Feuille de TP n°10 Fonction de répartition empirique

FIXME: biblio précise!

1 Fonction de répartition empirique.

Définition 1.1. Soit (X_1, \ldots, X_n) un échantillon de loi μ sur \mathbb{R} , de fonction de répartition F. On appelle fonction de répartition empirique associée à (X_1, \ldots, X_n) , la fonction aléatoire $F_n : \mathbb{R} \to [0, 1]$ définie pour tout $x \in \mathbb{R}$ par $F_n(x) := \frac{1}{n} \# \{X_k \leq x; 1 \leq k \leq n\}$. On peut également écrire de manière équivalente

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{\{X_k \leqslant x\}}.$$

C'est la fonction de répartition de la mesure empirique $\mathbb{P}_n := \frac{1}{n}(\delta_{X_1} + \dots + \delta_{X_n})$ de l'échantillon : pour tout $x \in \mathbb{R}$, on a $\mathbb{P}_n(]-\infty,x]) = F_n(x)$. Pour tout $p \in]0,1[$, le quantile empirique d'ordre p de l'échantillon est par définition $X_{([np])}$ où [np] est la partie entière de np et où $X_{(1)},\dots,X_{(n)}$ sont les statistiques d'ordre de l'échantillon. On a $F_n(X_{([np])}) = \frac{1}{n}[np] \in [p,p+\frac{1}{n}[$. Ainsi, $X_{([np])}$ est bien le quantile d'ordre p de \mathbb{P}_n .

Théorème 1.2 (Convergence des quantiles empiriques). Soit (X_1, \ldots, X_n) un échantillon de loi μ sur \mathbb{R} , de fonction de répartition F. Si F est continue, d'inverse généralisée F^{-1} , alors pour tout $p \in]0,1[$, en notant $Q_n(p) := X_{([np])}$ et $Q(p) := F^{-1}(p)$, on a

$$Q_n(p) \xrightarrow[n \to +\infty]{p.s.} Q(p).$$

De plus, si F est dérivable en Q(p) de dérivée f(Q(p)), on a

$$\sqrt{n}(Q_n(p) - Q(p)) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \frac{p(1-p)}{f(Q(p))^2}\right).$$

Théorème 1.3 (Glivenko-Cantelli). Soit (X_1, \ldots, X_n) un échantillon de loi μ sur \mathbb{R} , de fonction de répartition F. Pour tout $x \in \mathbb{R}$, on a $F_n(x) \xrightarrow[n \to +\infty]{p.s.} F(x)$, et cette convergence est uniforme sur \mathbb{R}

$$||F_n - F||_{\infty} := \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \underset{n \to +\infty}{\overset{p.s.}{\longrightarrow}} 0.$$

De plus, si $X_{(1)}, \ldots, X_{(n)}$ désigne les statistiques d'ordre de X_1, \ldots, X_n , on a^1

$$||F_n - F||_{\infty} = \max_{1 \le i \le n} \left[\max \left(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right| \right) \right].$$

Théorème 1.4 (Kolmogorov-Smirnov). Soit (X_1,\ldots,X_n) un échantillon de loi μ sur \mathbb{R} , de fonction de répartition F. Si F est continue, alors $\sqrt{n} \|F_n - F\|_{\infty} \xrightarrow[n \to +\infty]{\mathcal{L}} \mu_{KS}$, où la loi μ_{KS} est universelle et ne dépend pas de F en particulier. Elle est portée par \mathbb{R}_+ et a pour fonction de répartion pour $t \geqslant 0$

$$F_{KS}(t) := \mu_{KS}(]-\infty, t] = 1 + 2\sum_{k=1}^{\infty} (-1)^k \exp(-2k^2t^2).$$

Cette formule permet de calculer $||F_n - F||_{\infty}$ et montre que sa loi ne dépend pas de la loi de l'échantillon (statistique libre). Comme F est croissante, $F(X_{(1)}), \ldots, F(X_{(n)})$ est une statistique d'ordre de la loi uniforme.

