The iterations of intersection body operator.

Artem Zvavitch

Kent State University

Workshop on Probability and Geometry in High Dimensions.
Université Paris-Est Marne-la-Valléey, May 17-21 2010.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.

Radial function: $\rho_{K}(\xi)=\sup \{a: a \xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_{K}(\xi)=\|\xi\|_{K}^{-1}$, where $\|\xi\|_{K}^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_{K}(\xi)$ is positive and continuous function on S^{n-1}.
- $\xi^{\perp}=\left\{x \in \mathbb{R}^{n}: x \cdot \xi=0\right\}$.

E. Lutwak: Intersection body, of a body K

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $\mathrm{I} B_{2}^{n}=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) B_{2}^{n}=c_{n} B_{2}^{n}$.

Intersection Body

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1}. Very nice questions in Harmonic Analysis \& just for fun.

- $K \subset \mathbb{R}^{2}$, symmetric, then $I K$ is just a rotation of $2 K$ by $\pi / 2$.
- $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, then $\operatorname{I} B_{2}^{n}=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) B_{2}^{n}=c_{n} B_{2}^{n}$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in $\mathbb{R}^{n}, n \leq 4$. NOT true for $n \geq 5$.

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

Spherical coordinates in ξ^{\perp}

$$
\rho_{\mathrm{I} K}(\xi)=\operatorname{Vol}_{n-1}\left(K \cap \xi^{\perp}\right)=\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \rho_{K}^{n-1}(\theta) d \theta=\frac{1}{n-1} R \rho_{K}^{n-1}(\xi) .
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

More general definition of Intersection Body (C^{∞}-case).
A symmetric star body L is an intersection body if $R^{-1} \rho_{L} \geq 0$.

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$
Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on S^{n-1}, such that for every $u \in S_{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $R^{-1} f_{u}>0$. Is it true that $R^{-1} f>0$?

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on S^{n-1}, such that for every $u \in S_{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $R^{-1} f_{u}>0$. Is it true that $R^{-1} f>0$?
F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!

Intersection Bodies: Fix $\varepsilon \in(0,1 / 10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_{u}, which coincide with K on a ε-neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in(0,1 / 10)$

Consider a symmetric function f on S^{n-1}, such that for every $u \in S_{n-1}$ there exits a function f_{u}, which is equal to f on a ε-neighborhood of u and $R^{-1} f_{u}>0$. Is it true that $R^{-1} f>0$?
F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!
- If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd $n!!!$

E. Lutwak: Intersection body, of a body K

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $I(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} I K$.
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then $I E$ is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}(\mathrm{I} T K, I T L)=d_{B M}(\mathrm{I} K, I L)$.
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}(I T K, I T L)=d_{B M}(I K, I L)$.
- $d_{B M}\left(B_{2}^{n}, I B_{2}^{n}\right)=1$.
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then $I E$ is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}(I T K, I T L)=d_{B M}(I K, I L)$.
- $d_{B M}\left(B_{2}^{n}, I B_{2}^{n}\right)=1$.
- $d_{B M}(E, I E)=1$.
E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in G L(n)$, then $\mathrm{I}(T K)=|\operatorname{det} T|\left(T^{*}\right)^{-1} \mathrm{I} K$.
- $E=T B_{2}^{n}$ - Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\}$.

- $d_{B M}(I T K, I T L)=d_{B M}(I K, I L)$.
- $d_{B M}\left(B_{2}^{n}, I B_{2}^{n}\right)=1$.
- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

Questions:

Examples:

- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

Examples:

- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

Examples:

- $d_{B M}(E, I E)=1$.
- $d_{B M}(K, I K)=1, K \subset \mathbb{R}^{2}, K$-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to $d_{B M}$) of I in $\mathbb{R}^{n}, n \geq 3$?

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^{n}, n \geq 3$, is it true that

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

i.e. iterations of intersection body operator of a star body K will converge to B_{2}^{n} in $d_{B M}$?

Dual story - Projection body (convex, sets only!)

Support function: $h_{L}(\theta)=\sup \{x \cdot \theta, x \in L\}$.

