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INTERACTIONS BETWEEN
COMPRESSED SENSING

RANDOM MATRICES AND
HIGH DIMENSIONAL GEOMETRY

Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain Pajor

Abstract. — This book is based on a series of post-doctoral level lectures given
at Université Paris-Est Marne-la-Vallée in November 2009, by Djalil Chafäı, Olivier
Guédon, Guillaume Lecué, Shahar Mendelson, and Alain Pajor. It aims to bridge
several actively developed domains of research around the high dimensional phenom-
ena of asymptotic geometric analysis. The covered topics include empirical methods
and high dimensional geometry, concentration of measure, compressed sensing and
Gelfand widths, chaining methods, singular values and Wishart matrices, and empiri-
cal methods and selection of characters. This book focuses on methods and concepts.
Chapters are mostly self-contained. An index is provided.
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INTRODUCTION

Compressed sensing, also referred to in the literature as compressive sensing or
compressive sampling, is a framework that enables one to recover approximate or
exact reconstruction of sparse signals from incomplete measurements. The existence
of efficient algorithms for this reconstruction, such as the `1-minimization algorithm,
and the potential for applications in signal processing and imaging, led to a rapid and
extensive development of the theory after the seminal articles by D. Donoho [Don06],
E. Candes, J. Romberg and T. Tao [CRT06] and E. Candes and T. Tao [CT06].

The principles underlying the discoveries of these phenomena in high dimensions
are related to more general problems and their solutions in Approximation Theory.
One significant example of such a relation is the study of Gelfand and Kolmogorov
widths of classical Banach spaces. There is already a huge literature on both the
theoretical and numerical aspects of compressed sensing. Our aim is not to survey
the state of the art in this rapidly developing field, but to highlight and study its
interactions with other fields of mathematics, in particular with asymptotic geometric
analysis, random matrices and empirical processes.

To introduce the subject, let T be a subset of RN and let A be an n × N real
matrix with rows Y1, . . . , Yn ∈ RN . Consider the general problem of reconstructing a
vector x ∈ T from the data Ax ∈ Rn: that is, from the known measurements

〈Y1, x〉, . . . , 〈Yn, x〉

of an unknown x. Classical linear algebra suggests that the number n of measurements
should be at least as large as the dimension N in order to ensure reconstruction.
Compressed sensing provides a way of reconstructing the original signal x from its
compression Ax that uses only a small number of linear measurements: that is with
n� N . Clearly one needs some a priori hypothesis on the subset T of signals that we
want to reconstruct, and of course the matrix A should be suitably chosen in order
to allow the reconstruction of every vector of T .

The first point concerns the subset T and is a matter of complexity. Many tools
within this framework were developed in Approximation Theory and in the Geometry
of Banach Spaces. One of our goals is to present these tools.
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The second point concerns the design of the measurement matrix A. To date
the only good matrices are random sampling matrices and the key is to sample
Y1, . . . , Yn ∈ RN in a suitable way. For this reason probability theory plays a central
role in our exposition. These random sampling matrices will usually be of Gaussian or
Bernoulli (±1) type or be random sub-matrices of the discrete Fourier N ×N matrix
(partial Fourier matrices). There is a huge technical difference between the study of
unstructured compressive matrices (with i.i.d entries) and structured matrices such
as partial Fourier matrices. Another goal of this work is to describe the main tools
from probability theory that are needed within this framework. These tools range
from classical probabilistic inequalities and concentration of measure to the study of
empirical processes and random matrix theory.

The purpose of Chapter 1 is to present some basic tools and preliminary back-
ground. We will look briefly at elementary properties of Orlicz spaces in relation to
tail inequalities for random variables. An important connection between high dimen-
sional geometry and the study of empirical processes comes from the behavior of the
sum of independent centered random variables with sub-exponential tails. An impor-
tant step in the study of empirical processes is Discretization: in which we replace
an infinite space by an approximating net. It is essential to estimate the size of the
discrete net and such estimates depend upon the study of covering numbers. Several
upper estimates for covering numbers, such as Sudakov’s inequality, are presented in
the last part of Chapter 1.

Chapter 2 is devoted to compressed sensing. The purpose is to provide some of the
key mathematical insights underlying this new sampling method. We present first the
exact reconstruction problem informally introduced above. The a priori hypothesis
on the subset of signals T that we investigate is sparsity. A vector in RN is said to be
m-sparse (m 6 N) if it has at most m non-zero coordinates. An important feature of
this subset is its peculiar structure: its intersection with the Euclidean unit sphere is
a union of unit spheres supported on m-dimensional coordinate subspaces. This set
is highly compact when the degree of compactness is measured in terms of covering
numbers. As long as m � N the sparse vectors form a very small subset of the
sphere.

A fundamental feature of compressive sensing is that practical reconstruction can
be performed by using efficient algorithms such as the `1-minimization method which
consists, for given data y = Ax, to solve the “linear program”:

min
t∈RN

N∑
i=1

|ti| subject to At = y.

At this step, the problem becomes that of finding matrices for which the algorithm
reconstructs any m-sparse vector with m relatively large. A study of the cone of
constraints that ensures that every m-sparse vector can be reconstructed by the `1-
minimization method leads to a necessary and sufficient condition known as the null
space property of order m:

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i∈Ic
|hi|.
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This property has a nice geometric interpretation in terms of the structure of faces of
polytopes called neighborliness. Indeed, if P is the polytope obtained by taking the
symmetric convex hull of the columns of A, the null space property of order m for
A is equivalent to the neighborliness property of order m for P : that the matrix A
which maps the vertices of the cross-polytope

BN1 =
{
t ∈ RN :

N∑
i=1

|ti| ≤ 1
}

onto the vertices of P preserves the structure of k-dimensional faces up to the di-
mension k = m. This remarkable connection between compressed sensing and high
dimensional geometry is due to D. Donoho [Don05].

Unfortunately, the null space property is not easy to verify nor is the neighborliness.
An ingenious sufficient condition is the so-called Restricted Isometry Property (RIP)
of order m that requires that all sub-matrices of size n × m of the matrix A are
uniformly well-conditioned. More precisely, we say that A satisfies the RIP of order
p 6 N with parameter δ = δp if the inequalities

1− δp 6 |Ax|22 6 1 + δp

hold for all p-sparse unit vectors x ∈ RN . An important feature of this concept is
that if A satisfies the RIP of order 2m with a parameter δ small enough, then every
m-sparse vector can be reconstructed by the `1-minimization method. Even if this
RIP condition is difficult to check on a given matrix, it actually holds true with high
probability for certain models of random matrices and can be easily checked for some
of them.

Here probabilistic methods come into play. Among good unstructured sampling
matrices we shall study the case of Gaussian and Bernoulli random matrices. The
case of partial Fourier matrices, which is more delicate, will be studied in Chapter 5.
Checking the RIP for the first two models may be treated with a simple scheme: the
ε-net argument presented in Chapter 2.

