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Abstract

A current challenge in system biology is to infer the regulation network of a family of p
genes from a n-sample of microarrays, with n (much) smaller than p. Gaussian graphical
models are simple models to describe these regulation networks. We propose a procedure
that performs Gaussian graph estimation by model selection. We introduce a collection of
candidate graphs and then select one of them by minimizing a penalized empirical risk. We
pay a special attention to the maximum degree of the graphs that we can handle and asses the
performance of the procedure in a non-asymptotic setting. The good theoretical properties
of the procedure are confirmed on numerical examples.
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Biological systems involve complex networks of interactions between entities such as genes or
proteins. These networks can be conveniently represented by a graph. Each vertices of the graph
corresponds to a protein or a gene, and an edge between two vertices represents a direct interaction.
For example, Figure 1 records 1948 (known) interactions between 1458 proteins of the yeast.
Recent biotechnological tools enable to produce a huge amount of proteomic or transcriptomic
data. One of the challenge of the post-genomic is to infer the functional interactions between the
genes or the proteins from these data. The task is challenging for the statistician due to the very
high-dimensional nature of the data. For example, microarrays measure the expression level of a
few thousand genes (typically 4000) whereas the sample size n is no more than a few tens. Since
the number of possibles interactions between p genes is p(p−1)/2 (nearly ten millions if p = 4000),
it seems hopeless to try to infer these interactions from n ≈ 20 microarrays. This task is actually
possible (up to some extend) thanks to the sparsity of the interaction network.

Valuable tools for analyzing the network of interactions are the Gaussian Graphical Models.
The vector of the expression levels of the p genes is modeled by a Gaussian variable in Rp.
The Gaussian graph then represents the conditional dependences between the coordinates. More
precisely, if X = (X1, . . . , Xp) represent the expression levels of the p genes, the graph has an
edge between the genes i and j if and only if Xi is not independent of Xj conditionally on the
other variables. The goal of the statistician is to infer these edges from a n-sample of the variables
X. The edges correspond to the non-zero entries of the partial correlation matrix, so when the
sample size n is larger than p, a possible algorithm to infer the edges is to threshold the inverse
of the empirical covariance matrix. This strategy is no more possible when n is (much) smaller
than p and several new algorithms have been proposed. Unfortunately, the real performance of
these algorithms are mostly unknown: the few theoretical results are only valid under restrictive
conditions on the covariance matrix and they assume that the sample size n tends to infinity.

We propose a new statistical procedure to estimate the graph of conditional dependences of
X. We first introduce a collection of candidate graphs and then select one of them by minimizing
a penalized empirical risk. The performance of the procedure is assessed in a non-asymptotic
setting without any hypotheses on the covariance matrix. These good theoretical properties of
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Figure 1: Protein-Protein interaction network of the yeast.

the procedure are confirmed by numerical results. Since we are interested on the maximal ”size”
of the graph that we can infer, we pay a special attention to the maximal degree D of the graphs
that we can handle. This maximal degree turns to be roughly n/(2 log(p/D)), which means that
p should stay small compared to den/(2d)−1, where d is the degree of the graph of conditional
dependences.
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