Support function: $h_{L}(\theta)=\sup \{x \cdot \theta, x \in L\}$.
ΠL - projection body of L :

$$
h_{\Pi L}(\theta)=\operatorname{Vol}_{n-1}\left(L \mid \theta^{\perp}\right)
$$

Support function: $h_{L}(\theta)=\sup \{x \cdot \theta, x \in L\}$.
ΠL - projection body of L :

$$
h_{\Pi L}(\theta)=\operatorname{Vol}_{n-1}\left(L \mid \theta^{\perp}\right) .
$$

Examples:

- $\Pi B_{2}^{n}=c_{n} B_{2}^{n}$.

Support function: $h_{L}(\theta)=\sup \{x \cdot \theta, x \in L\}$.
ΠL - projection body of L :

$$
h_{\Pi L}(\theta)=\operatorname{Vol}_{n-1}\left(L \mid \theta^{\perp}\right) .
$$

Examples:

- $\Pi B_{2}^{n}=c_{n} B_{2}^{n}$.
- $\Pi B_{\infty}^{n}=c_{n} B_{\infty}^{n}$, where $B_{\infty}^{n}=[-1,1]^{n}$.

Fixed point is NOT unique! W. Weil (71) described polytopes that satisfy this property. General case is still open.

Is it true that $d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1$, as $m \rightarrow \infty$?

Is it true that $d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1$, as $m \rightarrow \infty$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)
$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Is it true that $d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1$, as $m \rightarrow \infty$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman \& A. Pajor): $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$ (i.e. independent of dimension).

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman \& A. Pajor): $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$ (i.e. independent of dimension).
- Big hope: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right)<d_{B M}\left(K, B_{2}^{n}\right)$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman \& A. Pajor): $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right) \leq C$ (i.e. independent of dimension).
- Big hope: $d_{B M}\left(\mathrm{I} K, B_{2}^{n}\right)<d_{B M}\left(K, B_{2}^{n}\right)$?
- Not known for convex symmetric case!

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

$\exists \varepsilon_{n}>0$ such that $\forall K \subset \mathbb{R}^{n}$ such that K-start body, $d_{B M}\left(K, B_{2}^{n}\right)<1+\varepsilon_{n}$, we get

$$
d_{B M}\left(I^{m} K, B_{2}^{n}\right) \rightarrow 1, \text { as } m \rightarrow \infty
$$

Remarks:

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{B M}\left(K, B_{2}^{n}\right) \leq \sqrt{n}$, which is very far from ε_{n}.
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / V. Milman \& A. Pajor): $d_{B M}\left(I K, B_{2}^{n}\right) \leq C$ (i.e. independent of dimension).
- Big hope: $d_{B M}\left(I K, B_{2}^{n}\right)<d_{B M}\left(K, B_{2}^{n}\right)$?
- Not known for convex symmetric case!
- (J. Kim, V. Yaskin, A.Z.) Wrong without assumption of convexity! there is a star body (p-convex) K such that $d_{B M}\left(I K, B_{2}^{n}\right) \gg d_{B M}\left(K, B_{2}^{n}\right)$.

Main Idea: Spherical Radon Transform

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Spherical Radon Transform:

$$
R f(\xi)=\int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d \theta
$$

Denote by $\mathcal{R}=\frac{1}{\operatorname{Vol}_{n-2}\left(S^{n-2}\right)} R$, i.e. $\mathcal{R} 1=1$.

Question: $(n \geq 3)$

Consider symmetric function $f: S^{n-1} \rightarrow \mathbb{R}^{+}$, such that $f=\mathcal{R} f^{n-1}$, is it true that then $f=1$?