Another way to tackle the problem of reconstruction by `1-minimization is to anal-
yse the Euclidean diameter of the intersection of the cross-polytope BN1 with the
kernel of A. This study leads to the notion of Gelfand widths, particularly for the
cross-polytope BN1 . Its Gelfand widths are defined by the numbers

dn(BN1 , `
N
2 ) = inf

codimS6n
rad (S ∩BN1 ), n = 1, . . . , N

where rad (S ∩ BN1 ) = max{ |x| : x ∈ S ∩ BN1 } denotes the half Euclidean diameter
of the section of BN1 and the infimum is over all subspaces S of RN of dimension less
than or equal to n.

A great deal of work was done in this direction in the seventies. These Approxi-
mation Theory and Asymptotic Geometric Analysis standpoints shed light on a new
aspect of the problem and are based on a celebrated result of B. Kashin [Kas77]
stating that

dn(BN1 , `
N
2 ) 6

C√
n

logO(1)(N/n)
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for some numerical constant C. The relevance of this result to compressed sensing is
highlighted by the following fact.

Let 1 ≤ m ≤ n, if
rad (kerA ∩BN1 ) < 1/2

√
m

then every m-sparse vector can be reconstructed by `1-minimization.

From this perspective, the goal is to estimate the diameter rad (kerA ∩BN1 ) from
above. We discussed this in detail for several models of random matrices. The con-
nection with the RIP is clarified by the following result.

Assume that A satisfies the RIP of order p with parameter δ. Then

rad (kerA ∩BN1 ) ≤ C
√
p

1

1− δ

where C is a numerical constant and so rad (kerA ∩BN1 ) < 1/2
√
m is satisfied

with m = O(p).

The `1-minimization method extends to the study of approximate reconstruction
of vectors which are not too far from being sparse. Let x ∈ RN and let x] be a
minimizer of

min
t∈RN

N∑
i=1

|ti| subject to At = Ax.

Again the notion of width is very useful. We prove the following:

Assume that rad (kerA ∩ BN1 ) < 1/4
√
m. Then for any I ⊂ [N ] such that

|I| 6 m and any x ∈ RN , we have

|x− x]|2 ≤
1√
m

∑
i/∈I

|xi|.

This applies in particular to unit vectors of the space `Np,∞, 0 < p < 1 for which

min|I|6m
∑
i/∈I |xi| = O(m1−1/p).

In the last section of Chapter 2 we introduce a measure of complexity `∗(T ) of a
subset T ⊂ RN defined by

`∗(T ) = E sup
t∈T

N∑
i=1

giti,

where g1, ..., gN are independent N(0, 1) Gaussian random variables. This kind of
parameter plays an important role in the theory of empirical processes and in the
Geometry of Banach spaces ([Mil86, PTJ86, Tal87]). It allows to control the size of
rad (kerA∩T ) which as we have seen is a crucial issue in approximate reconstruction.

This line of investigation goes deeper in Chapter 3 where we first present classical
results from the Theory of Gaussian processes. To make the link with compressed
sensing, observe that if A is a n × N matrix with row vectors Y1, . . . , Yn, then the
RIP of order p with parameter δp can be rewritten in terms of an empirical process
property since

δp = sup
x∈S2(Σp)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣
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where S2(Σp) is the set of norm one p-sparse vectors of RN . While Chapter 2 makes
use of a simple ε-net argument to study such processes, we present in Chapter 3
the chaining and generic chaining techniques based on measures of metric complexity
such as the γ2 functional. The γ2 functional is equivalent to the parameter `∗(T )
in consequence of the majorizing measure theorem of M. Talagrand [Tal87]. This
technique enables to provide a criterion that implies the RIP for unstructured models
of random matrices, which include the Bernoulli and Gaussian models.

It is worth noticing that the ε-net argument, the chaining argument and the generic
chaining argument all share two ideas: the classical trade-off between complexity and
concentration on the one hand and an approximation principle on the other. For
instance, consider a Gaussian matrix A = n−1/2(gij)16i6n,16j6N where the gij ’s are
i.i.d. standard Gaussian variables. Let T be a subset of the unit sphere SN−1 of
RN . A classical problem is to understand how A acts on T . In particular, does A
preserve the Euclidean norm on T? In the Compressed Sensing setup, the “input”
dimension N is much larger than the number of measurements n, because A is used
as a compression matrix. So clearly A cannot preserve the Euclidean norm on the
whole sphere SN−1. Hence, it is natural to identify the subsets T of SN−1 for which
A acts on T in a norm preserving way. Let’s start with a single point x ∈ T . Then
for any ε ∈ (0, 1), with probability greater than 1− 2 exp(−c0nε2), one has

1− ε 6 |Ax|22 6 1 + ε.

This result is the one expected since E|Ax|22 = |x|22 (we say that the standard Gaussian
measure is isotropic) and the Gaussian measure on RN has strong concentration
properties. Thus proving that A acts in a norm preserving way on a single vector
is only a matter of isotropicity and concentration. Now we want to see how many
points in T may share this property simultaneously. This is where the trade-off
between complexity and concentration is at stake. A simple union bound argument
tells us that if Λ ⊂ T has a cardinality less than exp(c0nε

2/2), then, with probability
greater than 1− 2 exp(−c0nε2/2), one has

∀x ∈ Λ 1− ε 6 |Ax|22 6 1 + ε.

This means that A preserves the norm of all the vectors of Λ at the same time, as
long as |Λ| 6 exp(c0nε

2/2). If the entries in A had different concentration properties,
we would have ended up with a different cardinality for |Λ|. As a consequence,
it is possible to control the norm of the images by A of exp(c0nε

2/2) points in T
simultaneously. The first way of choosing Λ that may come to mind is to use an ε-net
of T with respect to `N2 and then to ask if the norm preserving property of A on
Λ extends to T? Indeed, if m ≤ C(ε)n log−1

(
N/n), there exists an ε-net Λ of size

exp(c0nε
2/2) in S2(Σm) for the Euclidean metric. And, by what is now called the

ε-net argument, we can describe all the points in S2(Σm) using only the points in Λ:

Λ ⊂ S2(Σm) ⊂ (1− ε)−1conv(Λ).

This allows to extend the norm preserving property of A on Λ to the entire set S2(Σm)
and was the scheme used in Chapter 2.
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But this scheme does not apply to several important sets T in SN−1. That is
why we present the chaining and generic chaining methods in Chapter 3. Unlike the
ε-net argument which demanded only to know how A acts on a single ε-net of T ,
these two methods require to study the action of A on a sequence (Ts) of subsets of
T with exponentially increasing cardinality. In the case of the chaining argument,
Ts can be chosen as an εs-net of T where εs is chosen so that |Ts| = 2s and for the
generic chaining argument, the choice of (Ts) is recursive: for large values of s, the
set Ts is a maximal separated set in T of cardinality 22s and for small values of s,
the construction of Ts depends on the sequence (Tr)r>s+1. For these methods, the
approximation argument follows from the fact that d`N2 (t, Ts) tends to zero when s

tends to infinity for any t ∈ T and the trade-off between complexity and concentration
is used at every stage s of the approximation of T by Ts. The metric complexity
parameter coming from the chaining method is called the Dudley entropy integral∫ ∞

0

√
logN(T, d, ε) dε

while the one given by the generic chaining mechanism is the γ2 functional

γ2(T, `N2 ) = inf
(Ts)s

sup
t∈T

∞∑
s=0

2s/2d`N2 (t, Ts)

where the infimum is taken over all sequences (Ts) of subsets of T such that |T0| 6 1
and |Ts| 6 22s for every s > 1. In Chapter 3, we prove that A acts in a norm
preserving way on T with probability exponentially in n close to 1 as long as

γ2(T, `N2 ) = O(
√
n).

