The iterations of intersection body operator.

Artem Zvavitch

Kent State University

Workshop on Probability and Geometry in High Dimensions. Université Paris-Est Marne-la-Valléey, May 17-21 2010.

■▶▲■▶ ■ のへで

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

< ∃ >

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

• K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .

< ∃⇒

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

K is a star body if ρ_K(ξ) is positive and continuous function on Sⁿ⁻¹.
ξ[⊥] = {x ∈ ℝⁿ : x · ξ = 0}.

∢ ≣ ≯

Intersection Body

E. Lutwak: Intersection body, of a body K

(★ 문) ▲ 문

Intersection Body

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

< ∃⇒

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

• $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

• $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.

•
$$B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$$
, then $IB_2^n = \operatorname{Vol}_{n-1}(B_2^{n-1})B_2^n = c_n B_2^n$.

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = \operatorname{Vol}_{n-1}(B_2^{n-1})B_2^n = c_n B_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in ℝⁿ, n ≤ 4. NOT true for n ≥ 5.

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = \mathrm{Vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = \mathrm{Vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int\limits_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = \mathrm{Vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int\limits_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

More general definition of Intersection Body (C^{∞} -case).

A symmetric star body *L* is an intersection body if $R^{-1}\rho_L \ge 0$.

< ∃ >

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

• NO!

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

• NO!

• If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even *n* and NO for odd *n*!!!

医下颌 医下口

< 注→ 注

• Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.

< 三→ 三

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

< ∃ →

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

(신문) 문

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

•
$$d_{BM}(ITK, ITL) = d_{BM}(IK, IL).$$

→ 프 ▶ - 프

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

- $d_{BM}(ITK, ITL) = d_{BM}(IK, IL).$
- $d_{BM}(B_2^n, \mathrm{I}B_2^n) = 1.$

(★ 문) 제 문

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

- $d_{BM}(ITK, ITL) = d_{BM}(IK, IL).$
- $d_{BM}(B_2^n, \mathrm{I}B_2^n) = 1.$
- $d_{BM}(E, IE) = 1.$

E 900

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K,L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

- $d_{BM}(ITK, ITL) = d_{BM}(IK, IL).$
- $d_{BM}(B_2^n, \mathrm{I}B_2^n) = 1.$
- $d_{BM}(E, IE) = 1.$
- $d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$ -symmetric.

(신문) 문

Examples:

- $d_{BM}(E, IE) = 1.$
- $d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$ -symmetric.

ミト ▲ ヨト - ヨ - - のへ(~

Examples:

- $d_{BM}(E, IE) = 1.$
- $d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$ -symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \ge 3$?

▶ ★ 臣 ▶ …

э

Examples:

- $d_{BM}(E, IE) = 1.$
- $d_{BM}(K, IK) = 1, K \subset \mathbb{R}^2, K$ -symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \ge 3$?

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^n$, $n \ge 3$, is it true that

$$d_{BM}(I^mK,B_2^n) \rightarrow 1, \text{ as } m \rightarrow \infty,$$

i.e. iterations of intersection body operator of a star body K will converge to B_2^n in d_{BM} ?

< ∃ >

< E ▶ E

 ΠL – projection body of L:

 $h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$

★ E → E

 ΠL – projection body of L:

$$h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$$

Examples:

•
$$\Pi B_2^n = c_n B_2^n.$$

< E > E

 ΠL – projection body of *L*:

$$h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$$

Examples:

- $\Pi B_2^n = c_n B_2^n.$
- $\Pi B_{\infty}^n = c_n B_{\infty}^n$, where $B_{\infty}^n = [-1,1]^n$.

Fixed point is NOT unique! W. Weil (71) described polytopes that satisfy this property. General case is still open.

Artem Zvavitch The iterations of intersection body operator.

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

Is it true that $d_{BM}(I^m K, B_2^n) \rightarrow 1$, as $m \rightarrow \infty$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

 $d_{BM}(I^m K, B_2^n) \rightarrow 1$, as $m \rightarrow \infty$.

< 注 > … 注
A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK,B_2^n) o 1, ext{ as } m o \infty.$$

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

 $d_{BM}(I^m K, B_2^n) \rightarrow 1$, as $m \rightarrow \infty$.

Remarks:

• We do not assume convexity of K. Such an assumption will much simplify the proofs.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

 $d_{BM}(I^m K, B_2^n) \rightarrow 1$, as $m \rightarrow \infty$.

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K\text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get} \\ d_{BM}(I^m K, B_2^n) \to 1, \text{ as } m \to \infty.$

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K\text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get} \\ d_{BM}(I^m K, B_2^n) \to 1, \text{ as } m \to \infty.$

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman & A. Pajor): d_{BM}(IK, Bⁿ₂) ≤ C (i.e. independent of dimension).

