asymp n / \log (p / n)$.

Restricted Isometry Property (RIP)

- The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible s :
- For example, for Gaussian random matrix, or any sub-Gaussian ensemble, for $0<\delta_{s}<1$, it holds with $s \asymp n / \log (p / n)$.
- These algorithms are also robust with regards to noise, and RIP will be replaced by more relaxed conditions.

Sparse recovery for $Y=X \beta+\epsilon$

- Lasso (Tibshirani 96), a.k.a. Basis Pursuit (Chen, Donoho and Saunders 98, and others):

$$
\widetilde{\beta}=\arg \min _{\beta}\|Y-X \beta\|^{2} / 2 n+\lambda_{n}\|\beta\|_{1}
$$

where the scaling factor $1 /(2 n)$ is chosen by convenience.

- Dantzig selector (Candès-Tao 07):
$(D S) \quad \arg \min _{\widetilde{\beta} \in \mathbf{R}^{p}}\|\widetilde{\beta}\|_{1}$ subject to $\left\|X^{T}(Y-X \widetilde{\beta}) / n\right\|_{\infty} \leq \lambda_{n}$.
References: Greenshtein-Ritov 04, Meinshausen-Bühlmann 06, Zhao-Yu 06, Candès-Tao 07, van de Geer 08, Wainwright 09, Koltchinskii 09, Meinshausen-Yu 09, Bickel-Ritov-Tsybakov 09, and others.

When X is a Gaussian random matrix

- Numerical experiments suggest that in practice, most s-sparse signals are in fact recovered exactly once $n \geq 4 s$ or so for noiseless model $Y=X \beta$;

When X is a Gaussian random matrix

- Numerical experiments suggest that in practice, most s-sparse signals are in fact recovered exactly once $n \geq 4 s$ or so for noiseless model $Y=X \beta$;
- This shows a strong contrast with the ordinary Lasso's behavior in the noisy case:

When X is a Gaussian random matrix

- Numerical experiments suggest that in practice, most s-sparse signals are in fact recovered exactly once $n \geq 4 s$ or so for noiseless model $Y=X \beta$;
- This shows a strong contrast with the ordinary Lasso's behavior in the noisy case:
The lower bound for the Lasso: (Wainwright 09). For the noisy linear model $Y=X \beta+\epsilon$, where $\epsilon \sim N\left(0, I_{p}\right)$. Then the probability of success in terms of exact recovery of the sparsity pattern tends to zero when $n<2 s \log (p-s)$, for any s-sparse vector.

Prelude

Is there a way to bridge the difference?

Prelude

Is there a way to bridge the difference?

- Linear sparsity: How can we design an estimator to can recover a sparse model using nearly a constant number of measurements per non-zero element despite noise?

Prelude

Is there a way to bridge the difference?

- Linear sparsity: How can we design an estimator to can recover a sparse model using nearly a constant number of measurements per non-zero element despite noise?
- More generally: How to design a sparse estimator whose accuracy depends upon the information content of the object we wish to recover?

Linear sparsity

Compare probability of success for $s=8$ and 64

The Thresholded Lasso estimator

Define $S=\operatorname{supp}(\beta):=\left\{j: \beta_{j} \neq 0\right\}$, Let $s=|S|$. For some $s_{0} \leq s$ to be defined.

- First we obtain an initial estimator $\beta_{\text {init }}$ using the Lasso with $\lambda_{n}=c \sigma \sqrt{2 \log p / n}$ for some constant c.

The Thresholded Lasso estimator

Define $S=\operatorname{supp}(\beta):=\left\{j: \beta_{j} \neq 0\right\}$, Let $s=|S|$. For some $s_{0} \leq s$ to be defined.

- First we obtain an initial estimator $\beta_{\text {init }}$ using the Lasso with $\lambda_{n}=c \sigma \sqrt{2 \log p / n}$ for some constant c.
- Threshold the estimator $\beta_{\text {init }}$ with t_{0}, and set $\mathcal{I}=\left\{j \in\{1, \ldots, p\}: \beta_{j, \text { init }} \geq t_{0}\right\}$ with the general goal such that, we get an set \mathcal{I} with cardinality at most $2 s_{0}$.

