Machine learning and portfolio selections. I.

László (Laci) Györfi ${ }^{1}$
${ }^{1}$ Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest, Hungary

May 28, 2008
e-mail: gyorfi@szit.bme.hu www.szit.bme.hu/~gyorfi www.szit.bme.hu/~oti/portfolio

Growth rate

investment in the stock market

Györfi

Growth rate

investment in the stock market
 d assets

Growth rate

investment in the stock market
d assets
$S_{n}^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_{0}^{(j)}=1, j=1, \ldots, d$

Growth rate

investment in the stock market
d assets
$S_{n}^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_{0}^{(j)}=1, j=1, \ldots, d$

$$
S_{n}^{(j)}=e^{n W_{n}^{(j)}} \approx e^{n W^{(j)}}
$$

Growth rate

investment in the stock market
d assets
$S_{n}^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_{0}^{(j)}=1, j=1, \ldots, d$

$$
S_{n}^{(j)}=e^{n W_{n}^{(j)}} \approx e^{n W^{(j)}}
$$

average growth rate

$$
W_{n}^{(j)}=\frac{1}{n} \ln S_{n}^{(j)}
$$

Growth rate

investment in the stock market
d assets
$S_{n}^{(j)}$ price of asset j at the end of trading period (day) n initial price $S_{0}^{(j)}=1, j=1, \ldots, d$

$$
S_{n}^{(j)}=e^{n W_{n}^{(j)}} \approx e^{n W^{(j)}}
$$

average growth rate

$$
W_{n}^{(j)}=\frac{1}{n} \ln S_{n}^{(j)}
$$

asymptotic average growth rate

$$
W^{(j)}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}^{(j)}
$$

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)} \geq 0, \sum_{j} b^{(j)}=1$

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)} \geq 0, \sum_{j} b^{(j)}=1$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)} \geq 0, \sum_{j} b^{(j)}=1$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j initial capital S_{0}

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)} \geq 0, \sum_{j} b^{(j)}=1$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j initial capital S_{0}

$$
S_{n}=S_{0} \sum_{j} b^{(j)} S_{n}^{(j)}
$$

Static portfolio selection: single period investment

the aim is to achieve $\max _{j} W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)} \geq 0, \sum_{j} b^{(j)}=1$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j initial capital S_{0}

$$
S_{n}=S_{0} \sum_{j} b^{(j)} S_{n}^{(j)}
$$

$$
S_{0} \max _{j} b^{(j)} S_{n}^{(j)} \leq S_{n} \leq d S_{0} \max _{j} b^{(j)} S_{n}^{(j)}
$$

assume that $b^{(j)}>0$

$$
\frac{1}{n} \ln \left(\max _{j} S_{0} b^{(j)} S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} \leq \frac{1}{n} \ln \left(\max _{j} S_{0} d b^{(j)} S_{n}^{(j)}\right)
$$

assume that $b^{(j)}>0$

$$
\begin{aligned}
\frac{1}{n} \ln \left(\max _{j} S_{0} b^{(j)} S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} & \leq \frac{1}{n} \ln \left(\max _{j} S_{0} d b^{(j)} S_{n}^{(j)}\right) \\
\max _{j}\left(\frac{1}{n} \ln \left(S_{0} b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right) & \leq \frac{1}{n} \ln S_{n} \\
& \leq \max _{j}\left(\frac{1}{n} \ln \left(S_{0} d b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right)
\end{aligned}
$$

assume that $b^{(j)}>0$

$$
\begin{aligned}
& \frac{1}{n} \ln \left(\max _{j} S_{0} b^{(j)} S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} \leq \frac{1}{n} \ln \left(\max _{j} S_{0} d b^{(j)} S_{n}^{(j)}\right) \\
& \max _{j}\left(\frac{1}{n} \ln \left(S_{0} b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} \\
& \leq \max _{j}\left(\frac{1}{n} \ln \left(S_{0} d b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right) \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}=\lim _{n \rightarrow \infty} \max _{j} \frac{1}{n} \ln S_{n}^{(j)}=\max _{j} W^{(j)}
\end{aligned}
$$

