Thresholded Lasso for High Dimensional Variable Selection

Shuheng Zhou

Seminar for Statistics, ETH Zürich, Switzerland

Department of Statistics, University of California, Berkeley

Universit Paris-Est Marne-la-Vallée

May 20, 2010

 Example: How is a response y ∈ R related to the Parkinson's disease affected by a set of genes among the Chinese population?

- Example: How is a response y ∈ R related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y = \beta^T \vec{x} + \epsilon$, where $\mathbb{E}(y|\vec{x}) = \beta^T \vec{x}$.

- Example: How is a response y ∈ R related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y = \beta^T \vec{x} + \epsilon$, where $\mathbb{E}(y|\vec{x}) = \beta^T \vec{x}$.
 - Parameter: Non-zero entries in β (sparsity of β) identify a subset of genes and indicate how much they influence y.

- Example: How is a response y ∈ R related to the Parkinson's disease affected by a set of genes among the Chinese population?
- Construct a linear model: $y = \beta^T \vec{x} + \epsilon$, where $\mathbb{E}(y|\vec{x}) = \beta^T \vec{x}$.
 - Parameter: Non-zero entries in β (sparsity of β) identify a subset of genes and indicate how much they influence y.
- Take a random sample of (X, Y), and use the sample to estimate β; that is, we have Y = Xβ + ε.

High dimensional linear model

Consider recovering $\beta \in \mathbf{R}^{p}$ in the following noisy linear model:

where we assume $p \gg n$ (i.e. given high-dimensional data).

High dimensional linear model

Consider recovering $\beta \in \mathbf{R}^{p}$ in the following noisy linear model:

where we assume $p \gg n$ (i.e. given high-dimensional data).

 The paradigm has shifted to the setting where the dimensionality is much larger than the number of observations. Think of n, p as moderately large, e.g., between 10³ to 10⁶.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

High dimensional linear model

Goal: to recover the unknown $\beta \in \mathbf{R}^{p}$ approximately from noisy data using computational feasible strategies,

where we assume $p \ge n$ (i.e., given high-dimensional data *X*).

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

High dimensional linear model

Goal: to recover the unknown $\beta \in \mathbf{R}^{p}$ approximately from noisy data using computational feasible strategies,

where we assume $p \ge n$ (i.e., given high-dimensional data *X*).

 X has columns normalized to have ℓ₂ norm √n, and ε is the Gaussian noise: ε ~ N(0, σ²I_n).

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Model selection and parameter estimation

When can we approximately recover β from *n* noisy observations *Y*?

 Questions: How many measurements *n* do we need in order to recover the non-zero positions in β?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Model selection and parameter estimation

When can we approximately recover β from *n* noisy observations *Y*?

- Questions: How many measurements *n* do we need in order to recover the non-zero positions in β?
- How does *n* scale with *p* or *s*, where *s* is the number of non-zero entries of β?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Model selection and parameter estimation

When can we approximately recover β from *n* noisy observations *Y*?

- Questions: How many measurements *n* do we need in order to recover the non-zero positions in β?
- How does *n* scale with *p* or *s*, where *s* is the number of non-zero entries of β?
- What if some non-zero entries are really small, say within noise level?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Model selection and parameter estimation

When can we approximately recover β from *n* noisy observations *Y*?

- Questions: How many measurements *n* do we need in order to recover the non-zero positions in β?
- How does *n* scale with *p* or *s*, where *s* is the number of non-zero entries of β?
- What if some non-zero entries are really small, say within noise level?
- What assumptions about the data matrix *X* are reasonable?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Sparse recovery

When β is known to be *s*-sparse for some $1 \le s \le n$, which means that at most *s* of the coefficients of β can be non-zero:

 Assume every 2s columns of X are linearly independent: Identifiability condition (reasonable once n ≥ 2s)

$$\Lambda_{\min}(2s) \stackrel{ riangle}{=} \min_{\substack{v
eq 0, 2s ext{-sparse}}} \frac{\|Xv\|^2}{n\|v\|^2} > 0.$$