The Thresholded Lasso estimator

Define $S=\operatorname{supp}(\beta):=\left\{j: \beta_{j} \neq 0\right\}$, Let $s=|S|$. For some $s_{0} \leq s$ to be defined.

- First we obtain an initial estimator $\beta_{\text {init }}$ using the Lasso with $\lambda_{n}=c \sigma \sqrt{2 \log p / n}$ for some constant c.
- Threshold the estimator $\beta_{\text {init }}$ with t_{0}, and set $\mathcal{I}=\left\{j \in\{1, \ldots, p\}: \beta_{j, \text { init }} \geq t_{0}\right\}$ with the general goal such that, we get an set \mathcal{I} with cardinality at most $2 s_{0}$.
- Feed $\left(Y, X_{\mathcal{I}}\right)$ to the ordinary least squares (OLS) estimator: $\widehat{\beta}_{\mathcal{I}}=\left(X_{\mathcal{I}}^{T} X_{\mathcal{I}}\right)^{-1} X_{\mathcal{I}}^{T} Y$ to obtain $\widehat{\beta}$, where $\widehat{\beta}_{\mathcal{I}^{c}}=0$.

Variable selection under the RE condition

- Restricted eigenvalue assumption $R E\left(s, k_{0}, X\right)$:
(Bickel-Ritov-Tsybakov 09). For some integer $1 \leq s \leq p$ and a positive number k_{0}, the following holds for all $v \neq 0$

$$
\frac{1}{K\left(s, k_{0}\right)} \triangleq \min _{\substack{J_{0} \subseteq\{1, \ldots, p), v_{0} \mid \leq s \\\left\|v_{u_{0}}\right\| 1 \leq 1 \leq k_{0}\left\|u_{J_{0}}\right\|_{1}}} \frac{\|X v\|_{2}}{\sqrt{n}\left\|v_{J_{0}}\right\|_{2}}>0 .
$$

Variable selection under the RE condition

- Restricted eigenvalue assumption $R E\left(s, k_{0}, X\right)$:
(Bickel-Ritov-Tsybakov 09). For some integer $1 \leq s \leq p$ and a positive number k_{0}, the following holds for all $v \neq 0$

$$
\frac{1}{K\left(s, k_{0}\right)} \triangleq \min _{\substack{v_{0} \subseteq\{1, \ldots, p),\left|j_{0}\right| \leq s \\\left\|v_{v_{0}}\right\| 11 \leq K_{0}}} \frac{\|X v\|_{u_{0}} \|_{1}}{\sqrt{n}\left\|v_{J_{0}}\right\|_{2}}>0 .
$$

- Theorem (BRT 09). It is sufficient for the Lasso and the Dantzig selector to achieve squared ℓ_{2} loss $\left\|\beta_{\text {init }}-\beta\right\|^{2}$ of $O\left(s \sigma^{2} \log p / n\right)$ with high probability.

Theorem (Z 09): Suppose that $R E\left(s, k_{0}, X\right)$ condition holds. Suppose $\beta_{\text {min }}:=\min _{j \in S}\left|\beta_{j}\right| \geq C \lambda_{n} \sqrt{s}$ for λ_{n} chosen below. Then with $\mathbb{P}\left(\mathcal{T}_{a}\right) \geq 1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\operatorname{supp}(\widehat{\beta}):=\mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \backslash S|<c_{1}$ and $\|\widehat{\beta}-\beta\|^{2} \leq O\left(S \sigma^{2} \log p / n\right)$,

Theorem (Z 09): Suppose that $R E\left(s, k_{0}, X\right)$ condition holds. Suppose $\beta_{\text {min }}:=\min _{j \in S}\left|\beta_{j}\right| \geq C \lambda_{n} \sqrt{s}$ for λ_{n} chosen below. Then with $\mathbb{P}\left(\mathcal{T}_{a}\right) \geq 1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\operatorname{supp}(\widehat{\beta}):=\mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \backslash S|<c_{1}$ and $\|\widehat{\beta}-\beta\|^{2} \leq O\left(s \sigma^{2} \log p / n\right)$,