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K\text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get} \\ d_{BM}(I^m K, B_2^n) \to 1, \text{ as } m \to \infty.$

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman & A. Pajor): d_{BM}(IK, Bⁿ₂) ≤ C (i.e. independent of dimension).
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K\text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get} \\ d_{BM}(I^m K, B_2^n) \to 1, \text{ as } m \to \infty.$

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman & A. Pajor): d_{BM}(IK, Bⁿ₂) ≤ C (i.e. independent of dimension).
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$?
- Not known for convex symmetric case!

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0 \text{ such that } \forall K \subset \mathbb{R}^n \text{ such that } K\text{-start body, } d_{BM}(K, B_2^n) < 1 + \varepsilon_n, \text{ we get} \\ d_{BM}(I^m K, B_2^n) \to 1, \text{ as } m \to \infty.$

- We do not assume convexity of *K*. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then d_{BM}(K, B₂ⁿ) ≤ √n, which is very far from ε_n.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman & A. Pajor): d_{BM}(IK, Bⁿ₂) ≤ C (i.e. independent of dimension).
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$?
- Not known for convex symmetric case!
- (J. Kim, V. Yaskin, A.Z.) Wrong without assumption of convexity! there is a star body (*p*-convex) K such that d_{BM}(IK, Bⁿ₂) >> d_{BM}(K, Bⁿ₂).

Spherical Radon Transform:

$$Rf(\xi) = \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta)d heta$$

< 注 > … 注

Spherical Radon Transform:

$$Rf(\xi) = \int\limits_{S^{n-1}\cap\xi^{\perp}} f(heta)d heta$$

Denote by
$$\mathcal{R} = \frac{1}{\operatorname{Vol}_{n-2}(S^{n-2})}R$$
, i.e. $\mathcal{R}1 = 1$.

Question: $(n \ge 3)$

Consider symmetric function $f: S^{n-1} \to \mathbb{R}^+$, such that $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

∃ ↓ ↓ ∃ ↓ ∫ ↓

 \mathcal{H}_k - space of Spherical Harmonics of degree k.

< 注 → 三 注

 \mathcal{H}_k- space of Spherical Harmonics of degree k. H^f_k the projection of f to $\mathcal{H}_k,$ so

< 臣 ▶ □ 臣

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

< 三→

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)= \mathsf{v}_{n,k}H_k(\xi), ext{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdots (k-1)}{(n-1)(n+1) \cdots (n+k-3)}.$$

< 三 → …

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)= extsf{v}_{n,k}H_k(\xi), extsf{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdots (k-1)}{(n-1)(n+1) \cdots (n+k-3)}.$$

$$v_{n,2} = \frac{1}{n-1}$$
 and $v_{n,k} \approx k^{-n-2}$.

< 三 → …

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)= extsf{v}_{n,k}H_k(\xi), extsf{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdots (k-1)}{(n-1)(n+1) \cdots (n+k-3)}.$$

 $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

• $\mathcal{R}f = \mathcal{R}g$, then f = g.

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)= extsf{v}_{n,k}H_k(\xi), extsf{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdots (k-1)}{(n-1)(n+1) \cdots (n+k-3)}.$$

 $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

- $\mathcal{R}f = \mathcal{R}g$, then f = g.
- $\mathcal{R}f = f$, then f = 1

 \mathcal{H}_k - space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi)= extsf{v}_{n,k}H_k(\xi), extsf{ for all } \xi\in S^{n-1},$$

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdots (k-1)}{(n-1)(n+1) \cdots (n+k-3)}.$$

 $v_{n,2} = \frac{1}{n-1}$ and $v_{n,k} \approx k^{-n-2}$.

- $\mathcal{R}f = \mathcal{R}g$, then f = g.
- $\mathcal{R}f = f$, then f = 1 (o.k. f = const).

THE MAIN PROBLEM:

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$

Artem Zvavitch The iterations of intersection body operator.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$

 $f^{n-1} \sim ????$

Artem Zvavitch The iterations of intersection body operator.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$
$$f^{n-1} \sim ????$$

Formulas Exists: Clebsch–Gordan coefficients — but they are hard, not clear (to me!) how to use for this problem.

(★ 문) ▲ 문

 $f = 1 + \phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi = 0$.

▶ ▲ 差 ▶ 差 の � ()

$$\begin{split} f &= 1 + \phi \text{, where } \phi \text{ is even with small } L_{\infty} \text{ norm, } \int_{S^{n-1}} \phi = 0. \\ \mathcal{R}f^{n-1} &= 1 + (n-1)\mathcal{R}\phi + \mathcal{R}O(\phi^2) \end{split}$$

ミト ▲ ヨト ヨ の へ ()

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.