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Sparse recovery

When β is known to be *s*-sparse for some $1 \le s \le n$, which means that at most *s* of the coefficients of β can be non-zero:

 Assume every 2s columns of X are linearly independent: Identifiability condition (reasonable once n ≥ 2s)

$$\Lambda_{\min}(2s) \stackrel{\triangle}{=} \min_{\substack{\upsilon \neq 0, 2s \text{-sparse}}} \frac{\|X\upsilon\|^2}{n \|\upsilon\|^2} > 0.$$

Proposition: (Candès-Tao 05). Suppose that any 2s columns of the *n* × *p* matrix *X* are linearly independent. Then, any s-sparse signal β ∈ R^p can be reconstructed uniquely from *X*β.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

ℓ_0 -minimization

How to reconstruct an s-sparse signal $\beta \in \mathbf{R}^p$ from the measurements $Y = X\beta$ given $\Lambda_{\min}(2s) > 0$?

• Let β be the unique sparsest solution to $X\beta = Y$:

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

ℓ_0 -minimization

How to reconstruct an *s*-sparse signal $\beta \in \mathbf{R}^{p}$ from the measurements $Y = X\beta$ given $\Lambda_{\min}(2s) > 0$?

• Let β be the unique sparsest solution to $X\beta = Y$:

$$\beta = \arg\min_{\beta: \mathbf{X}\beta = \mathbf{Y}} \|\beta\|_{\mathbf{0}}$$

where $\|\beta\|_0 := \#\{1 \le i \le p : \beta_i \ne 0\}$ is the sparsity of β .

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

ℓ_0 -minimization

How to reconstruct an *s*-sparse signal $\beta \in \mathbf{R}^{p}$ from the measurements $Y = X\beta$ given $\Lambda_{\min}(2s) > 0$?

• Let β be the unique sparsest solution to $X\beta = Y$:

 $\beta = \arg\min_{\beta: \mathbf{X}\beta = \mathbf{Y}} \|\beta\|_{\mathbf{0}}$

where $\|\beta\|_0 := \#\{1 \le i \le p : \beta_i \ne 0\}$ is the sparsity of β .

 Unfortunately, l₀-minimization is computationally intractable; (in fact, it is an NP-complete problem).

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Basis pursuit

 We consider the following convex optimization problem $\beta^* := \arg\min_{\beta: X\beta = Y} \|\beta\|_1.$ Χβ=Υ

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Basis pursuit

• We consider the following convex optimization problem $\beta^* := \arg\min_{\beta: X\beta = Y} \|\beta\|_1.$

By standard linear programming tools, this problem is computational feasible for $n, p \sim 10^6$. (This is studied by Chen, Donoho, Huo, Logan, Saunders, Candes, Romberg, Tao and others.)

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

To acquire the sparse signal β

 Basis pursuit works whenever the n × p measurement matrix X is sufficiently incoherent:

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

To acquire the sparse signal β

- Basis pursuit works whenever the n × p measurement matrix X is sufficiently incoherent:
- RIP (Candès-Tao 05) requires that for all *T* ⊂ {1,...,*p*} with |*T*| ≤ *s* and for all coefficients sequences (*c_j*)_{*j*∈*T*}, (1 − δ_s) ||*c*||² ≤ ||*X*_T*c*/*n*||² ≤ (1 + δ_s) ||*c*||² holds for some 0 < δ_s < 1 (s-restricted isometry constant).

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Restricted Isometry Property (RIP)

• The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible *s*:

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Restricted Isometry Property (RIP)

- The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible *s*:
- For example, for Gaussian random matrix, or any sub-Gaussian ensemble, for 0 < δ_s < 1, it holds with s ≍ n/log(p/n).