- where $\lambda_{n} \geq 2 \sigma \sqrt{1+a} \sqrt{2 \log p / n}$, where $a \geq 0$; and

Theorem (Z 09): Suppose that $R E\left(s, k_{0}, X\right)$ condition holds. Suppose $\beta_{\text {min }}:=\min _{j \in S}\left|\beta_{j}\right| \geq C \lambda_{n} \sqrt{s}$ for λ_{n} chosen below. Then with $\mathbb{P}\left(\mathcal{T}_{a}\right) \geq 1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\operatorname{supp}(\widehat{\beta}):=\mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \backslash S|<c_{1}$ and $\|\widehat{\beta}-\beta\|^{2} \leq O\left(s \sigma^{2} \log p / n\right)$,

- where $\lambda_{n} \geq 2 \sigma \sqrt{1+a} \sqrt{2 \log p / n}$, where $a \geq 0$; and
- $\mathcal{T}_{a}:=\left\{\epsilon:\left\|X^{T} \epsilon / n\right\|_{\infty} \leq \sigma \sqrt{1+a} \sqrt{2 \log p / n}\right\}$.

Theorem (Z 09): Suppose that $R E\left(s, k_{0}, X\right)$ condition holds. Suppose $\beta_{\text {min }}:=\min _{j \in S}\left|\beta_{j}\right| \geq C \lambda_{n} \sqrt{s}$ for λ_{n} chosen below. Then with $\mathbb{P}\left(\mathcal{T}_{a}\right) \geq 1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\operatorname{supp}(\widehat{\beta}):=\mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \backslash S|<c_{1}$ and $\|\widehat{\beta}-\beta\|^{2} \leq O\left(S \sigma^{2} \log p / n\right)$,

- where $\lambda_{n} \geq 2 \sigma \sqrt{1+a} \sqrt{2 \log p / n}$, where $a \geq 0$; and - $\mathcal{T}_{a}:=\left\{\epsilon:\left\|X^{T} \epsilon / n\right\|_{\infty} \leq \sigma \sqrt{1+a} \sqrt{2 \log p / n}\right\}$.

- $k_{0}=1$ for the Dantzig selector and $=3$ for the Lasso; $c_{1}=1 / 64 \Lambda_{\text {min }}^{2}(2 s)$; Proof imposes

$$
s \geq K^{4}\left(s, k_{0}\right)
$$

Compare probability of success for $p=1024$

Sample size increases almost linearly with s

Linear sparsity result: summary

- The thresholded Lasso requires that $n \asymp s \log (p / n)$, in order to achieve (almost) exact recovery of the sparsity pattern for (sub)Gaussian random matrix when $\beta_{\text {min }}$ is sufficiently large.
- This shows a strong contrast with the ordinary Lasso: to reach the same goal, the required sample size is much larger.

Detection limit

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ / \sqrt{n};

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ / \sqrt{n};

- Identify the relevant set of variables that are significant;

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ / \sqrt{n};

- Identify the relevant set of variables that are significant;
- Estimation accuracy: recovers a good approximation $\widehat{\beta}$ to β, with ℓ_{2} loss tightly bounded - in an "oracle" sense.

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ / \sqrt{n};

- Identify the relevant set of variables that are significant;
- Estimation accuracy: recovers a good approximation $\widehat{\beta}$ to β, with ℓ_{2} loss tightly bounded - in an "oracle" sense. In addition to RE, we assume

$$
\Lambda_{\max }(2 s) \triangleq \max _{v \neq 0,2 s \text {-sparse }} \frac{\|X v\|^{2}}{n\|v\|^{2}}<\infty .
$$

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{I}=\left(X_{I}^{\top} X_{I}\right)^{-1} X_{l}^{\top} Y$:

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{l}=\left(X_{l}^{\top} X_{I}\right)^{-1} X_{l}^{\top} Y$:

- Question: How to find a sparse subset \mathcal{I} such that

$$
|\mathcal{I}| \leq 2 s_{0} \text { and } \mathbb{E}\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}
$$

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{l}=\left(X_{l}^{\top} X_{I}\right)^{-1} X_{l}^{\top} Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2 s_{0}$ and $\mathbb{E}\left\|\widehat{\mathcal{I}}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}$, where β^{\star} is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}=\arg \min _{l \subset\{1, \ldots, p\}} \mathbb{E}\left\|\widehat{\beta}_{l}-\beta\right\|^{2}$.