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

$$
v_{n, k}=\frac{1 \cdot 3 \cdots \cdots(k-1)}{(n-1)(n+1) \cdots(n+k-3)}
$$

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

$$
v_{n, k}=\frac{1 \cdot 3 \cdots \cdots(k-1)}{(n-1)(n+1) \cdots(n+k-3)}
$$

$v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

$$
v_{n, k}=\frac{1 \cdot 3 \cdots \cdots(k-1)}{(n-1)(n+1) \cdots(n+k-3)}
$$

$v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

$$
v_{n, k}=\frac{1 \cdot 3 \cdots \cdots(k-1)}{(n-1)(n+1) \cdots(n+k-3)}
$$

$v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.
- $\mathcal{R} f=f$, then $f=1$

Main Idea: Spherical Radon Transform and Spherical Harmonics

\mathcal{H}_{k} - space of Spherical Harmonics of degree k.
H_{k}^{f} the projection of f to \mathcal{H}_{k}, so

$$
f \sim \sum_{k \geq 0} H_{k}^{f}
$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_{k} \in \mathcal{H}_{k}$, k-even, then

$$
\mathcal{R} H_{k}(\xi)=v_{n, k} H_{k}(\xi), \text { for all } \xi \in S^{n-1}
$$

where $v_{n, 0}=1$ and

$$
v_{n, k}=\frac{1 \cdot 3 \cdots \cdots(k-1)}{(n-1)(n+1) \cdots(n+k-3)}
$$

$v_{n, 2}=\frac{1}{n-1}$ and $v_{n, k} \approx k^{-n-2}$.

- $\mathcal{R} f=\mathcal{R} g$, then $f=g$.
- $\mathcal{R} f=f$, then $f=1$ (o.k. $f=$ const).

$$
f \sim \sum_{k \geq 0} H_{k}^{f} \Rightarrow
$$

$$
\begin{aligned}
& f \sim \sum_{k \geq 0} H_{k}^{f} \Rightarrow \\
& f^{n-1} \sim ? ? ? ?
\end{aligned}
$$

$$
\begin{aligned}
& f \sim \sum_{k \geq 0} H_{k}^{f} \Rightarrow \\
& f^{n-1} \sim ? ? ? ?
\end{aligned}
$$

Formulas Exists: Clebsch-Gordan coefficients - but they are hard, not clear (to me!) how to use for this problem.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$. $\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) Our main goal to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1
$$

$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) Our main goal to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$).
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that $(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) Our main goal to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$).
Write $\phi \sim \sum_{k \geq 0} H_{2 k}^{\phi}$.
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that ($n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) Our main goal to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$).
Write $\phi \sim \sum_{k \geq 0} H_{2 k}^{\phi}$.
Apply \mathcal{R}. If $(n-1) v_{n, 2 k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1) v_{n, 2}=1$ (but $v_{n, 2 k} \leq 3 / 4$ for all $k>1$).
$f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}} \phi=0$.
$\mathcal{R} f^{n-1}=1+(n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$
So our main goal is to show that ($n-1) \mathcal{R} \phi+\mathcal{R} O\left(\phi^{2}\right)$ is small.

Problems:

1) Working with Spherical Harmonics we need to talk about L_{2} norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_{2}, L_{∞} game.
2) Our main goal to show that

$$
\|(n-1) \mathcal{R} \phi\|_{L_{2}} \leq \lambda\|\phi\|_{L_{2}}, \text { for some } \lambda<1
$$

Indeed, then $\left\|\mathcal{R} \phi^{2}\right\|_{L_{2}} \leq\|\phi\|_{L_{\infty}}\|\phi\|_{L_{2}}$ (do not forget $\|\mathcal{R}\|_{L_{2} \rightarrow L_{2}} \leq 1$).
Write $\phi \sim \sum_{k \geq 0} H_{2 k}^{\phi}$.
Apply \mathcal{R}. If $(n-1) v_{n, 2 k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1) v_{n, 2}=1$ (but $v_{n, 2 k} \leq 3 / 4$ for all $k>1$).
Thus we need to KILL H_{2}^{ϕ}.