assume that $b^{(j)}>0$

$$
\begin{aligned}
& \frac{1}{n} \ln \left(\max _{j} S_{0} b^{(j)} S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} \leq \frac{1}{n} \ln \left(\max _{j} S_{0} d b^{(j)} S_{n}^{(j)}\right) \\
& \max _{j}\left(\frac{1}{n} \ln \left(S_{0} b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right) \leq \frac{1}{n} \ln S_{n} \\
& \leq \max _{j}\left(\frac{1}{n} \ln \left(S_{0} d b^{(j)}\right)+\frac{1}{n} \ln S_{n}^{(j)}\right) \\
& \lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}=\lim _{n \rightarrow \infty} \max _{j} \frac{1}{n} \ln S_{n}^{(j)}=\max _{j} W^{(j)}
\end{aligned}
$$

we can do much better using multi-period investment

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i multi-period investment

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i multi-period investment
$x_{i}^{(j)}$ is the factor by which capital invested in stock j grows during the market period i

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i multi-period investment
$x_{i}^{(j)}$ is the factor by which capital invested in stock j grows during the market period i
Constantly Re-balanced Portfolio (CRP)

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i multi-period investment
$x_{i}^{(j)}$ is the factor by which capital invested in stock j grows during the market period i
Constantly Re-balanced Portfolio (CRP)
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i
multi-period investment
$x_{i}^{(j)}$ is the factor by which capital invested in stock j grows during the market period i
Constantly Re-balanced Portfolio (CRP)
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j

Dynamic portfolio selection: multi-period investment

relative prices

$$
x_{i}^{(j)}=\frac{S_{i}^{(j)}}{S_{i-1}^{(j)}}
$$

$\mathbf{x}_{i}=\left(x_{i}^{(1)}, \ldots x_{i}^{(d)}\right)$ the return vector on trading period i
multi-period investment
$x_{i}^{(j)}$ is the factor by which capital invested in stock j grows during the market period i
Constantly Re-balanced Portfolio (CRP)
a portfolio vector $\mathbf{b}=\left(b^{(1)}, \ldots b^{(d)}\right)$
$b^{(j)}$ gives the proportion of the investor's capital invested in stock j
\mathbf{b} is the portfolio vector for each trading day
for the first trading period S_{0} denotes the initial capital

$$
S_{1}=S_{0} \sum_{j=1}^{d} b^{(j)} x_{1}^{(j)}=S_{0}\left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle
$$

for the first trading period S_{0} denotes the initial capital

$$
S_{1}=S_{0} \sum_{j=1}^{d} b^{(j)} x_{1}^{(j)}=S_{0}\left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle
$$

for the second trading period, S_{1} new initial capital

$$
S_{2}=S_{1} \cdot\left\langle\mathbf{b}, \mathbf{x}_{2}\right\rangle=S_{0} \cdot\left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle \cdot\left\langle\mathbf{b}, \mathbf{x}_{2}\right\rangle .
$$

for the first trading period S_{0} denotes the initial capital

$$
S_{1}=S_{0} \sum_{j=1}^{d} b^{(j)} x_{1}^{(j)}=S_{0}\left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle
$$

for the second trading period, S_{1} new initial capital

$$
S_{2}=S_{1} \cdot\left\langle\mathbf{b}, \mathbf{x}_{2}\right\rangle=S_{0} \cdot\left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle \cdot\left\langle\mathbf{b}, \mathbf{x}_{2}\right\rangle .
$$

for the nth trading period:

$$
S_{n}=S_{n-1}\left\langle\mathbf{b}, \mathbf{x}_{n}\right\rangle=S_{0} \prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{x}_{i}\right\rangle=S_{0} e^{n W_{n}(\mathbf{b})}
$$

with the average growth rate

$$
W_{n}(\mathbf{b})=\frac{1}{n} \sum_{i=1}^{n} \ln \left\langle\mathbf{b}, \mathbf{x}_{i}\right\rangle
$$

log-optimum portfolio

Special market process: $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ is independent and identically distributed (i.i.d.)

log-optimum portfolio

Special market process: $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ is independent and identically distributed (i.i.d.)
log-optimum portfolio b*

log-optimum portfolio

Special market process: $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ is independent and identically distributed (i.i.d.)
log-optimum portfolio \mathbf{b}^{*}