In the case T = S2(Σm) treated in Compressed Sensing, this condition implies that
m = O

(
n log−1

(
N/n

))
which is the same as the condition obtained using the ε-net

argument in Chapter 2. So, as far as norm preserving properties of random operators
are concerned, the results of Chapter 3 generalize those of Chapter 2. Nevertheless,
the norm preserving property of A on a set T implies an exact reconstruction property
of A of all m-sparse vectors by the `1-minimization method only when T = S2(Σm).
In this case, the norm preserving property is the RIP of order m.

On the other hand, the RIP constitutes a control on the largest and smallest
singular values of all sub-matrices of a certain size. Understanding the singular values
of matrices is precisely the subject of Chapter 4. An m × n matrix A with m 6 n
maps the unit sphere to an ellipsoid, and the half lengths of the principle axes of this
ellipsoid are precisely the singular values s1(A) > · · · > sm(A) of A. In particular,

s1(A) = max
|x|2=1

|Ax|2 = ‖A‖2→2 and sn(A) = min
|x|2=1

|Ax|2.

Geometrically, A is seen as a correspondence–dilation between two orthonormal bases.
In matrix form UAV ∗ = diag(s1(A), . . . , sm(A)) for a pair of unitary matrices U and
V of respective sizes m × m and n × n. This singular value decomposition – SVD
for short – has tremendous importance in numerical analysis. One can read off from
the singular values the rank and the norm of the inverse of the matrix: the singular
values are the eigenvalues of the Hermitian matrix

√
AA∗: and the largest and smallest
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singular values appear in the definition of the condition number s1/sm which allows
to control the behavior of linear systems under perturbations of small norm.

The first part of Chapter 4 is a compendium of results on the singular values
of deterministic matrices, including the most useful perturbation inequalities. The
Gram–Schmidt algorithm applied to the rows and the columns of A allows to construct
a bidiagonal matrix which is unitarily equivalent to A. This structural fact is at the
heart of most numerical algorithms for the actual computation of singular values.

The second part of Chapter 4 deals with random matrices with i.i.d. entries and
their singular values. The aim is to offer a cultural tour in this vast and growing
subject. The tour begins with Gaussian random matrices with i.i.d. entries form-
ing the Ginibre Ensemble. The probability density of this Ensemble is proportional
to G 7→ exp(−Tr(GG∗)). The matrix W = GG∗ follows a Wishart law, a sort of
multivariate χ2. The unitary bidiagonalization allows to compute the density of the
singular values of these Gaussian random matrices, which turns out to be proportional
to a function of the form

s 7→
∏
k

sαk e
−s2k

∏
i 6=j

|s2
i − s2

j |β .

The change of variable sk 7→ s2
k reveals Laguerre weights in front of the Vandermonde

determinant, the starting point of a story involving orthogonal polynomials. As for
most random matrix ensembles, the determinant measures a logarithmic repulsion
between eigenvalues. Here it comes from the Jacobian of the SVD. Such Gaussian
models can be analysed with explicit but cumbersome computations. Many large
dimensional aspects of random matrices depend only on the first two moments of the
entries, and this makes the Gaussian case universal. The most well known universal
asymptotic result is indubitably the Marchenko-Pastur theorem. More precisely if M
is an m×n random matrix with i.i.d. entries of variance n−1/2, the empirical counting
probability measure of the singular values of M

1

m

m∑
k=1

δsk(M)

tends weakly, when n,m→∞ with m/n→ ρ ∈ (0, 1], to the Marchenko-Pastur law

1

ρπx

√
((x+ 1)2 − ρ)(ρ− (x− 1)2) 1[1−√ρ,1+

√
ρ](x)dx.

We provide a proof of the Marchenko-Pastur theorem by using the methods of mo-
ments. When the entries of M have zero mean and finite fourth moment, Bai-Yin
theorem furnishes the convergence at the edge of the support, in the sense that

sm(M)→ 1−√ρ and s1(M)→ 1 +
√
ρ.

Chapter 4 gives only the basic aspects of the study of the singular values of random
matrices; an immense and fascinating subject still under active development.

As it was pointed out in Chapter 2, studying the radius of the section of the
cross-polytope with the kernel of a matrix is a central problem in approximate recon-
struction. This approach is pursued in Chapter 5 for the model of partial discrete



14 INTRODUCTION

Fourier matrices or Walsh matrices. The discrete Fourier matrix and the Walsh ma-
trix are particular cases of orthogonal matrices with nicely bounded entries. More
generally, we consider matrices whose rows are a system of pairwise orthogonal vec-
tors φ1, . . . , φN such that for any i = 1, . . . , N , |φi|2 = K and |φi|∞ ≤ 1/

√
N . Several

other models fall into this setting. Let Y be the random vector defined by Y = φi
with probability 1/N and let Y1, . . . , Yn be independent copies of Y . One of the main
results of Chapter 5 states that if

m ≤ C1 K
2 n

logN(log n)3

then with probability greater than

1− C2 exp
(
−C3K

2n/m
)

the matrix Φ = (Y1, . . . , Yn)
>

satisfies

rad (ker Φ ∩BN1 ) <
1

2
√
m
.

In Compressed Sensing, n is chosen relatively small with respect to N and the
result is that up to logarithmic factors, if m is of the order of n, the matrix Φ has
the following property that every m-sparse vector can be exactly reconstructed by
the `1-minimization algorithm. The numbers C1, C2 and C3 are numerical constants
and replacing C1 by a smaller constant allows approximate reconstruction by the
`1-minimization algorithm. The randomness introduced here is called the empirical
method and it is worth noticing that it can be replaced by the method of selectors:
defining Φ with its row vectors {φi, i ∈ I} where I = {i, δi = 1} and δ1, . . . , δN are
independent identically distributed selectors taking values 1 with probability δ = n/N
and 0 with probability 1− δ. In this case the cardinality of I is approximately n with
high probability.

Within the framework of the selection of characters, the situation is different. A
useful observation is that it follows from the orthogonality of the system {φ1, . . . , φN},
that ker Φ = span {φj}j∈J where {Yi}ni=1 = {φi}i/∈J . Therefore the previous state-
ment on rad (ker Φ∩BN1 ) is equivalent to selecting |J | ≥ N−n vectors in {φ1, . . . , φN}
such that the `N1 norm and the `N2 norm are comparable on the linear span of these
vectors. Indeed, the conclusion rad (ker Φ∩BN1 ) < 1

2
√
m

is equivalent to the following

inequality

∀(αj)j∈J ,

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
2

≤ 1

2
√
m

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

.