< ∃⇒

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) Our main goal to show that

 $\|(n-1)\mathcal{R}\phi\||_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

< ∃ →

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) Our main goal to show that

 $\|(n-1)\mathcal{R}\phi\||_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$).

< ∃ >

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) Our main goal to show that

 $\|(n-1)\mathcal{R}\phi\||_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write $\phi \sim \sum_{k \geq 0} H_{2k}^{\phi}$.

< ∃⇒

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) Our main goal to show that

 $\|(n-1)\mathcal{R}\phi\||_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write $\phi \sim \sum_{k \geq 0} H_{2k}^{\phi}$. Apply \mathcal{R} . If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2} = 1$ (but $v_{n,2k} \leq 3/4$ for all k > 1).

医下颌 医下颌

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game. 2) Our main goal to show that

 $\|(n-1)\mathcal{R}\phi\||_{L_2} \leq \lambda \|\phi\|_{L_2}$, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write $\phi \sim \sum_{k \geq 0} H_{2k}^{\phi}$. Apply \mathcal{R} . If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2} = 1$ (but $v_{n,2k} \leq 3/4$ for all k > 1). Thus we need to KILL H_2^{ϕ} .

- < ⊒ >

$$\rho_{\mathcal{T}^{-1}\mathcal{K}}(\xi) = \|\mathcal{T}\xi\|_{\mathcal{K}}^{-1} = \left\|\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right\|_{\mathcal{K}}^{-1} |\mathcal{T}\xi|^{-1} = \rho_{\mathcal{K}}\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$$

ヨ▶ ▲ ヨ ▶ ▲ ヨ → ��や

$$\rho_{\mathcal{T}^{-1}\mathcal{K}}(\xi) = \|\mathcal{T}\xi\|_{\mathcal{K}}^{-1} = \left\|\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right\|_{\mathcal{K}}^{-1} |\mathcal{T}\xi|^{-1} = \rho_{\mathcal{K}}\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$$

It is logical to define $\mathcal{T}f(\xi) = f\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$

(★ 문) ▲ 문

$$\rho_{T^{-1}K}(\xi) = \|T\xi\|_{K}^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_{K}^{-1} |T\xi|^{-1} = \rho_{K}\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$$

It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant *M*:

• $\|f\|_{L_{\infty}} \leq M$

• For all $k \in N$, there exists polynomial p_k of degree k so that $\|f - p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

$$\rho_{\mathcal{T}^{-1}\mathcal{K}}(\xi) = \|\mathcal{T}\xi\|_{\mathcal{K}}^{-1} = \left\|\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right\|_{\mathcal{K}}^{-1} |\mathcal{T}\xi|^{-1} = \rho_{\mathcal{K}}\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$$

It is logical to define $\mathcal{T}f(\xi) = f\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant *M*:

• $\|f\|_{L_{\infty}} \leq M$

• For all $k \in N$, there exists polynomial p_k of degree k so that $\|f - p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

• If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $\|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}$.

$$\rho_{\mathcal{T}^{-1}\mathcal{K}}(\xi) = \|\mathcal{T}\xi\|_{\mathcal{K}}^{-1} = \left\|\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right\|_{\mathcal{K}}^{-1} |\mathcal{T}\xi|^{-1} = \rho_{\mathcal{K}}\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$$

It is logical to define $\mathcal{T}f(\xi) = f\left(\frac{\mathcal{T}\xi}{|\mathcal{T}\xi|}\right) |\mathcal{T}\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant *M*:

• $\|f\|_{L_{\infty}} \leq M$

• For all $k \in N$, there exists polynomial p_k of degree k so that $\|f - p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $\|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}$.
- Let $T \in GL(n)$ with $||T||, ||T^{-1}|| \le 2$. Then if, $f \in \mathcal{U}_{\alpha}$, we have $Tf \in \mathcal{U}_{\alpha-1/2}$ and $||Tf||_{\mathcal{U}_{\alpha-1/2}} \le C_{1/2} ||f||_{\mathcal{U}_{\alpha}}$.

$$\rho_{T^{-1}K}(\xi) = \|T\xi\|_{K}^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_{K}^{-1} |T\xi|^{-1} = \rho_{K}\left(\frac{T\xi}{|T\xi|}\right)|T\xi|^{-1}.$$

It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right)|T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $\|f\|_{\mathcal{U}_{\alpha}}$ is a least constant *M*:

• $\|f\|_{L_{\infty}} \leq M$

• For all $k \in N$, there exists polynomial p_k of degree k so that $\|f - p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $\|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}$.
- Let $T \in GL(n)$ with $||T||, ||T^{-1}|| \le 2$. Then if, $f \in U_{\alpha}$, we have $Tf \in U_{\alpha-1/2}$ and $||Tf||_{U_{\alpha-1/2}} \le C_{1/2} ||f||_{U_{\alpha}}$.
- If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R}f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}$.