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{1}\right\rangle\right\}=\max _{\mathbf{b}} \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

log-optimum portfolio

Special market process: $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ is independent and identically distributed (i.i.d.)
log-optimum portfolio \mathbf{b}^{*}

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{1}\right\rangle\right\}=\max _{\mathbf{b}} \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Best Constantly Re-balanced Portfolio (BCRP)

Optimality

If $S_{n}^{*}=S_{n}\left(\mathbf{b}^{*}\right)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy \mathbf{b}^{*},

Optimality

If $S_{n}^{*}=S_{n}\left(\mathbf{b}^{*}\right)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy \mathbf{b}^{*}, then for any portfolio strategy \mathbf{b} with capital $S_{n}=S_{n}(\mathbf{b})$ and for any i.i.d. process $\left\{\mathbf{X}_{n}\right\}_{-\infty}^{\infty}$,

Optimality

If $S_{n}^{*}=S_{n}\left(\mathbf{b}^{*}\right)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy \mathbf{b}^{*}, then for any portfolio strategy \mathbf{b} with capital $S_{n}=S_{n}(\mathbf{b})$ and for any i.i.d. process $\left\{\mathbf{X}_{n}\right\}_{-\infty}^{\infty}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}^{*} \quad \text { almost surely }
$$

Optimality

If $S_{n}^{*}=S_{n}\left(\mathbf{b}^{*}\right)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy \mathbf{b}^{*},
then for any portfolio strategy \mathbf{b} with capital $S_{n}=S_{n}(\mathbf{b})$ and for any i.i.d. process $\left\{\mathbf{X}_{n}\right\}_{-\infty}^{\infty}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}^{*} \quad \text { almost surely }
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}^{*}=W^{*} \quad \text { almost surely }
$$

where

$$
W^{*}=\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{1}\right\rangle\right\}
$$

is the maximal growth rate of any portfolio.

Proof

$$
\frac{1}{n} \ln S_{n}=\frac{1}{n} \sum_{i=1}^{n} \ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle
$$

$$
\begin{aligned}
\frac{1}{n} \ln S_{n} & =\frac{1}{n} \sum_{i=1}^{n} \ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\} \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle-\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
\frac{1}{n} \ln S_{n} & =\frac{1}{n} \sum_{i=1}^{n} \ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\} \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle-\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{n} \ln S_{n}^{*} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{i}\right\rangle\right\} \\
& +\frac{1}{n} \sum_{i=1}^{n}\left(\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{i}\right\rangle-\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}_{i}\right\rangle\right\}\right)
\end{aligned}
$$

History

gambling, horse racing, information theory
Kelly (1956)
Latané (1959)
Breiman (1961)
Finkelstein and Whitley (1981)
Barron and Cover (1988)

History

gambling, horse racing, information theory
Kelly (1956)
Latané (1959)
Breiman (1961)
Finkelstein and Whitley (1981)
Barron and Cover (1988)
Chapter 15 of D. G. Luenberger, Investment Science. Oxford University Press, 1998.

Example 1: 1 stock + cash

$d=2, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}\right)$
Stock:

$$
X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\ 1 / 2 & \text { with probability } 1 / 2\end{cases}
$$

Example 1: 1 stock + cash

$d=2, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}\right)$
Stock:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 & \text { with probability } 1 / 2 .\end{cases} \\
& \mathbf{E}\left\{X^{(1)}\right\}=1 / 2 \cdot(2+1 / 2)=5 / 4>1
\end{aligned}
$$

Example 1: 1 stock + cash

$d=2, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}\right)$
Stock:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 \text { with probability } 1 / 2 .\end{cases} \\
& \mathbf{E}\left\{X^{(1)}\right\}=1 / 2 \cdot(2+1 / 2)=5 / 4>1
\end{aligned} \quad \begin{aligned}
& \mathbf{E}\left\{S_{n}^{(1)}\right\}=\mathbf{E}\left\{\prod_{i=1}^{n} x_{i}^{(1)}\right\}=(5 / 4)^{n}
\end{aligned}
$$

Example 1: 1 stock + cash

$d=2, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}\right)$
Stock:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 \text { with probability } 1 / 2 .\end{cases} \\
& \mathbf{E}\left\{X^{(1)}\right\}=1 / 2 \cdot(2+1 / 2)=5 / 4>1
\end{aligned} \quad \begin{aligned}
& \mathbf{E}\left\{S_{n}^{(1)}\right\}=\mathbf{E}\left\{\prod_{i=1}^{n} x_{i}^{(1)}\right\}=(5 / 4)^{n}
\end{aligned}
$$

What about $S_{n}^{(1)}$ or $W^{(1)}$?