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Restricted Isometry Property (RIP)

- The "good" matrices for compressed sensing should satisfy the inequalities for the largest possible *s*:
- For example, for Gaussian random matrix, or any sub-Gaussian ensemble, for 0 < δ_s < 1, it holds with s ≍ n/log(p/n).
- These algorithms are also robust with regards to noise, and RIP will be replaced by more relaxed conditions.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Sparse recovery for $Y = X\beta + \epsilon$

 Lasso (Tibshirani 96), a.k.a. Basis Pursuit (Chen, Donoho and Saunders 98, and others):

$$\widetilde{\beta} = \arg\min_{\beta} \|\mathbf{Y} - \mathbf{X}\beta\|^2 / 2n + \lambda_n \|\beta\|_1,$$

where the scaling factor 1/(2n) is chosen by convenience.

• Dantzig selector (Candès-Tao 07):

(DS)
$$\arg\min_{\widetilde{\beta}\in\mathbf{R}^p} \|\widetilde{\beta}\|_1$$
 subject to $\|X^T(Y-X\widetilde{\beta})/n\|_{\infty} \leq \lambda_n$.

References: Greenshtein-Ritov 04, Meinshausen-Bühlmann 06, Zhao-Yu 06, Candès-Tao 07, van de Geer 08, Wainwright 09, Koltchinskii 09, Meinshausen-Yu 09, Bickel-Ritov-Tsybakov 09, and others.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

When X is a Gaussian random matrix

 Numerical experiments suggest that in practice, most s-sparse signals are in fact recovered exactly once n ≥ 4s or so for noiseless model Y = Xβ;

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

When X is a Gaussian random matrix

- Numerical experiments suggest that in practice, most
 s-sparse signals are in fact recovered exactly once n ≥ 4s or so for noiseless model Y = Xβ;
- This shows a strong contrast with the ordinary Lasso's behavior in the noisy case:

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

When X is a Gaussian random matrix

- Numerical experiments suggest that in practice, most
 s-sparse signals are in fact recovered exactly once n ≥ 4s or so for noiseless model Y = Xβ;
- This shows a strong contrast with the ordinary Lasso's behavior in the noisy case:

The lower bound for the Lasso: (Wainwright 09). For the noisy linear model $Y = X\beta + \epsilon$, where $\epsilon \sim N(0, I_p)$. Then the probability of success in terms of exact recovery of the sparsity pattern tends to zero when $n < 2s \log(p - s)$, for any *s*-sparse vector.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Is there a way to bridge the difference?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Prelude

Is there a way to bridge the difference?

• Linear sparsity: How can we design an estimator to can recover a sparse model using nearly a constant number of measurements per non-zero element despite noise?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Prelude

Is there a way to bridge the difference?

- Linear sparsity: How can we design an estimator to can recover a sparse model using nearly a constant number of measurements per non-zero element despite noise?
- More generally: How to design a sparse estimator whose accuracy depends upon the information content of the object we wish to recover?

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Linear sparsity

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Compare probability of success for s = 8 and 64

 $p = 256 \sigma = 1$

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

The Thresholded Lasso estimator

Define $S = \text{supp}(\beta) := \{j : \beta_j \neq 0\}$, Let s = |S|. For some $s_0 \leq s$ to be defined.

• First we obtain an initial estimator β_{init} using the Lasso with $\lambda_n = c\sigma \sqrt{2 \log p/n}$ for some constant *c*.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

The Thresholded Lasso estimator

Define $S = \text{supp}(\beta) := \{j : \beta_j \neq 0\}$, Let s = |S|. For some $s_0 \leq s$ to be defined.

- First we obtain an initial estimator β_{init} using the Lasso with $\lambda_n = c\sigma \sqrt{2 \log p/n}$ for some constant *c*.
- Threshold the estimator β_{init} with t₀, and set

 I = {*j* ∈ {1,..., *p*} : β_{j,init} ≥ t₀} with the general goal such that, we get an set *I* with cardinality at most 2s₀.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

The Thresholded Lasso estimator

Define $S = \text{supp}(\beta) := \{j : \beta_j \neq 0\}$, Let s = |S|. For some $s_0 \leq s$ to be defined.