At issue is how large can be the cardinality of J so that the comparison between the
`N1 norm and the `N2 norm on the subspace spanned by {φj}j∈J is better than the
trivial Hölder inequality. Choosing n of the order of N/2 gives already a remarkable
result: there exists a subset J of cardinality greater than N/2 such that

∀(αj)j∈J ,
1√
N

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

≤

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
2

≤ C4
(logN)2

√
N

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

.
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This is a Kashin type result. Nevertheless, it is important to remark that in the state-
ment of the Dvoretzky [FLM77] or Kashin [Kas77] theorems concerning Euclidean
sections of the cross-polytope, the subspace is such that the `N2 norm and the `N1 norm
are equivalent (without the factor logN): the cost is that the subspace has no par-
ticular structure. In the setting of Harmonic Analysis, the issue is to find a subspace
with very strong properties. It should be a coordinate subspace with respect to the
basis given by {φ1, . . . , φN}. J. Bourgain noticed that a factor

√
logN is necessary in

the last inequality above. Letting µ be the discrete probability measure on RN with
weight 1/N on each vectors of the canonical basis, the above inequalities tell that for
all scalars (αj)j∈J ,∥∥∥∥∥∥

∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L2(µ)

≤ C4 (logN)2

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

.

This explains the deep connection between Compressed Sensing and the problem of
selecting a large part of a system of characters such that on its linear span, the L2(µ)
and the L1(µ) norms are as close as possible. This problem of Harmonic Analysis goes
back to the construction of Λ(p) sets which are not Λ(q) for q > p, where powerful
methods based on random selectors were developed by J. Bourgain [Bou89]. M.
Talagrand proved in [Tal98] that there exists a small numerical constant δ0 and a
subset J of cardinality greater than δ0N such that for all scalars (αj)j∈J ,∥∥∥∥∥∥

∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L2(µ)

≤ C5

√
logN log logN

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

.

It is the purpose of Chapter 5 to emphasize the connections between Compressed
Sensing and these problems of Harmonic Analysis. Tools from the theory of empirical
processes lie at the heart of the techniques of proof. We will present the classical
results from the theory of empirical processes and show how techniques from the
Geometry of Banach Spaces are relevant in this setting. We will also present a strategy
for extending the result of M. Talagrand [Tal98] to a Kashin type setting.

This book is based on a series of post-doctoral level lectures given at Université
Paris-Est Marne-la-Vallée in fall 2009, by Djalil Chafäı, Olivier Guédon, Guillaume
Lecué, Shahar Mendelson, and Alain Pajor. This collective pedagogical work aimed to
bridge several actively developed domains of research. Each chapter of this book ends
with a “Notes and comments” section gathering historical remarks and bibliographical
references. We hope that the interactions at the heart of this book will be helpful to
the non-specialist reader and may serve as an opening to further research.

We are grateful to all the 2009 fall school participants for their feedback. We
are also indebted to all friends and colleagues, who made an important proofreading
effort. In particular, the final form of this book benefited from the comments of Radek
Adamczak, Florent Benaych-Georges, Simon Foucart, Rafal Latala, Mathieu Meyer,
Holger Rauhut, and anonymous referees. We are indebted to the editorial board of
the SMF publication Panoramas et Synthèses who has done a great job. We would
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like to thank in particular Franck Barthe, our editorial contact for this project. This
collective work benefited from the excellent support of the Laboratoire d’Analyse et
de Mathématiques Appliquées (LAMA) of Université Paris-Est Marne-la-Vallée.



CHAPTER 1

EMPIRICAL METHODS AND HIGH DIMENSIONAL
GEOMETRY

This chapter is devoted to the presentation of classical tools that will be used within
this book. We present some elementary properties of Orlicz spaces and develop the
particular case of ψα random variables. Several characterizations are given in terms
of tail estimates, Laplace transform and moments behavior. One of the important
connections between high dimensional geometry and empirical processes comes from
the behavior of the sum of independent ψα random variables. An important part of
these preliminaries concentrates on this subject. We illustrate these connections with
the presentation of the Johnson-Lindenstrauss lemma. The last part is devoted to the
study of covering numbers. We focus our attention on some elementary properties
and methods to obtain upper bounds for covering numbers.

1.1. Orlicz spaces

An Orlicz space is a function space which extends naturally the classical Lp spaces
when 1 ≤ p ≤ +∞. A function ψ : [0,∞)→ [0,∞] is said to be an Orlicz function if
it is convex increasing with closed support (that is the convex set {x, ψ(x) < ∞} is
closed) such that ψ(0) = 0 and ψ(x)→∞ when x→∞.

Definition 1.1.1. — Let ψ be an Orlicz function. For any real random variable X
on a measurable space (Ω, σ, µ), we define its Lψ norm by

‖X‖ψ = inf
{
c > 0 : Eψ

(
|X|/c

)
6 ψ(1)

}
.

The space Lψ(Ω, σ, µ) = {X : ‖X‖ψ <∞} is called the Orlicz space associated to ψ.

Sometimes in the literature, Orlicz norms are defined differently, with 1 instead of
ψ(1). It is well known that Lψ is a Banach space. Classical examples of Orlicz
functions are for p > 1 and α > 1:

∀x ≥ 0, φp(x) = xp/p and ψα(x) = exp(xα)− 1.

The Orlicz space associated to φp is the classical Lp space. It is also clear by the
monotone convergence theorem that the infimum in the definition of the Lψ norm of
a random variable X, if finite, is attained at ‖X‖ψ.
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Let ψ be a nonnegative convex function on [0,∞). Its convex conjugate ψ∗ (also
called the Legendre transform) is defined on [0,∞) by:

∀y ≥ 0, ψ∗(y) = sup
x>0

(xy − ψ(x)).

The convex conjugate of an Orlicz function is also an Orlicz function.

Proposition 1.1.2. — Let ψ be an Orlicz function and ψ∗ be its convex conjugate.
For every real random variables X ∈ Lψ and Y ∈ Lψ∗ , one has

E|XY | 6 (ψ(1) + ψ∗(1)) ‖X‖ψ ‖Y ‖ψ∗ .

Proof. — By homogeneity, we can assume ‖X‖ψ = ‖Y ‖ψ∗ = 1. By definition of the
convex conjugate, we have

|XY | 6 ψ (|X|) + ψ∗ (|Y |) .
Taking the expectation, since Eψ(|X|) ≤ ψ(1) and Eψ∗(|Y |) 6 ψ∗(1), we get that
E|XY | ≤ ψ(1) + ψ∗(1).

If p−1 + q−1 = 1 then φ∗p = φq and it gives Young’s inequality. In this case, Proposi-
tion 1.1.2 corresponds to Hölder inequality.

Any information about the ψα norm of a random variable is very useful to describe
its tail behavior. This will be explained in Theorem 1.1.5. For instance, we say
that X is a sub-Gaussian random variable when ‖X‖ψ2

< ∞ and that X is a sub-

exponential random variable when ‖X‖ψ1
< ∞. In general, we say that X is ψα

when ‖X‖ψα < ∞. It is important to notice (see Corollary 1.1.6 and Proposition

1.1.7) that for any α2 > α1 ≥ 1

L∞ ⊂ Lψα2
⊂ Lψα1

⊂
⋂
p≥1

Lp.

One of the main goal of these preliminaries is to understand the behavior of the
maximum of a family of Lψ-random variables and of the sum and product of ψα
random variables. We start with a general maximal inequality.