Example 1: 1 stock + cash

$d=2, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}\right)$
Stock:

$$
\begin{gathered}
X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 & \text { with probability } 1 / 2\end{cases} \\
\mathbf{E}\left\{X^{(1)}\right\}=1 / 2 \cdot(2+1 / 2)=5 / 4>1
\end{gathered}, \begin{aligned}
& \mathbf{E}\left\{S_{n}^{(1)}\right\}=\mathbf{E}\left\{\prod_{i=1}^{n} X_{i}^{(1)}\right\}=(5 / 4)^{n}
\end{aligned}
$$

What about $S_{n}^{(1)}$ or $W^{(1)}$?

$$
\begin{aligned}
W^{(1)}=\lim _{n \rightarrow \infty} \frac{1}{n} \ln S_{n}^{(1)} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \ln X_{i}^{(1)}=\mathbf{E}\left\{\ln X^{(1)}\right\} \\
& =1 / 2 \ln 2+1 / 2 \ln (1 / 2)=0
\end{aligned}
$$

zero growth rate

Cash:

$$
X^{(2)}=1
$$

zero growth rate

Cash:

$$
X^{(2)}=1
$$

zero growth rate portfolio

$$
\mathbf{b}=(b, 1-b)
$$

Cash:

$$
X^{(2)}=1
$$

zero growth rate portfolio

$$
\mathbf{b}=(b, 1-b)
$$

$$
\begin{aligned}
\mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\} & =1 / 2(\ln (2 b+(1-b))+\ln (b / 2+(1-b)) \\
& =1 / 2 \ln [(1+b)(1-b / 2)]
\end{aligned}
$$

Cash:

$$
X^{(2)}=1
$$

zero growth rate portfolio

$$
\mathbf{b}=(b, 1-b)
$$

$$
\begin{aligned}
\mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\} & =1 / 2(\ln (2 b+(1-b))+\ln (b / 2+(1-b)) \\
& =1 / 2 \ln [(1+b)(1-b / 2)]
\end{aligned}
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / 2,1 / 2)
$$

Cash:

$$
X^{(2)}=1
$$

zero growth rate portfolio

$$
\mathbf{b}=(b, 1-b)
$$

$$
\begin{aligned}
\mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\} & =1 / 2(\ln (2 b+(1-b))+\ln (b / 2+(1-b)) \\
& =1 / 2 \ln [(1+b)(1-b / 2)]
\end{aligned}
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / 2,1 / 2)
$$

asymptotic average growth rate

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}\right\rangle\right\}=1 / 2 \ln (9 / 8)=0.059=W^{*}
$$

positive growth rate

Example 2: 2 stocks + cash

$$
d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)
$$

Example 2: 2 stocks + cash

$d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$
Stocks:

$$
X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2 \\ 1 / 2 & \text { with probability } 1 / 2\end{cases}
$$

Example 2: 2 stocks + cash

$d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$
Stocks:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases} \\
& X^{(2)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases}
\end{aligned}
$$

Example 2: 2 stocks + cash

$d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$
Stocks:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases} \\
& X^{(2)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases}
\end{aligned}
$$

Cash:

$$
X^{(3)}=1
$$

Example 2: 2 stocks + cash

$d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$
Stocks:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases} \\
& X^{(2)}= \begin{cases}2 & \text { with probability } 1 / 2 \\
1 / 2 & \text { with probability } 1 / 2\end{cases}
\end{aligned}
$$

Cash:

$$
X^{(3)}=1
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(0.46,0.46,0.08)
$$

Example 2: 2 stocks + cash

$d=3, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}\right)$
Stocks:

$$
\begin{aligned}
& X^{(1)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 & \text { with probability } 1 / 2\end{cases} \\
& X^{(2)}= \begin{cases}2 & \text { with probability } 1 / 2, \\
1 / 2 & \text { with probability } 1 / 2 .\end{cases}
\end{aligned}
$$