Corollaire 1.5 (Test d'adéquation de Kolmogorov-Smirnov). Soit (X_1, \ldots, X_n) un échantillon de loi inconnue μ sur \mathbb{R} , de fonction de répartition F continue. On note F_n la fonction de répartition empirique associée. Soit ν une loi connue de fonction de répartition G. Posons $\mathcal{H}_0:=\ll \mu=\nu$ » et $\mathcal{H}_1:=\ll \mu\neq\nu$ ». Soit $\alpha\in[0,1]$ et $k_{1-\alpha}$ le quantile $1-\alpha$ de la loi de Kolmogorov-Smirnov μ_{KS} . Le test qui consiste à rejeter \mathcal{H}_0 si $\sqrt{n} \|F_n-G\|_{\infty} > k_{1-\alpha}$ et à accepter \mathcal{H}_0 sinon est asymptotiquement de niveau α et sa puissance converge vers 1. Cf. [2, Chap. 15.4.2.B].

Remarque 1.6 (Forme équivalente). Si $F_{\rm KS}$ est la fonction de répartition de la distribution de Kolmogorov-Smirnov $\mu_{\rm KS}$, alors le test $\sqrt{n} \|F_n - G\|_{\infty} > k_{1-\alpha}$ est équivalent au test $F_{\rm KS}(\sqrt{n} \|F_n - G\|_{\infty}) > 1 - \alpha$. La fonction pks de Stixbox implémente $F_{\rm KS}$.

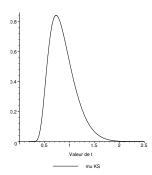


Fig. 1 – Densité de probabilité de la loi de Kolmogorov-Smirnov μ_{KS} .

Remarque 1.7 (Test d'adéquation de Cramer-von Mises). Soit (X_1, \ldots, X_n) un échantillon de loi μ sur \mathbb{R} , de fonction de répartition F. Soit F_n la fonction de répartition empirique. La statistique de Cramer-von Mises C_n est définie par

$$nC_n := n \int_{-\infty}^{+\infty} (F_n(x) - F(x))^2 dF(x).$$

Cette statistique s'exprime simplement en terme des statistiques d'ordre de l'échantillon

$$nC_n = \frac{1}{12n} + \sum_{k=1}^{n} \left(\frac{2k-1}{2n} - F(X_{(k)})\right)^2.$$

Le thérème de Glivenko-Cantelli assure que $C_n \xrightarrow[n \to +\infty]{\text{p.s.}} 0$. D'autre part, lorsque F est continue, on peut montrer que $nC_n \xrightarrow[n \to +\infty]{\mathcal{L}} \mu_{CM}$ où la loi μ_{CM} est universelle et ne dépend pas de F en particulier. On peut montrer que c'est la loi de $\sum_{k=1}^{+\infty} (\pi k)^{-2} Z_k$ où $(Z_k)_{k \in \mathbb{N}^*}$ est une suite i.i.d. de loi $\chi^2(1)$. On construit avec nC_n un test d'adéquation similaire au test de Kolmogorov-Smirnov. Cf. [2, Chap. 15.4.2.C].

2 Utilisation en modélisation.

Exercice 2.1 (Glivenko-Cantelli). Créer un code Matlab permettant d'illustrer le théorème de Glivenko-Cantelli sur un N-échantillon de loi binomiale $\mathcal{B}(n,p)$, de loi de Poisson $\mathcal{P}(\lambda)$, de loi exponentielle $\mathcal{E}(\lambda)$ et de loi normale $\mathcal{N}(m,\sigma^2)$ où les paramètres sont affectés par l'utilisateur.

Exercice 2.2 (Test de Kolmogorov-Smirnov pour l'adéquation à la loi normale). Créer un code Matlab permettant de générer, avec l'algorithme de Box-Muller ou l'algorithme polaire, un N-échantillon de loi normale $\mathcal{N}(m,\sigma^2)$ où N,m et σ^2 sont affectés par l'utilisateur. Effectuer ensuite un test de Kolmogorov-Smirnov d'adéquation à la loi normale $\mathcal{N}(m,\sigma^2)$ en utilisant la fonction Matlab pks. Essayer d'autres lois comme la loi uniforme $\mathcal{U}([0,1])$, la loi exponentielle $\mathcal{E}(\lambda)$ et la loi de Cauchy $\mathcal{C}(\lambda)$ avec $\lambda>0$.