- First we obtain an initial estimator β_{init} using the Lasso with $\lambda_n = c\sigma \sqrt{2 \log p/n}$ for some constant *c*.
- Threshold the estimator β_{init} with t₀, and set

 I = {*j* ∈ {1,..., *p*} : β_{j,init} ≥ t₀} with the general goal such that, we get an set *I* with cardinality at most 2s₀.
- Feed $(Y, X_{\mathcal{I}})$ to the ordinary least squares (OLS) estimator: $\hat{\beta}_{\mathcal{I}} = (X_{\mathcal{I}}^T X_{\mathcal{I}})^{-1} X_{\mathcal{I}}^T Y$ to obtain $\hat{\beta}$, where $\hat{\beta}_{\mathcal{I}^c} = 0$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Variable selection under the RE condition

• Restricted eigenvalue assumption $RE(s, k_0, X)$:

(Bickel-Ritov-Tsybakov 09). For some integer $1 \le s \le p$ and a positive number k_0 , the following holds for all $v \ne 0$

$$\frac{1}{\mathcal{K}(s,k_0)} \triangleq \min_{\substack{J_0 \subseteq \{1,\ldots,p\}, |J_0| \leq s \\ \|\boldsymbol{v}_{J_0^c}\|_1 \leq k_0 \|\boldsymbol{v}_{J_0}\|_1}} \frac{\|\boldsymbol{X}\boldsymbol{v}\|_2}{\sqrt{n} \|\boldsymbol{v}_{J_0}\|_2} > 0.$$

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Variable selection under the RE condition

• Restricted eigenvalue assumption $RE(s, k_0, X)$:

(Bickel-Ritov-Tsybakov 09). For some integer $1 \le s \le p$ and a positive number k_0 , the following holds for all $v \ne 0$

$$\frac{1}{\mathcal{K}(s,k_0)} \stackrel{\triangle}{=} \min_{\substack{J_0 \subseteq \{1,\ldots,p\}, |J_0| \leq s \\ \|\boldsymbol{v}_{J_0^c}\|_1 \leq k_0 \|\boldsymbol{v}_{J_0}\|_1}} \frac{\|\boldsymbol{X}\boldsymbol{v}\|_2}{\sqrt{n} \|\boldsymbol{v}_{J_0}\|_2} > 0.$$

• **Theorem (BRT 09).** It is sufficient for the Lasso and the Dantzig selector to achieve squared $\ell_2 \text{ loss } ||\beta_{\text{init}} - \beta||^2$ of $O(s\sigma^2 \log p/n)$ with high probability.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Theorem (Z 09): Suppose that $RE(s, k_0, X)$ condition holds. Suppose $\beta_{\min} := \min_{j \in S} |\beta_j| \ge C\lambda_n \sqrt{s}$ for λ_n chosen below. Then with $\mathbb{P}(\mathcal{T}_a) \ge 1 - (\sqrt{\pi \log p}p^a)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with supp $(\widehat{\beta}) := \mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \setminus S| < c_1$ and $|\widehat{\beta} - \beta||^2 \le O(s\sigma^2 \log p/n)$,

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Theorem (Z 09): Suppose that $RE(s, k_0, X)$ condition holds. Suppose $\beta_{\min} := \min_{j \in S} |\beta_j| \ge C\lambda_n \sqrt{s}$ for λ_n chosen below. Then with $\mathbb{P}(\mathcal{T}_a) \ge 1 - (\sqrt{\pi \log p}p^a)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\supp(\widehat{\beta}) := \mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \setminus S| < c_1$ and $|\widehat{\beta} - \beta||^2 \le O(s\sigma^2 \log p/n)$,

• where $\lambda_n \geq 2\sigma\sqrt{1+a}\sqrt{2\log p/n}$, where $a \geq 0$; and