Proposition 1.1.3. — Let ψ be an Orlicz function. Then, for any positive integer
n and any real valued random variables X1, . . . , Xn,

E max
1≤i≤n

|Xi| ≤ ψ−1(nψ(1)) max
1≤i≤n

‖Xi‖ψ,

where ψ−1 is the inverse function of ψ. Moreover if ψ satisfies

∃ c > 0, ∀x, y ≥ 1/2, ψ(x)ψ(y) 6 ψ(c x y) (1.1)

then ∥∥∥∥ max
16i6n

|Xi|
∥∥∥∥
ψ

6 c max
{

1/2, ψ−1(2n)
}

max
16i6n

‖Xi‖ψ ,

where c is the same as in (1.1).
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Remark 1.1.4. —

(i) Since for any x, y ≥ 1/2, (ex − 1)(ey − 1) ≤ ex+y ≤ e4xy ≤ (e8xy − 1), we
get that for any α ≥ 1, ψα satisfies (1.1) with c = 81/α. Moreover, one has
ψ−1
α (nψα(1)) ≤ (1 + log(n))1/α and ψ−1

α (2n) = (log(1 + 2n))1/α.
(ii) Assumption(1.1) may be weakened to lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <∞.
(iii) By monotonicity of ψ, for n ≥ ψ(1/2)/2, max

{
1/2, ψ−1(2n)

}
= ψ−1(2n).

Proof. — By homogeneity, we can assume that for any i = 1, . . . , n, ‖Xi‖ψ ≤ 1.
The first inequality is a simple consequence of Jensen’s inequality. Indeed,

ψ(E max
1≤i≤n

|Xi|) ≤ Eψ( max
1≤i≤n

|Xi|) ≤
n∑
i=1

Eψ(|Xi|) ≤ nψ(1).

To prove the second assertion, we define y = max{1/2, ψ−1(2n)}. For any integer
i = 1, . . . , n, let xi = |Xi|/cy. We observe that if xi ≥ 1/2 then we have by (1.1)

ψ (|Xi|/cy) ≤ ψ(|Xi|)
ψ(y)

.

Also note that by monotonicity of ψ,

ψ( max
1≤i≤n

xi) ≤ ψ(1/2) +

n∑
i=1

ψ(xi)1I{xi ≥ 1/2}.

Therefore, we have

Eψ
(

max
16i6n

|Xi|/cy
)

6 ψ(1/2) +

n∑
i=1

Eψ (|Xi|)/cy) 1I{(|Xi|)/cy) ≥ 1/2}

≤ ψ(1/2) +
1

ψ(y)

n∑
i=1

Eψ(|Xi|) ≤ ψ(1/2) +
nψ(1)

ψ(y)
.

From the convexity of ψ and the fact that ψ(0) = 0, we have ψ(1/2) ≤ ψ(1)/2. The
proof is finished since by definition of y, ψ(y) ≥ 2n.

For every α ≥ 1, there are very precise connections between the ψα norm of a
random variable, the behavior of its Lp norms, its tail estimates and its Laplace
transform. We sum up these connections.

Theorem 1.1.5. — Let X be a real valued random variable and α > 1. The following
assertions are equivalent:
(1) There exists K1 > 0 such that ‖X‖ψα 6 K1.

(2) There exists K2 > 0 such that for every p ≥ α,

(E|X|p)1/p 6 K2 p
1/α.

(3) There exist K3,K
′
3 > 0 such that for every t ≥ K ′3,

P (|X| > t) 6 exp
(
− tα/Kα

3

)
.

Moreover, we have

K2 ≤ 2eK1,K3 ≤ eK2,K
′
3 ≤ e2K2 and K1 ≤ 2 max(K3,K

′
3).
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In the case α > 1, let β be such that 1/α + 1/β = 1. The preceding assertions are
also equivalent to the following:
(4) There exist K4,K

′
4 > 0 such that for every λ ≥ 1/K ′4,

E exp
(
λ|X|

)
6 exp (λK4)

β
.

Moreover, K4 ≤ K1, K ′4 ≤ K1, K3 ≤ 2K4 and K ′3 ≤ 2Kβ
4 /(K

′
4)β−1.

Proof. — We start by proving that (1) implies (2). By the definition of the Lψα
norm, we have

E exp

(
|X|
K1

)α
≤ e.

Moreover, for every positive integer q and every x ≥ 0, expx ≥ xq/q!. Hence

E|X|αq ≤ e q!Kαq
1 ≤ eqqKαq

1 .

For any p ≥ α, let q be the positive integer such that qα ≤ p < (q + 1)α then

(E|X|p)1/p ≤
(
E|X|(q+1)α

)1/(q+1)α

≤ e1/(q+1)αK1(q + 1)1/α

≤ e1/pK1

(
2p

α

)1/α

≤ 2eK1p
1/α

which means that (2) holds with K2 = 2eK1.
We now prove that (2) implies (3). We apply Markov inequality and the estimate

of (2) to deduce that for every t > 0,

P(|X| ≥ t) ≤ inf
p>0

E|X|p

tp
≤ inf
p≥α

(
K2

t

)p
pp/α = inf

p≥α
exp

(
p log

(
K2p

1/α

t

))
.

Choosing p = (t/eK2)α ≥ α, we get that for t ≥ eK2α
1/α, we indeed have p ≥ α and

conclude that

P(|X| ≥ t) ≤ exp (−tα/(K2e)
α) .

Since α ≥ 1, α1/α ≤ e and (3) holds with K ′3 = e2K2 and K3 = eK2.
To prove that (3) implies (1), assume (3) and let c = 2 max(K3,K

′
3). By integration

by parts, we get

E exp

(
|X|
c

)α
− 1 =

∫ +∞

0

αuα−1eu
α

P(|X| ≥ uc)du

≤
∫ K′3/c

0

αuα−1eu
α

du +

∫ +∞

K′3/c

αuα−1 exp

(
uα
(

1− cα

Kα
3

))
du

= exp

(
K ′3
c

)α
− 1 +

1
cα

Kα
3
− 1

exp

(
−
(
cα

Kα
3

− 1

)(
K ′3
c

)α)
≤ 2 cosh(K ′3/c)

α − 1 ≤ 2 cosh(1/2)− 1 ≤ e− 1

by definition of c and the fact that α ≥ 1. This proves (1) with K1 = 2 max(K3,K
′
3).
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We now assume that α > 1 and prove that (4) implies (3). We apply Markov
inequality and the estimate of (4) to get that for every t > 0,

P(|X| > t) 6 inf
λ>0

exp(−λt)E exp
(
λ|X|

)
6 inf
λ≥1/K′4

exp
(
(λK4)β − λt

)
.

Choosing λt = 2(λK4)β we get that if t ≥ 2Kβ
4 /(K

′
4)β−1, then λ ≥ 1/K ′4. We

conclude that
P(|X| > t) ≤ exp (−tα/(2K4)α) .

This proves (3) with K3 = 2K4 and K ′3 = 2Kβ
4 /(K

′
4)β−1.

It remains to prove that (1) implies (4). We already observed that the convex
conjugate of the function φα(t) = tα/α is φβ which implies that for x, y > 0,

xy ≤ xα

α
+
yβ

β
.

Hence for λ > 0, by convexity of the exponential

exp(λ|X|) ≤ 1

α
exp

(
|X|
K1

)α
+

1

β
exp (λK1)

β
.