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{I}=\left(X_{I}^{\top} X_{I}\right)^{-1} X_{l}^{\top} Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2 s_{0}$ and $\mathbb{E}\left\|\widehat{\mathcal{I}}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}$, where β^{\star} is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}=\arg \min _{l \subset\{1, \ldots, p\}} \mathbb{E}\left\|\widehat{\beta}_{l}-\beta\right\|^{2}$.
- We show $\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)$,

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{l}=\left(X_{I}^{\top} X_{I}\right)^{-1} X_{l}^{\top} Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2 s_{0}$ and $\mathbb{E}\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}$, where β^{\star} is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}=\arg \min _{l \subset\{1, \ldots, p\}} \mathbb{E}\left\|\widehat{\beta}_{l}-\beta\right\|^{2}$.
- We show $\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)$, given Proposition: (Candès-Tao 07). For $\Lambda_{\max }(s)<\infty$, then $\mathbb{E}\left\|\beta-\beta^{\star}\right\|^{2} \geq \min \left(1,1 / \Lambda_{\max }(s)\right) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)$.

Nearly ideal model selection

Consider subset least squares estimators $\widehat{\beta}_{I}=\left(X_{I}^{\top} X_{I}\right)^{-1} X_{I}^{\top} Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2 s_{0}$ and $\mathbb{E}\left\|\widehat{\beta_{\mathcal{I}}}-\beta\right\|^{2}=O(\log p) \mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}$, where β^{\star} is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E}\left\|\beta^{\star}-\beta\right\|^{2}=\arg \min _{l \subset\{1, \ldots, p\}} \mathbb{E}\left\|\widehat{\beta}_{l}-\beta\right\|^{2}$.
- We show $\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=O(\log p) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)$, given Proposition: (Candès-Tao 07). For $\Lambda_{\max }(s)<\infty$, then $\mathbb{E}\left\|\beta-\beta^{\star}\right\|^{2} \geq \min \left(1,1 / \Lambda_{\max }(s)\right) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)$.
- Note $\sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)=\min _{\not \subset\{1, \ldots, p\}}\left\|\beta-\beta_{l}\right\|^{2}+\left|| | \sigma^{2} / n\right.$ represents the ideal squared bias and variance tradeoff.

Defining $2 s_{0}$

- Let $0 \leq s_{0} \leq s$ be the smallest integer such that $\sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \lambda^{2} \sigma^{2}\right) \leq s_{0} \lambda^{2} \sigma^{2}$, where $\lambda=\sqrt{2 \log p / n}$.

Defining $2 s_{0}$

- Let $0 \leq s_{0} \leq s$ be the smallest integer such that $\sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \lambda^{2} \sigma^{2}\right) \leq s_{0} \lambda^{2} \sigma^{2}$, where $\lambda=\sqrt{2 \log p / n}$.
- If we order the β_{j} 's in decreasing order of magnitude $\left|\beta_{1}\right| \geq\left|\beta_{2}\right| \ldots \geq\left|\beta_{p}\right|$, then $\left|\beta_{j}\right|<\lambda \sigma \forall j>s_{0}$.