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Theorem (Z 09): Suppose that $RE(s, k_0, X)$ condition holds. Suppose $\beta_{\min} := \min_{j \in S} |\beta_j| \ge C\lambda_n \sqrt{s}$ for λ_n chosen below. Then with $\mathbb{P}(\mathcal{T}_a) \ge 1 - (\sqrt{\pi \log p}p^a)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\supp(\widehat{\beta}) := \mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \setminus S| < c_1$ and $|\widehat{\beta} - \beta||^2 \le O(s\sigma^2 \log p/n)$,

• where $\lambda_n \geq 2\sigma\sqrt{1+a}\sqrt{2\log p/n}$, where $a \geq 0$; and • $\mathcal{T}_a := \left\{ \epsilon : \left\| X^T \epsilon/n \right\|_{\infty} \leq \sigma\sqrt{1+a}\sqrt{2\log p/n} \right\}$.

Theorem (Z 09): Suppose that $RE(s, k_0, X)$ condition holds. Suppose $\beta_{\min} := \min_{j \in S} |\beta_j| \ge C\lambda_n \sqrt{s}$ for λ_n chosen below. Then with $\mathbb{P}(\mathcal{T}_a) \ge 1 - (\sqrt{\pi \log p}p^a)^{-1}$, the multi-step procedure returns $\widehat{\beta}$ with $\operatorname{supp}(\widehat{\beta}) := \mathcal{I}$ such that $S \subseteq \mathcal{I}$ and $|\mathcal{I} \setminus S| < c_1$ and $|\widehat{\beta} - \beta||^2 \le O(s\sigma^2 \log p/n)$,

• where $\lambda_n \ge 2\sigma\sqrt{1+a}\sqrt{2\log p/n}$, where $a \ge 0$; and • $\mathcal{T}_a := \left\{ \epsilon : \left\| X^T \epsilon/n \right\|_{\infty} \le \sigma\sqrt{1+a}\sqrt{2\log p/n} \right\}$.

• $k_0 = 1$ for the Dantzig selector and = 3 for the Lasso; $c_1 = 1/64\Lambda_{\min}^2(2s)$; Proof imposes $s \ge K^4(s, k_0)$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Compare probability of success for p = 1024

p = 1024 σ = 1

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Sample size increases almost linearly with s

p = 1024 Sample size vs. Sparsity

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Linear sparsity result: summary

- The thresholded Lasso requires that n
 slog(p/n), in order to achieve (almost) exact recovery of the sparsity pattern for (sub)Gaussian random matrix when β_{min} is sufficiently large.
- This shows a strong contrast with the ordinary Lasso: to reach the same goal, the required sample size is much larger.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Detection limit

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ/\sqrt{n} ;

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ/\sqrt{n} ;

Identify the relevant set of variables that are significant;

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ/\sqrt{n} ;

- Identify the relevant set of variables that are significant;
- Estimation accuracy: recovers a good approximation $\hat{\beta}$ to β , with ℓ_2 loss tightly bounded in an "oracle" sense.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable selection when some non-zero elements are well below σ/\sqrt{n} ;

- Identify the relevant set of variables that are significant;
- Estimation accuracy: recovers a good approximation β to β, with ℓ₂ loss tightly bounded – in an "oracle" sense.
 In addition to RE, we assume

$$\Lambda_{\max}(2s) \stackrel{ riangle}{=} \max_{v
eq 0, 2s ext{-sparse}} rac{\|Xv\|^2}{n\|v\|^2} < \infty.$$

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

• Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2s_0$ and $\mathbb{E} \|\widehat{\beta}_{\mathcal{I}} - \beta\|^2 = O(\log p)\mathbb{E} \|\beta^* - \beta\|^2$,