Exercice 2.3 (Test d'homogénéité de Kolmogorov-Smirnov). Soit (X_1, \ldots, X_n) un n-échantillon de fonction de répartition F et soit (Y_1, \ldots, Y_m) un m-échantillon de fonction de répartition G. On suppose que ces deux échantillons sont indépendants et que F et G sont continues. On veut tester H_0 : « F = G » contre H_1 : « $F \neq G$ ». Soient F_n et G_m les fonctions de répartition empirique associées à (X_1, \ldots, X_n) et (Y_1, \ldots, Y_m) . Alors, sous H_0

$$\sqrt{\frac{nm}{n+m}} \sup_{x \in \mathbb{R}} |F_n(x) - G_m(x)| \xrightarrow[n \to +\infty]{\mathcal{L}} \mu_{KS}.$$

Effectuer un test d'homogénéité de Kolmogorov-Smirnov sur deux échantillons indépendants de loi uniforme $\mathcal{U}([0,1])$ et de tailles respectives n=100 et m=1000. Essayer d'autres lois.

Exercice 2.4 (Grosses boites). Les deux tableaux suivant représentent le revenu net en milliards d'Euros pour l'année 2002 de vingt groupes français et de vingt-quatre groupes allemands de l'industrie et des services.

Groupes Français

0.2	3.8	7.6	4.0	4.1	-2.8	4.7	3.6	5.4	-0.2
1.6	5.6	-0.6	0.8	-5.0	0.1	2.9	3.7	3.9	-0.2 1.1

Groupes Allemands

ſ	1.8	4.0	1.4	1.9	1.9	1.8	1.4	1.9	1.4	4.5	2.2	2.4
	3.1	0.3	-1.4	0.4	2.3	0.2	1.5	4.8	0.6	1.0	1.5	5.5

Effectuer un test d'homogénéité de Kolmogorov-Smirnov sur ces observations en utilisant la fonction kstest2 de Matlab.

Exercice 2.5 (Estimation non paramétrique à noyau d'une densité). Soit (X_1, \ldots, X_n) un échantillon de loi de densité de probabilité f. On suppose que $f \in \mathcal{C}^1(\mathbb{R})$ et que f' est bornée. Soit $K : \mathbb{R} \to \mathbb{R}_+$ une fonction bornée appelée noyau, telle que

$$\int_{\mathbb{R}} K(x) dx = 1 \quad \text{et} \quad \int_{\mathbb{R}} K^{2}(x) dx = \sigma^{2}.$$

On peut par exemple choisir le noyau uniforme $K(x) = (2a)^{-1} I_{[-a,a]}(x)$ avec a > 0 ou encore le noyau gaussien $K(x) = (2\pi)^{-n/2} \exp(-x^2/2)$. On estime f par l'estimateur à noyau \widehat{f}_n défini $\forall x \in \mathbb{R}$ par

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_i} K\left(\frac{X_i - x}{h_i}\right)$$

où $h_n := n^{-\alpha}$ avec $0 < \alpha < 1$. Montrer que $\widehat{f}_n(x) \xrightarrow[n \to +\infty]{\text{p.s.}} f(x)$ et que si $1/3 < \alpha < 1$,

$$\sqrt{nh_n}\left(\widehat{f}_n(x) - f(x)\right) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2 f(x)}{1+\alpha}\right).$$

Créer un code Matlab permettant d'illustrer cette méthode d'estimation de la densité par noyaux sur la loi normale $\mathcal{N}(m, \sigma^2)$ et sur la loi exponentielle $\mathcal{E}(\lambda)$, où les paramètres m, σ^2 et $\lambda > 0$ sont affectés par l'utilisateur.

Références

- [1] D. DACUNHA-CASTELLE et M. DUFLO *Probabilités et statistiques. Tome 1*, Masson, Paris, 1982, Problèmes à temps fixe.
- [2] G. Saporta Probabilités, analyse des données et statistique, Technip, 1989.
- [3] P. TOULOUSE Thèmes de probabilités et statistique, Dunod, 1999, INTERDIT À L'ORAL.