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$$
\rho_{T^{-1} K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1} .
$$

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$$
\rho_{T^{-1} K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1} .
$$

It is logical to define $T f(\xi)=f\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$\rho_{T^{-1} K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.
It is logical to define $T f(\xi)=f\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :
$\|f\|_{\mathcal{U}_{\alpha}}$ is a least constant M :

- $\|f\|_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_{k} of degree k so that $\left\|f-p_{k}\right\|_{L_{2}} \leq M k^{-\alpha}$.
$f \in \mathcal{U}_{\alpha}$ if $\|f\|_{\mathcal{U}_{\alpha}}<\infty$.

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$\rho_{T-1 K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.
It is logical to define $T f(\xi)=f\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :
$\|f\|_{\mathcal{U}_{\alpha}}$ is a least constant M :

- $\|f\|_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_{k} of degree k so that $\left\|f-p_{k}\right\|_{L_{2}} \leq M k^{-\alpha}$.
$f \in \mathcal{U}_{\alpha}$ if $\|f\|_{\mathcal{U}_{\alpha}}<\infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$\rho_{T^{-1} K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.
It is logical to define $T f(\xi)=f\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

$\|f\|_{\mathcal{U}_{\alpha}}$ is a least constant M :

- $\|f\|_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_{k} of degree k so that $\left\|f-p_{k}\right\|_{L_{2}} \leq M k^{-\alpha}$.
$f \in \mathcal{U}_{\alpha}$ if $\|f\|_{\mathcal{U}_{\alpha}}<\infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
- Let $T \in G L(n)$ with $\|T\|,\left\|T^{-1}\right\| \leq 2$. Then if, $f \in \mathcal{U}_{\alpha}$, we have $T f \in \mathcal{U}_{\alpha-1 / 2}$ and $\|T f\|_{\mathcal{U}_{\alpha-1 / 2}} \leq C_{1 / 2}\|f\|_{\mathcal{U}_{\alpha}}$.

Linear Transform $T \in G L(n)$ applied to function f on S^{n-1}

$\rho_{T^{-1} K}(\xi)=\|T \xi\|_{K}^{-1}=\left\|\frac{T \xi}{|T \xi|}\right\|_{K}^{-1}|T \xi|^{-1}=\rho_{K}\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.
It is logical to define $T f(\xi)=f\left(\frac{T \xi}{|T \xi|}\right)|T \xi|^{-1}$.

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

$\|f\|_{\mathcal{U}_{\alpha}}$ is a least constant M :

- $\|f\|_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_{k} of degree k so that $\left\|f-p_{k}\right\|_{L_{2}} \leq M k^{-\alpha}$.
$f \in \mathcal{U}_{\alpha}$ if $\|f\|_{\mathcal{U}_{\alpha}}<\infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
- Let $T \in G L(n)$ with $\|T\|,\left\|T^{-1}\right\| \leq 2$. Then if, $f \in \mathcal{U}_{\alpha}$, we have $T f \in \mathcal{U}_{\alpha-1 / 2}$ and $\|T f\|_{\mathcal{U}_{\alpha-1 / 2}} \leq C_{1 / 2}\|f\|_{\mathcal{U}_{\alpha}}$.
- If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(2) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(2) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(0) Let $\beta>\alpha$. Then for every $\delta>0$, there exists $C=C_{\alpha, \beta, \delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}}+\delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta>\alpha>0$. Let $f=1+\varphi,\|\varphi\|_{L_{\infty}}<\varepsilon<1 / 2$.
(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(2) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(0) Let $\beta>\alpha$. Then for every $\delta>0$, there exists $C=C_{\alpha, \beta, \delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}}+\delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta>\alpha>0$. Let $f=1+\varphi,\|\varphi\|_{L_{\infty}}<\varepsilon<1 / 2$.
Define $f_{k}: f_{0}=f, f_{k+1}=\mathcal{R} f_{k}^{n-1}$.
(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(2) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(0) Let $\beta>\alpha$. Then for every $\delta>0$, there exists $C=C_{\alpha, \beta, \delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}}+\delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta>\alpha>0$. Let $f=1+\varphi,\|\varphi\|_{L_{\infty}}<\varepsilon<1 / 2$.
Define f_{k} : $f_{0}=f, f_{k+1}=\mathcal{R} f_{k}^{n-1}$.
Using (1) and (2): $f_{k} \in \mathcal{U}_{\beta}$ for sufficiently large k and $\left\|f_{k}\right\|_{\mathcal{U}_{\beta}} \leq C(k)$. Note

$$
(1-\varepsilon)^{(n-1)^{k}} \leq f_{k} \leq(1+\varepsilon)^{(n-1)^{k}}
$$

(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(3) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(0) Let $\beta>\alpha$. Then for every $\delta>0$, there exists $C=C_{\alpha, \beta, \delta}$, such that

$$
\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}}+\delta\|f\|_{\mathcal{U}_{\beta}}
$$