Cash:

$$
x^{(3)}=1
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(0.46,0.46,0.08)
$$

asymptotic average growth rate

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}\right\rangle\right\}=0.112=W^{*}
$$

Example 3: 3 stocks + cash

$$
d=4, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}\right)
$$

Example 3: 3 stocks + cash

$$
d=4, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}\right)
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / 3,1 / 3,1 / 3,0)
$$

Example 3: 3 stocks + cash

$$
d=4, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}\right)
$$

log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / 3,1 / 3,1 / 3,0)
$$

the cash has zero weight

Example 3: 3 stocks + cash

$d=4, \quad \mathbf{X}=\left(X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}\right)$
log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / 3,1 / 3,1 / 3,0)
$$

the cash has zero weight asymptotic average growth rate

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}\right\rangle\right\}=0.152=W^{*}
$$

Example 4: many stocks

d is large

Example 4: many stocks

d is large

log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d)
$$

Example 4: many stocks

d is large
log-optimal portfolio

$$
\mathbf{b}^{*}=(1 / d, \ldots, 1 / d)
$$

asymptotic average growth rate

$$
\mathbf{E}\left\{\ln \left\langle\mathbf{b}^{*}, \mathbf{X}\right\rangle\right\}=0.223=W^{*}
$$

Example 5: horse racing

d horses in a race

Example 5: horse racing

d horses in a race horse j wins with probability p_{j}

Example 5: horse racing

d horses in a race horse j wins with probability p_{j} payoff o_{j} : investing $1 \$$ on horse j results in o_{j} if it wins, otherwise 0\$

Example 5: horse racing

d horses in a race horse j wins with probability p_{j}
payoff o_{j} : investing $1 \$$ on horse j results in o_{j} if it wins, otherwise 0\$

$$
\mathbf{X}=\left(0, \ldots, 0, o_{j}, 0, \ldots, 0\right)
$$

if horse j wins

Example 5: horse racing

d horses in a race horse j wins with probability p_{j}
payoff o_{j} : investing $1 \$$ on horse j results in o_{j} if it wins, otherwise 0\$

$$
\mathbf{X}=\left(0, \ldots, 0, o_{j}, 0, \ldots, 0\right)
$$

if horse j wins repeated races

$$
\mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\}=\sum_{j=1}^{d} p_{j} \ln \left(b^{(j)} o_{j}\right)=\sum_{j=1}^{d} p_{j} \ln b^{(j)}+\sum_{j=1}^{d} p_{j} \ln o_{j}
$$

Example 5: horse racing

d horses in a race horse j wins with probability p_{j} payoff o_{j} : investing $1 \$$ on horse j results in o_{j} if it wins, otherwise $0 \$$

$$
\mathbf{X}=\left(0, \ldots, 0, o_{j}, 0, \ldots, 0\right)
$$

if horse j wins repeated races

$$
\mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\}=\sum_{j=1}^{d} p_{j} \ln \left(b^{(j)} o_{j}\right)=\sum_{j=1}^{d} p_{j} \ln b^{(j)}+\sum_{j=1}^{d} p_{j} \ln o_{j}
$$

therefore

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\{\ln \langle\mathbf{b}, \mathbf{X}\rangle\}=\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}
$$

$\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}
$$

Kullback-Leibler divergence:

$$
K L(\mathbf{p}, \mathbf{b})=\sum_{j=1}^{d} p_{j} \ln \frac{p_{j}}{b^{(j)}}
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}
$$

Kullback-Leibler divergence:

$$
K L(\mathbf{p}, \mathbf{b})=\sum_{j=1}^{d} p_{j} \ln \frac{p_{j}}{b^{(j)}}
$$

basic property:

$$
K L(\mathbf{p}, \mathbf{b}) \geq 0
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}
$$

Kullback-Leibler divergence:

$$
K L(\mathbf{p}, \mathbf{b})=\sum_{j=1}^{d} p_{j} \ln \frac{p_{j}}{b^{(j)}}
$$

basic property:

$$
K L(\mathbf{p}, \mathbf{b}) \geq 0
$$

Proof:

$$
K L(\mathbf{p}, \mathbf{b})=-\sum_{j=1}^{d} p_{j} \ln \frac{b^{(j)}}{p_{j}}
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}
$$