Taking the expectation, we get by definition of the Lψα norm that

E exp(λ|X|) ≤ e

α
+

1

β
exp (λK1)

β
.

We conclude that if λ ≥ 1/K1 then

E exp(λ|X|) ≤ exp (λK1)
β

which proves (4) with K4 = K1 and K ′4 = K1.

A simple corollary of Theorem 1.1.5 is the following connection between the Lp norms
of a random variable and its ψα norm.

Corollary 1.1.6. — For every α ≥ 1 and every real random variable X,

1

2e2
‖X‖ψα 6 sup

p>α

(E|X|p)1/p

p1/α
6 2e ‖X‖ψα .

Moreover, one has L∞ ⊂ Lψα and ‖X‖ψα ≤ ‖X‖L∞ .

Proof. — This follows from the implications (1) ⇒ (2) ⇒ (3) ⇒ (1) in Theorem
1.1.5 and the computations of K2, K3, K ′3 and K1. The moreover part is a direct
application of the definition of the ψα norm.

We conclude with a kind of Hölder inequality for ψα random variables.

Proposition 1.1.7. — Let p and q be in [1,+∞] such that 1/p+ 1/q = 1. For any
real random variables X ∈ Lψp and Y ∈ Lψq , we have

‖XY ‖ψ1
≤ ‖X‖ψp ‖Y ‖ψq . (1.2)

Moreover, if 1 ≤ α ≤ β, one has ‖X‖ψ1
≤ ‖X‖ψα ≤ ‖X‖ψβ .
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Proof. — By homogeneity, we assume that ‖X‖ψp = ‖Y ‖ψq = 1. Since p and q are

conjugate, we know by Young inequality that for every x, y ∈ R, |xy| ≤ |x|p
p + |x|q

q .

By convexity of the exponential, we deduce that

E exp(|XY |) ≤ 1

p
E exp |X|p +

1

q
E exp |X|q ≤ e

which proves that ‖XY ‖ψ1
≤ 1.

For the “moreover part”, by definition of the ψq-norm, the random variable Y = 1
satisifes ‖Y ‖ψq = 1. Hence applying (1.2) with p = α and q being the conjugate of p,

we get that for every α ≥ 1, ‖X‖ψ1
≤ ‖X‖ψα . We also observe that for any β ≥ α, if

δ ≥ 1 is such that β = αδ then we have

‖X‖αψα = ‖|X|α‖ψ1
≤ ‖|X|α‖ψδ = ‖X‖αψαδ

which proves that ‖X‖ψα ≤ ‖X‖ψβ .

1.2. Linear combination of Psi-alpha random variables

In this part, we focus on the case of independent centered ψα random variables
when α ≥ 1. We present several results concerning the linear combination of such
random variables. The cases α = 2 and α 6= 2 are analyzed by different means.
We start by looking at the case α = 2. Even if we prove a sharp estimate for their
linear combination, we also consider the simple and well known example of linear
combination of independent Rademacher variables, which shows the limitation of the
classification through the ψα-norms of certain random variables. However in the case
α 6= 2, different regimes appear in the tail estimates of such sum. This will be of
importance in the next chapters.

The sub-Gaussian case.— We start by taking a look at sums of ψ2 random vari-
ables. The following proposition can be seen as a generalization of the classical Ho-
effding inequality [Hoe63] since L∞ ⊂ Lψ2

.

Theorem 1.2.1. — Let X1, . . . , Xn be independent real valued random variables
such that for any i = 1, . . . , n, EXi = 0. Then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
ψ2

6 c

(
n∑
i=1

‖Xi‖2ψ2

)1/2

where c ≤ 16.

Before proving the theorem, we start with the following lemma concerning the
Laplace transform of a ψ2 random variable which is centered. The fact that EX = 0
is crucial to improve assertion(4) of Theorem 1.1.5.

Lemma 1.2.2. — Let X be a ψ2 centered random variable. Then, for any λ > 0,
the Laplace transform of X satisfies

E exp(λX) 6 exp
(
eλ2 ‖X‖2ψ2

)
.
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Proof. — By homogeneity, we can assume that ‖X‖ψ2
= 1. By the definition of the

Lψ2 norm, we know that

E exp
(
X2
)
≤ e and for any integer k,EX2k ≤ ek!

Let Y be an independent copy of X. By convexity of the exponential and Jensen’s
inequality, since EY = 0 we have

E exp(λX) ≤ EXEY expλ(X − Y ).

Moreover, since the random variable X − Y is symmetric, one has

EXEY expλ(X − Y ) = 1 +
λ2

2
EXEY (X − Y )2 +

+∞∑
k=2

λ2k

(2k)!
EXEY (X − Y )2k.

Obviously, EXEY (X − Y )2 = 2EX2 ≤ 2e and EXEY (X − Y )2k ≤ 4kEX2k ≤ e4kk!.
Since the sequence vk = (2k)!/3k(k!)2 is nondecreasing, we know that for k ≥ 2
vk ≥ v2 = 6/32 so that

∀k ≥ 2,
1

(2k)!
EXEY (X − Y )2k ≤ e4kk!

(2k)!
≤ e32

6

(
4

3

)k
1

k!
≤
(

4
√
e√
6

)k
1

k!
≤ ek

k!
.

It follows that for every λ > 0, E exp(λX) ≤ 1 + eλ2 +
∑+∞
k=2

(eλ2)k

k! = exp(eλ2).

Proof of Theorem 1.2.1. — It is enough to get an upper bound of the Laplace trans-
form of the random variable

∣∣∑n
i=1Xi

∣∣. Let Z =
∑n
i=1Xi. By independence of the

Xi’s, we get from Lemma 1.2.2 that for every λ > 0,

E exp(λZ) =

n∏
i=1

E exp(λXi) 6 exp

(
eλ2

n∑
i=1

‖Xi‖2ψ2

)
.

For the same reason, E exp(−λZ) 6 exp
(
eλ2

∑n
i=1 ‖Xi‖2ψ2

)
. Thus,

E exp(λ|Z|) 6 2 exp

(
3λ2

n∑
i=1

‖Xi‖2ψ2

)
.

We conclude that for any λ ≥ 1/
(∑n

i=1 ‖Xi‖2ψ2

)1/2

,

E exp(λ|Z|) 6 exp

(
4λ2

n∑
i=1

‖Xi‖2ψ2

)
and using the implication ((4) ⇒ (1)) in Theorem 1.1.5 with α = β = 2 (with the

estimates of the constants), we get that ‖Z‖ψ2
≤ c(

∑n
i=1 ‖Xi‖2ψ2

)1/2 with c ≤ 16.

Now, we take a particular look at Rademacher processes. Indeed, Rademacher
variables are the simplest example of non-trivial bounded (hence ψ2) random vari-
ables. We denote by ε1, . . . , εn independent random variables taking values ±1 with
probability 1/2. By definition of Lψ2

, for any (a1, . . . , an) ∈ Rn, the random variable
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aiεi is centered and has ψ2 norm equal to |ai|. We apply Theorem 1.2.1 to deduce
that ∥∥∥∥∥

n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≤ c|a|2 = c

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

Therefore we get from Theorem 1.1.5 that for any p ≥ 2,E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ 2c
√
p

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

. (1.3)

This is Khinchine’s inequality. It is not difficult to extend it to the case 0 < q ≤ 2 by
using Hölder inequality: for any random variable Z, if 0 < q ≤ 2 and λ = q/(4 − q)
then (

E|Z|2
)1/2 ≤ (E|Z|q)λ/q

(
E|Z|4

)(1−λ)/4
.