Fix $\beta>\alpha>0$. Let $f=1+\varphi,\|\varphi\|_{L_{\infty}}<\varepsilon<1 / 2$.
Define $f_{k}: f_{0}=f, f_{k+1}=\mathcal{R} f_{k}^{n-1}$.
Using (1) and (2): $f_{k} \in \mathcal{U}_{\beta}$ for sufficiently large k and $\left\|f_{k}\right\|_{\mathcal{U}_{\beta}} \leq C(k)$. Note

$$
(1-\varepsilon)^{(n-1)^{k}} \leq f_{k} \leq(1+\varepsilon)^{(n-1)^{k}} .
$$

Let $\mu=\int f_{k}$. If $\varepsilon>0$ is sufficiently small, then $|\mu-1|$ is small and $\mu^{-1} f_{k}=1+\psi$ where $\int \psi=0$ and $\|\psi\|_{L^{\infty}}$ is small. Note that

$$
\|\psi\|_{\mathcal{U}_{\beta}} \leq 1+\mu^{-1}\left\|f_{k}\right\|_{\mathcal{U}_{\beta}} \leq C^{\prime}(k),
$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $\left(\|\psi\|_{\mathcal{U}_{\beta}}<C(k)\right.$ and $\|\psi\|_{L \infty} \rightarrow 0$ as $\left.\varepsilon \rightarrow 0\right)$.
(1) If $f, g \in \mathcal{U}_{\alpha}$, then $f g \in \mathcal{U}_{\alpha}$ and $\|f g\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
(2) If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R} f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
(3) Let $\beta>\alpha$. Then for every $\delta>0$, there exists $C=C_{\alpha, \beta, \delta}$, such that

$$
\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}}+\delta\|f\|_{\mathcal{U}_{\beta}}
$$

Fix $\beta>\alpha>0$. Let $f=1+\varphi,\|\varphi\|_{L^{\infty}}<\varepsilon<1 / 2$.
Define $f_{k}: f_{0}=f, f_{k+1}=\mathcal{R} f_{k}^{n-1}$.
Using (1) and (2): $f_{k} \in \mathcal{U}_{\beta}$ for sufficiently large k and $\left\|f_{k}\right\|_{\mathcal{U}_{\beta}} \leq C(k)$. Note

$$
(1-\varepsilon)^{(n-1)^{k}} \leq f_{k} \leq(1+\varepsilon)^{(n-1)^{k}}
$$

Let $\mu=\int f_{k}$. If $\varepsilon>0$ is sufficiently small, then $|\mu-1|$ is small and $\mu^{-1} f_{k}=1+\psi$ where $\int \psi=0$ and $\|\psi\|_{L^{\infty}}$ is small. Note that

$$
\|\psi\|_{\mathcal{U}_{\beta}} \leq 1+\mu^{-1}\left\|f_{k}\right\|_{\mathcal{U}_{\beta}} \leq C^{\prime}(k)
$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $\left(\|\psi\|_{\mathcal{U}_{\beta}}<C(k)\right.$ and $\|\psi\|_{L^{\infty}} \rightarrow 0$ as $\left.\varepsilon \rightarrow 0\right)$. Applying this to the function ρ_{K}, we conclude that if K is sufficiently close to B_{n}, then, after proper normalization, $\rho_{\mathrm{I}^{k} K}$ can be written as $1+\varphi$ with $\|\varphi\|_{\mathcal{U}_{\alpha}}$ as small as we want,