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

• Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2s_0$ and $\mathbb{E} \|\widehat{\beta}_{\mathcal{I}} - \beta\|^2 = O(\log p)\mathbb{E} \|\beta^* - \beta\|^2$, where β^* is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E} \|\beta^* - \beta\|^2 = \arg \min_{I \subset \{1,...,p\}} \mathbb{E} \|\widehat{\beta}_I - \beta\|^2$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

Question: How to find a sparse subset *I* such that |*I*| ≤ 2s₀ and E||β_I - β||² = O(log p)E ||β^{*} - β||², where β^{*} is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) E ||β^{*} - β||² = arg min_{I⊂{1,...,p}} E||β_I - β||².
We show ||β_I - β||² = O(log p)∑_{i=1}^p min(β_i², σ²/n),

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2s_0$ and $\mathbb{E} \|\widehat{\beta}_{\mathcal{I}} \beta\|^2 = O(\log p)\mathbb{E} \|\beta^* \beta\|^2$, where β^* is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E} \|\beta^* \beta\|^2 = \arg \min_{l \in \{1,...,p\}} \mathbb{E} \|\widehat{\beta}_l \beta\|^2$.
- We show $\|\widehat{\beta}_{\mathcal{I}} \beta\|^2 = O(\log p) \sum_{i=1}^{p} \min(\beta_i^2, \sigma^2/n)$, given **Proposition:** (Candès-Tao 07). For $\Lambda_{\max}(s) < \infty$, then $\mathbb{E} \|\beta \beta^*\|^2 \ge \min(1, 1/\Lambda_{\max}(s)) \sum_{i=1}^{p} \min(\beta_i^2, \sigma^2/n)$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Nearly ideal model selection

Consider subset least squares estimators $\hat{\beta}_I = (X_I^T X_I)^{-1} X_I^T Y$:

- Question: How to find a sparse subset \mathcal{I} such that $|\mathcal{I}| \leq 2s_0$ and $\mathbb{E} \|\widehat{\beta}_{\mathcal{I}} \beta\|^2 = O(\log p)\mathbb{E} \|\beta^* \beta\|^2$, where β^* is the ideal least-squares estimator which minimizes the expected mean squared error (MSE) $\mathbb{E} \|\beta^* \beta\|^2 = \arg\min_{l \in \{1,...,p\}} \mathbb{E} \|\widehat{\beta}_l \beta\|^2$.
- We show $\|\widehat{\beta}_{\mathcal{I}} \beta\|^2 = O(\log p) \sum_{i=1}^{p} \min(\beta_i^2, \sigma^2/n)$, given **Proposition:** (Candès-Tao 07). For $\Lambda_{\max}(s) < \infty$, then $\mathbb{E} \|\beta \beta^*\|^2 \ge \min(1, 1/\Lambda_{\max}(s)) \sum_{i=1}^{p} \min(\beta_i^2, \sigma^2/n)$.
- Note $\sum_{i=1}^{p} \min(\beta_i^2, \sigma^2/n) = \min_{I \subset \{1,...,p\}} \|\beta \beta_I\|^2 + |I|\sigma^2/n$ represents the ideal squared bias and variance tradeoff.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Defining 2s₀

• Let $0 \le s_0 \le s$ be the smallest integer such that $\sum_{i=1}^{p} \min(\beta_i^2, \lambda^2 \sigma^2) \le s_0 \lambda^2 \sigma^2$, where $\lambda = \sqrt{2 \log p/n}$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Defining 2s₀

- Let $0 \le s_0 \le s$ be the smallest integer such that $\sum_{i=1}^{p} \min(\beta_i^2, \lambda^2 \sigma^2) \le s_0 \lambda^2 \sigma^2$, where $\lambda = \sqrt{2 \log p/n}$.
- If we order the β_j 's in decreasing order of magnitude $|\beta_1| \ge |\beta_2| \dots \ge |\beta_p|$, then $|\beta_j| < \lambda \sigma \forall j > s_0$.