Nearly ideal model selection under the RE

Theorem: (Z 10) Suppose $\operatorname{RE}\left(s_{0}, 6, X\right)$ holds with $K\left(s_{0}, 6\right)$, and $2 s$-sparse eigenvalue conditions hold. Then with probability at least $1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the Thresholded Lasso estimator achieves sparse oracle inequalities:

$$
\begin{aligned}
|\mathcal{I}| & \leq 2 s_{0} \text { and }|\mathcal{I} \backslash S| \leq s_{0} \leq s \text { and } \\
\|\widehat{\beta}-\beta\|^{2} & \leq O(\log p) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)
\end{aligned}
$$

Nearly ideal model selection under the RE

Theorem: (Z10) Suppose $\operatorname{RE}\left(s_{0}, 6, X\right)$ holds with $K\left(s_{0}, 6\right)$, and $2 s$-sparse eigenvalue conditions hold. Then with probability at least $1-\left(\sqrt{\pi \log p} p^{a}\right)^{-1}$, the Thresholded Lasso estimator achieves sparse oracle inequalities:

$$
\begin{aligned}
|\mathcal{I}| & \leq 2 s_{0} \text { and }|\mathcal{I} \backslash S| \leq s_{0} \leq s \text { and } \\
\|\widehat{\beta}-\beta\|^{2} & \leq O(\log p) \sum_{i=1}^{p} \min \left(\beta_{i}^{2}, \sigma^{2} / n\right)
\end{aligned}
$$

- Obtain $\beta_{\text {init }}$ using the Lasso with $\lambda_{n} \geq 2 \sigma \sqrt{1+a} \lambda$, where $\lambda=\sqrt{2 \log p / n}$; Threshold $\beta_{\text {init }}$ with t_{0} chosen from $\left(D_{1} \lambda \sigma, C_{4} \lambda \sigma\right]$, where $D_{1}=\Lambda_{\max }\left(s-s_{0}\right)+9 K^{2}\left(s_{0}, 6\right) / 2$ and $C_{4} \geq D_{1}$; and refit with model \mathcal{I} using OLS.

Oracle inequalities for the Lasso

- Theorem (Z10). $R E\left(s_{0}, 6, X\right)$ is a sufficient condition for the Lasso to achieve squared ℓ_{2} loss of $O\left(s_{0} \sigma^{2} \log p / n\right)$ so long as $\Lambda_{\max }(2 s)<\infty$ and $\Lambda_{\min }\left(2 s_{0}\right)>0$.

Decompose the ℓ_{2} loss

- $\left\|\widehat{\beta}_{\mathcal{I}}-\beta\right\|^{2}=\left\|\widehat{\beta}_{\mathcal{I}}-\beta_{\mathcal{I}}\right\|^{2}+\left\|\beta_{\mathcal{I}}-\beta\right\|^{2}$

- Each term above is bounded by $O\left(s_{0} \lambda^{2} \sigma^{2}\right)$, where $s_{0} \lambda^{2} \sigma^{2} \leq O(\log p) \mathbb{E}\left\|\beta-\beta^{\star}\right\|^{2}$.
- Theorem (Z 09). Under RIP type of condition, the Gauss-Dantzig selector proposed by Candès-Tao 07 achieves such sparse oracle inequalities.
- Analysis builds upon Candès-Tao's result for the initial Dantzig selector.

Summary on the general thresholding rules

When $\beta_{\text {min }}$ is well below the noise level

- We show how to choose a sparse model \mathcal{I}, upon which the OLS estimator achieves the sparse oracle inequalities.
- We consider the bound on ℓ_{2}-loss as a natural criterion to evaluate a sparse model when it is not exactly S.
- Variables in model \mathcal{I} are essential in predicting $X \beta$.

Subset selection: related work

- Oracle inequalities in ℓ_{2} loss have been studied in Donoho-Johnstone 94 and Candès-Tao 07.
- Also relevant is the work of Meinshausen and Yu 09, Wasserman and Roeder 09, and Zhang 09.
- A final note: this method was called "selection/estimation (s/e) procedure" in Foster and George 94, and "subset least squares" by Mallows 73.

Conclusion

- In the high dimensional linear model, it is possible to estimate the parameter β and its significant set of variables accurately using the Thresholded Lasso.

Conclusion

- In the high dimensional linear model, it is possible to estimate the parameter β and its significant set of variables accurately using the Thresholded Lasso.
- In a joint work with Peter Buehlmann, Philipp Rutimann and Min Xu, we apply the thresholding/re-estimation idea to Gaussian graphical model selection and covariance estimation.
- That is it! Thank you very much!