Make ρ_{I^kK} smooth!

If f,g∈U_α, then fg∈U_α and ||fg||_{U_α} ≤ C||f||_{U_α} ||g||_{U_α}.
If f∈U_α, then Rf∈U_{α+n-2} and ||Rf||_{U_{α+n-2}} ≤ C||f||_{U_α}.

< E > E
Make ρ_{I^kK} smooth!

- $\textbf{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ if } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- $\begin{array}{l} \bullet \quad \text{Let } \beta > \alpha. \text{ Then for every } \delta > 0, \text{ there exists } C = C_{\alpha,\beta,\delta}, \text{ such that } \\ \|f\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{L_{\infty}} + \delta \|f\|_{\mathcal{U}_{\beta}}. \end{array}$

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$.

< E → E

Make ρ_{I^kK} smooth!

- $\textbf{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ if } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- $\begin{array}{l} \bullet \quad \text{Let } \beta > \alpha. \text{ Then for every } \delta > 0, \text{ there exists } C = C_{\alpha,\beta,\delta}, \text{ such that } \\ \|f\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{L_{\infty}} + \delta \|f\|_{\mathcal{U}_{\beta}}. \end{array}$

$$\begin{split} & \text{Fix } \beta > \alpha > 0. \text{ Let } f = 1 + \varphi, \ \|\varphi\|_{L^{\infty}} < \varepsilon < 1/2. \\ & \text{Define } f_k: \ f_0 = f, \ f_{k+1} = \mathcal{R}f_k^{n-1}. \end{split}$$

米 医 ト 三 臣

Make ρ_{I^kK} smooth!

- $\textbf{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ if } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- $\label{eq:constraint} \begin{array}{l} \bullet \quad \text{Let } \beta > \alpha. \mbox{ Then for every } \delta > 0, \mbox{ there exists } C = C_{\alpha,\beta,\delta}, \mbox{ such that } \\ \|f\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{L_{\infty}} + \delta \|f\|_{\mathcal{U}_{\beta}}. \end{array}$

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$. Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$. Using (1) and (2): $f_k \in \mathcal{U}_{\beta}$ for sufficiently large k and $\|f_k\|_{\mathcal{U}_{\beta}} \le C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}$$

- $If f,g \in \mathcal{U}_{\alpha}, \text{ then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ if } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{L_{\infty}} + \delta \|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$. Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$. Using (1) and (2): $f_k \in \mathcal{U}_\beta$ for sufficiently large k and $\|f_k\|_{\mathcal{U}_\beta} \le C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}.$$

Let $\mu = \int f_k$. If $\varepsilon > 0$ is sufficiently small, then $|\mu - 1|$ is small and $\mu^{-1}f_k = 1 + \psi$ where $\int \psi = 0$ and $\|\psi\|_{L^{\infty}}$ is small. Note that

$$\|\psi\|_{\mathcal{U}_{\beta}} \leq 1 + \mu^{-1} \|f_k\|_{\mathcal{U}_{\beta}} \leq C'(k),$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $(\|\psi\|_{\mathcal{U}_{\beta}} < C(k) \text{ and } \|\psi\|_{L^{\infty}} \to 0 \text{ as } \varepsilon \to 0).$

< ∃ >

- $\textbf{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ if } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{L_{\infty}} + \delta \|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$. Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$. Using (1) and (2): $f_k \in \mathcal{U}_\beta$ for sufficiently large k and $\|f_k\|_{\mathcal{U}_\beta} \le C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}.$$

Let $\mu = \int f_k$. If $\varepsilon > 0$ is sufficiently small, then $|\mu - 1|$ is small and $\mu^{-1}f_k = 1 + \psi$ where $\int \psi = 0$ and $\|\psi\|_{L^{\infty}}$ is small. Note that

$$\|\psi\|_{\mathcal{U}_{\beta}} \leq 1 + \mu^{-1} \|f_k\|_{\mathcal{U}_{\beta}} \leq C'(k),$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $(\|\psi\|_{\mathcal{U}_{\beta}} < C(k) \text{ and } \|\psi\|_{L^{\infty}} \to 0 \text{ as } \varepsilon \to 0)$. Applying this to the function ρ_{K} , we conclude that if K is sufficiently close to B_{n} , then, after proper normalization, $\rho_{I^{k}K}$ can be written as $1 + \varphi$ with $\|\varphi\|_{\mathcal{U}_{\alpha}}$ as small as we want,