Let Z =
∑n
i=1 aiεi, we apply (1.3) to the case p = 4 to deduce that for any 0 < q ≤ 2,(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

≤

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤ (4c)2(2−q)/q

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

.

Since for any x ≥ 0, ex
2 − 1 ≥ x2, we also observe that

(e− 1)

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≥

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

However the precise knowledge of the ψ2 norm of the random variable
∑n
i=1 aiεi is

not enough to understand correctly the behavior of its Lp norms and consequently of
its tail estimate. Indeed, a more precise statement holds.

Theorem 1.2.3. — Let p > 2, let a1, . . . , an be real numbers and let ε1, . . . , εn be
independent Rademacher variables. We have(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
∑
i6p

a∗i + 2c
√
p

∑
i>p

a∗2i

1/2

,

where (a∗1, . . . , a
∗
n) is the non-increasing rearrangement of (|a1|, . . . , |an|). Moreover,

this estimate is sharp, up to a multiplicative factor.

Remark 1.2.4. — We do not present the proof of the lower bound even if it is the
difficult part of Theorem 1.2.3. It is beyond the scope of this chapter.

Proof. — Since Rademacher random variables are bounded by 1, we have(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
n∑
i=1

|ai|. (1.4)
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By independence and by symmetry of Rademacher variables we have(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

=

(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

.

Splitting the sum into two parts, we get that(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

≤

(
E

∣∣∣∣∣
p∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

+

E

∣∣∣∣∣∣
∑
i>p

a∗i εi

∣∣∣∣∣∣
p1/p

.

We conclude by applying (1.4) to the first term and (1.3) to the second one.

Rademacher processes as studied in Theorem 1.2.3 provide good examples of one
of the main drawbacks of a classification of random variables based on ψα-norms.
Indeed, being a ψα random variable allows only one type of tail estimate: if Z ∈ Lψα
then the tail decay of Z behaves like exp(−Ktα) for t large enough. But this result
is sometimes too weak for a precise study of the Lp norm of Z.

Bernstein’s type inequalities, the case α = 1. — We start with Bennett’s
inequalities for an empirical mean of bounded random variables, see also the Azuma-
Hoeffding inequality in Chapter 4, Lemma 4.7.2.

Theorem 1.2.5. — Let X1, . . . , Xn be n independent random variables and M be a
positive number such that for any i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely.
Set σ2 = n−1

∑n
i=1 EX2

i . For any t > 0, we have

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−nσ

2

M2
h

(
Mt

σ2

))
,

where h(u) = (1 + u) log(1 + u)− u for all u > 0.

Proof. — Let t > 0. By Markov inequality and independence, we have

P

(
1

n

n∑
i=1

Xi > t

)
6 inf
λ>0

exp(−λt)E exp

(
λ

n

n∑
i=1

Xi

)

= inf
λ>0

exp(−λt)
n∏
i=1

E exp

(
λXi

n

)
. (1.5)

Since for any i = 1, . . . , n, EXi = 0 and |Xi| ≤M ,

E exp

(
λXi

n

)
= 1 +

∑
k>2

λkEXk
i

nkk!
≤ 1 + EX2

i

∑
k>2

λkMk−2

nkk!

= 1 +
EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
.
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Using the fact that 1 + u 6 exp(u) for all u ∈ R, we get

n∏
i=1

E exp

(
λXi

n

)
≤ exp

(∑n
i=1 EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

))
.

By definition of σ and (1.5), we conclude that for any t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
≤ inf
λ>0

exp

(
nσ2

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
− λt

)
.

The claim follows by choosing λ such that (1 + tM/σ2) = exp(λM/n).

Using a Taylor expansion, we see that for every u > 0 we have h(u) > u2/(2 + 2u/3).
This proves that if u ≥ 1, h(u) ≥ 3u/8 and if u ≤ 1, h(u) ≥ 3u2/8. Therefore
Bernstein’s inequality for bounded random variables is an immediate corollary of
Theorem 1.2.5.

Theorem 1.2.6. — Let X1, . . . , Xn be n independent random variables such that for
all i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely. Then, for every t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−3n

8
min

(
t2

σ2
,
t

M

))
,

where σ2 =
1

n

n∑
i=1

EX2
i .

From Bernstein’s inequality, we can deduce that the tail behavior of a sum of centered,
bounded random variables has two regimes. There is a sub-exponential regime with
respect to M for large values of t (t > σ2/M) and a sub-Gaussian behavior with
respect to σ2 for small values of t (t 6 σ2/M). Moreover, this inequality is always
stronger than the tail estimate that we could deduce from Theorem 1.2.1 (which is
only sub-Gaussian with respect to M2).

Now, we turn to the important case of sum of sub-exponential centered random
variables.

Theorem 1.2.7. — Let X1, . . . , Xn be n independent centered ψ1 random variables.
Then, for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
−c nmin

(
t2

σ2
1

,
t

M1

))
,

where M1 = max
16i6n

‖Xi‖ψ1
, σ2

1 =
1

n

n∑
i=1

‖Xi‖2ψ1
and c 6 1/2(2e− 1).

Proof. — Since for every x ≥ 0 and any positive natural integer k, ex − 1 ≥ xk/k!,
we get by definition of the ψ1 norm that for any integer k ≥ 1 and any i = 1, . . . , n,

E|Xi|k 6 (e− 1)k! ‖Xi‖kψ1
.
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Moreover EXi = 0 for i = 1, . . . , n and using Taylor expansion of the exponential, we
deduce that for every λ > 0 such that λ ‖Xi‖ψ1

≤ λM1 < n,

E exp

(
λ

n
Xi

)
6 1 +

∑
k>2

λkE|Xi|k

nkk!
6 1 +

(e− 1)λ2 ‖Xi‖2ψ1

n2
(

1− λ
n ‖Xi‖ψ1

) ≤ 1 +
(e− 1)λ2 ‖Xi‖2ψ1

n2
(
1− λM1

n

) .

Let Z = n−1
∑n
i=1Xi. Since for any real number x, 1+x ≤ ex, we get by independence

of the Xi’s that for every λ > 0 such that λM1 < n

E exp(λZ) ≤ exp

(
(e− 1)λ2

n2
(
1− λM1

n

) n∑
i=1

‖Xi‖2ψ1

)
= exp

(
(e− 1)λ2σ2

1

n− λM1

)
.

We conclude by Markov inequality that for every t > 0,

P(Z ≥ t) ≤ inf
0<λ<n/M1

exp

(
−λ t+

(e− 1)λ2σ2
1

n− λM1

)
.

We consider two cases. If t ≤ σ2
1/M1, we choose λ = nt/2eσ2

1 ≤ n/2eM1. A simple
computation gives that

P(Z ≥ t) ≤ exp

(
− 1

2(2e− 1)

n t2

σ2
1

)
.