Kullback-Leibler divergence:

$$
K L(\mathbf{p}, \mathbf{b})=\sum_{j=1}^{d} p_{j} \ln \frac{p_{j}}{b^{(j)}}
$$

basic property:

$$
K L(\mathbf{p}, \mathbf{b}) \geq 0
$$

Proof:

$$
\begin{aligned}
K L(\mathbf{p}, \mathbf{b})=-\sum_{j=1}^{d} p_{j} \ln \frac{b^{(j)}}{p_{j}} & \geq-\sum_{j=1}^{d} p_{j}\left(\frac{b^{(j)}}{p_{j}}-1\right) \\
& =-\sum_{j=1}^{d} b^{(j)}+\sum_{j=1}^{d} p_{j}=0
\end{aligned}
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}=\mathbf{p}
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}=\mathbf{p}
$$

independent of the payoffs

$$
W^{*}=\sum_{j=1}^{d} p_{j} \ln \left(p_{j} o_{j}\right)
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}=\mathbf{p}
$$

independent of the payoffs

$$
W^{*}=\sum_{j=1}^{d} p_{j} \ln \left(p_{j} o_{j}\right)
$$

usual choice of payoffs:

$$
o_{j}=\frac{1}{p_{j}}
$$

$$
\underset{\mathbf{b}}{\arg \max } \sum_{j=1}^{d} p_{j} \ln b^{(j)}=\mathbf{p}
$$

independent of the payoffs

$$
W^{*}=\sum_{j=1}^{d} p_{j} \ln \left(p_{j} o_{j}\right)
$$

usual choice of payoffs:

$$
\begin{aligned}
& o_{j}=\frac{1}{p_{j}} \\
& W^{*}=0
\end{aligned}
$$

any gambling strategy has negative growth rate

Mean $=1,0006105$ Std. Dev. $=0,01529634$ $N=11177$

Mean $=1,0004707$ Std. Dev. $=0,01611594$ $N=11177$

Györfi
Machine learning and portfolio selections. I.

Consequences

Corollary: with large probability

$$
S_{n}(\mathbf{b}) \text { is not close to } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Consequences

Corollary: with large probability

$$
S_{n}(\mathbf{b}) \text { is not close to } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Proof:

$$
\left\{-\delta<\frac{1}{n} \ln S_{n}(\mathbf{b})-\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}<\delta\right\}
$$

Consequences

Corollary: with large probability

$$
S_{n}(\mathbf{b}) \text { is not close to } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Proof:

$$
\begin{gathered}
\left\{-\delta<\frac{1}{n} \ln S_{n}(\mathbf{b})-\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}<\delta\right\} \\
\left\{-\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}<\frac{1}{n} \ln S_{n}(\mathbf{b})<\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}\right\}
\end{gathered}
$$

Consequences

Corollary: with large probability

$$
S_{n}(\mathbf{b}) \text { is not close to } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Proof:

$$
\begin{gathered}
\left\{-\delta<\frac{1}{n} \ln S_{n}(\mathbf{b})-\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}<\delta\right\} \\
\left\{-\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}<\frac{1}{n} \ln S_{n}(\mathbf{b})<\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}\right\} \\
\left\{e^{n\left(-\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}\right)}<S_{n}(\mathbf{b})<e^{n\left(\delta+\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}\right)}\right\}
\end{gathered}
$$

$S_{n}(\mathbf{b})$ is close to $e^{n \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}}$
$S_{n}(\mathbf{b})$ is close to $e^{n \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}}$

$$
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\mathbf{E}\left\{\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\}=\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{i}\right\}\right\rangle=e^{n \ln \left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle}
$$

$S_{n}(\mathbf{b})$ is close to $e^{n \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}}$

$$
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\mathbf{E}\left\{\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\}=\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{i}\right\}\right\rangle=e^{n \ln \left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{x}_{1}\right\}\right\rangle}
$$

by Jensen inequality

$$
\ln \left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle>\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

$$
S_{n}(\mathbf{b}) \text { is close to } e^{n \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{x}_{1}\right\rangle\right\}}
$$

$$
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\mathbf{E}\left\{\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{X}_{i}\right\rangle\right\}=\prod_{i=1}^{n}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{i}\right\}\right\rangle=e^{n \ln \left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{x}_{1}\right\}\right\rangle}
$$

by Jensen inequality

$$
\ln \left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle>\mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

therefore

$$
S_{n}(\mathbf{b}) \text { is much less than } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

because of

$$
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle^{n}
$$

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

because of

$$
\begin{aligned}
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle^{n} \\
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\underset{\mathbf{b}}{\arg \max }\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle
\end{aligned}
$$