Nearly ideal model selection under the RE

Theorem: (**Z** 10) Suppose $RE(s_0, 6, X)$ holds with $K(s_0, 6)$, and 2*s*-sparse eigenvalue conditions hold. Then with probability at least $1 - (\sqrt{\pi \log p}p^a)^{-1}$, the *Thresholded Lasso* estimator achieves sparse oracle inequalities:

$$\begin{split} |\mathcal{I}| &\leq 2s_0 ext{ and } |\mathcal{I} \setminus S| \leq s_0 \leq s ext{ and } \\ \|\widehat{eta} - eta\|^2 &\leq O(\log p) \sum_{i=1}^p \min(eta_i^2, \sigma^2/n). \end{split}$$

Nearly ideal model selection under the RE

Theorem: (**Z** 10) Suppose $RE(s_0, 6, X)$ holds with $K(s_0, 6)$, and 2*s*-sparse eigenvalue conditions hold. Then with probability at least $1 - (\sqrt{\pi \log p}p^a)^{-1}$, the *Thresholded Lasso* estimator achieves sparse oracle inequalities:

$$\begin{aligned} |\mathcal{I}| &\leq 2s_0 \text{ and } |\mathcal{I} \setminus S| \leq s_0 \leq s \text{ and} \\ \|\widehat{\beta} - \beta\|^2 &\leq O(\log p) \sum_{i=1}^p \min(\beta_i^2, \sigma^2/n). \end{aligned}$$

• Obtain β_{init} using the Lasso with $\lambda_n \ge 2\sigma\sqrt{1+a\lambda}$, where $\lambda = \sqrt{2\log p/n}$; Threshold β_{init} with t_0 chosen from $(D_1\lambda\sigma, C_4\lambda\sigma]$, where $D_1 = \Lambda_{\max}(s-s_0) + 9K^2(s_0, 6)/2$ and $C_4 \ge D_1$; and refit with model \mathcal{I} using OLS.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Oracle inequalities for the Lasso

 Theorem (Z 10). RE(s₀, 6, X) is a sufficient condition for the Lasso to achieve squared ℓ₂ loss of O(s₀σ² log p/n) so long as Λ_{max}(2s) < ∞ and Λ_{min}(2s₀) > 0.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Decompose the ℓ_2 loss

• Each term above is bounded by $O(s_0\lambda^2\sigma^2)$, where $s_0\lambda^2\sigma^2 \leq O(logp)\mathbb{E} \|\beta - \beta^*\|^2$.

- **Theorem (Z 09).** Under RIP type of condition, the Gauss-Dantzig selector proposed by Candès-Tao 07 achieves such sparse oracle inequalities.
- Analysis builds upon Candès-Tao's result for the initial Dantzig selector.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Summary on the general thresholding rules

When β_{\min} is well below the noise level

- We show how to choose a sparse model *I*, upon which the OLS estimator achieves the sparse oracle inequalities.
- We consider the bound on l₂-loss as a natural criterion to evaluate a sparse model when it is not exactly S.
- Variables in model \mathcal{I} are essential in predicting $X\beta$.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Subset selection: related work

- Oracle inequalities in ℓ_2 loss have been studied in Donoho-Johnstone 94 and Candès-Tao 07.
- Also relevant is the work of Meinshausen and Yu 09, Wasserman and Roeder 09, and Zhang 09.
- A final note: this method was called "selection/estimation (s/e) procedure" in Foster and George 94, and "subset least squares" by Mallows 73.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Conclusion

 In the high dimensional linear model, it is possible to estimate the parameter β and its significant set of variables accurately using the Thresholded Lasso.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

Conclusion

- In the high dimensional linear model, it is possible to estimate the parameter β and its significant set of variables accurately using the Thresholded Lasso.
- In a joint work with Peter Buehlmann, Philipp Rutimann and Min Xu, we apply the thresholding/re-estimation idea to Gaussian graphical model selection and covariance estimation.

Introduction Sparse Recovery Thresholding Procedure Oracle Inequalities

• That is it! Thank you very much!