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

because of

$$
\begin{aligned}
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle^{n} \\
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\underset{\mathbf{b}}{\arg \max }\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle
\end{aligned}
$$

$\arg \max _{\mathbf{b}}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle$ is a portfolio vector having 1 at the position, where $\mathbf{E}\left\{\mathbf{X}_{1}\right\}$ has the largest component

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

because of

$$
\begin{gathered}
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle^{n} \\
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}=\underset{\mathbf{b}}{\arg \max }\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle
\end{gathered}
$$

$\arg \max _{\mathbf{b}}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle$ is a portfolio vector having 1 at the position, where $\mathbf{E}\left\{\mathbf{X}_{1}\right\}$ has the largest component it is a dangerous portfolio

Naive approach

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\}
$$

because of

$$
\begin{aligned}
\mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle^{n} \\
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{S_{n}(\mathbf{b})\right\} & =\underset{\mathbf{b}}{\arg \max }\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle
\end{aligned}
$$

$\arg \max _{\mathbf{b}}\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle$ is a portfolio vector having 1 at the position, where $\mathbf{E}\left\{\mathbf{X}_{1}\right\}$ has the largest component
it is a dangerous portfolio
Markowitz:

$$
\underset{\mathbf{b}: \operatorname{Var}\left(\left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right) \leq \lambda}{\arg \max }\left\langle\mathbf{b}, \mathbf{E}\left\{\mathbf{X}_{1}\right\}\right\rangle
$$

Semi-log-optimal portfolio

log-optimal:

$\arg \max \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}$
b

Semi-log-optimal portfolio

log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Taylor expansion: $\ln z \approx h(z)=z-1-\frac{1}{2}(z-1)^{2}$

Semi-log-optimal portfolio

log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Taylor expansion: $\ln z \approx h(z)=z-1-\frac{1}{2}(z-1)^{2}$ semi-log-optimal:

```
\underset{\mathbf{b}}{\operatorname{arg}\operatorname{max}}\mathbf{E}{h(\langle\mathbf{b},\mp@subsup{\mathbf{X}}{1}{\prime}\rangle)}
```


Semi-log-optimal portfolio

log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Taylor expansion: $\ln z \approx h(z)=z-1-\frac{1}{2}(z-1)^{2}$ semi-log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{h\left(\left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right)\right\}=\underset{\mathbf{b}}{\arg \max }\{\langle\mathbf{b}, \mathbf{m}\rangle-\langle\mathbf{b}, \mathbf{C b}\rangle\}
$$

Semi-log-optimal portfolio

log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Taylor expansion: $\ln z \approx h(z)=z-1-\frac{1}{2}(z-1)^{2}$ semi-log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{h\left(\left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right)\right\}=\underset{\mathbf{b}}{\arg \max }\{\langle\mathbf{b}, \mathbf{m}\rangle-\langle\mathbf{b}, \mathbf{C b}\rangle\}
$$

Connection to the Markowitz theory.

Semi-log-optimal portfolio

log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{\ln \left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right\}
$$

Taylor expansion: $\ln z \approx h(z)=z-1-\frac{1}{2}(z-1)^{2}$ semi-log-optimal:

$$
\underset{\mathbf{b}}{\arg \max } \mathbf{E}\left\{h\left(\left\langle\mathbf{b}, \mathbf{X}_{1}\right\rangle\right)\right\}=\underset{\mathbf{b}}{\arg \max }\{\langle\mathbf{b}, \mathbf{m}\rangle-\langle\mathbf{b}, \mathbf{C b}\rangle\}
$$

Connection to the Markowitz theory.
Gy. Ottucsák and I. Vajda, "An Asymptotic Analysis of the Mean-Variance portfolio selection", Statistics and Decisions, 25, pp. 63-88, 2007.
http://www.szit.bme.hu/~oti/portfolio/articles/marko.pdf