If t > σ2
1/M1, we choose λ = n/2eM1. We get

P(Z ≥ t) ≤ exp

(
− 1

2(2e− 1)

n t

M1

)
.

We can apply the same argument for −Z and this concludes the proof.

The ψα case: α > 1. — In this part we will focus on the case α 6= 2 and α > 1.
Our goal is to explain the behavior of the tail estimate of a sum of independent
ψα centered random variables. As in Bernstein inequalities, there are two different
regimes depending on the level of deviation t.

Theorem 1.2.8. — Let α > 1 and β be such that α−1 + β−1 = 1. Let X1, . . . , Xn

be independent mean zero ψα real-valued random variables, set

A1 =

(
n∑
i=1

‖Xi‖2ψ1

)1/2

, Bα =

(
n∑
i=1

‖Xi‖βψα

)1/β

and Aα =

(
n∑
i=1

‖Xi‖2ψα

)1/2

.

Then, for every t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−C min

(
t2

A2
1

,
tα

Bαα

))
if α < 2,

2 exp

(
−C max

(
t2

A2
α

,
tα

Bαα

))
if α > 2

where C is an absolute constant.
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Remark 1.2.9. — This result can be stated with the same normalization as in Bern-
stein’s inequalities. Let

σ2
1 =

1

n

n∑
i=1

‖Xi‖2ψ1
, σ2

α =
1

n

n∑
i=1

‖Xi‖2ψα , Mβ
α =

1

n

n∑
i=1

‖Xi‖βψα ,

then we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−Cnmin

(
t2

σ2
1

,
tα

Mα
α

))
if α < 2,

2 exp

(
−Cnmax

(
t2

σ2
α

,
tα

Mα
α

))
if α > 2.

Before proving Theorem 1.2.8, we start by exhibiting a sub-Gaussian behavior of
the Laplace transform of any ψ1 centered random variable.

Lemma 1.2.10. — Let X be a ψ1 mean-zero random variable. If λ satisfies 0 ≤
λ 6

(
2 ‖X‖ψ1

)−1

, we have

E exp (λX) 6 exp
(

4(e− 1)λ2 ‖X‖2ψ1

)
.

Proof. — Let X ′ be an independent copy of X and denote Y = X −X ′. Since X is
centered, by Jensen’s inequality,

E expλX = E exp(λ(X − EX ′)) 6 E expλ(X −X ′) = E expλY.

The random variable Y is symmetric thus, for every λ, E expλY = E coshλY and
using the Taylor expansion,

E expλY = 1 +
∑
k≥1

λ2k

(2k)!
EY 2k = 1 + λ2

∑
k≥1

λ2(k−1)

(2k)!
EY 2k.

By definition of Y , for every k ≥ 1, EY 2k ≤ 22kEX2k. Hence, for 0 6 λ 6(
2 ‖X‖ψ1

)−1

, we get

E expλY ≤ 1 + 4λ2‖X‖2ψ1

∑
k≥1

EX2k

(2k)!‖X‖2kψ1

≤ 1 + 4λ2‖X‖2ψ1

(
E exp

(
|X|
‖X‖ψ1

)
− 1

)
.

By definition of the ψ1 norm, we conclude that

E expλX ≤ 1 + 4(e− 1)λ2‖X‖2ψ1
≤ exp

(
4(e− 1)λ2 ‖X‖2ψ1

)
.

Proof of Theorem 1.2.8. — We start with the case 1 < α < 2.
For i = 1, . . . , n, Xi is ψα with α > 1. Thus, it is a ψ1 random variable (see Proposition
1.1.7) and from Lemma 1.2.10, we get

∀ 0 ≤ λ ≤ 1/(2 ‖Xi‖ψ1
), E expλXi ≤ exp

(
4(e− 1)λ2 ‖Xi‖2ψ1

)
.
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It follows from Theorem 1.1.5 that

∀λ ≥ 1/‖Xi‖ψα , E expλXi ≤ exp
(
λ ‖Xi‖ψα

)β
.

Since 1 < α < 2 one has β > 2 and it is easy to conclude that for c = 4(e − 1) we
have

∀λ > 0, E expλXi ≤ exp
(
c
(
λ2‖Xi‖2ψ1

+ λβ‖Xi‖βψα
))

. (1.6)

Indeed when ‖Xi‖ψα > 2‖Xi‖ψ1 , we just have to glue the two estimates.
When we have ‖Xi‖ψα ≤ 2‖Xi‖ψ1

, we get by Hölder inequality, for every

λ ∈
(

1/2 ‖Xi‖ψ1
, 1/‖Xi‖ψα

)
,

E expλXi ≤
(
E exp

(
Xi

‖Xi‖ψα

))λ‖Xi‖ψα
≤ exp (λ‖Xi‖ψα) ≤ exp

(
λ24‖Xi‖2ψ1

)
.

Let now Z =
∑n
i=1Xi. We deduce from (1.6) that for every λ > 0,

E expλZ ≤ exp
(
c
(
A2

1λ
2 +Bβαλ

β
))
.

From Markov inequality, we have

P(Z ≥ t) ≤ inf
λ>0

e−λtE expλZ ≤ inf
λ>0

exp
(
c
(
A2

1λ
2 +Bβαλ

β
)
− λt

)
. (1.7)

If (t/A1)2 ≥ (t/Bα)α, we have t2−α ≥ A2
1/B

α
α and we choose λ = tα−1

4cBαα
. Therefore,

λt =
tα

4cBαα
, Bβαλ

β =
tα

(4c)βBαα
≤ tα

(4c)2Bαα
, and

A2
1λ

2 =
tα

(4c)2Bαα

tα−2A2
1

Bαα
≤ tα

(4c)2Bαα
.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

8c

tα

Bαα

)
.

If (t/A1)2 ≤ (t/Bα)α, we have t2−α ≤ A2
1/B

α
α and since (2 − α)β/α = (β − 2) we

also have tβ−2 ≤ A2(β−1)
1 /Bβα. We choose λ = t

4cA2
1
. Therefore,

λt =
t2

4cA2
1

, A2
1λ

2 =
t2

(4c)2A2
1

and Bβαλ
β =

t2

(4c)βA2
1

tβ−2Bβα

A
2(β−1)
1

≤ t2

(4c)2A2
1

.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

8c

t2

A2
1

)
.

The proof is complete with C = 1/8c = 1/32(e− 1).
In the case α > 2, we have 1 < β < 2 and the estimate (1.6) for the Laplace

transform of the Xi’s has to be replaced by

∀λ > 0, E expλXi ≤ exp
(
cλ2‖Xi‖2ψα

)
and E expλXi ≤ exp

(
cλβ‖Xi‖βψα

)
(1.8)
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where c = 4(e− 1). We study two separate cases.
If λ ‖Xi‖ψ1

≤ 1/2 then (λ ‖Xi‖ψ1
)2 ≤ (λ ‖Xi‖ψ1

)β ≤ (λ ‖Xi‖ψα)β and from Lemma

1.2.10, we get that if 0 ≤ λ ≤ 1/(2 ‖Xi‖ψ1
),

E expλXi ≤ exp
(
cλ2 ‖Xi‖2ψ1

)
≤ exp

(
cλβ ‖Xi‖βψα

)
.

In the second case, we start with Young’s inequality: for every λ ≥ 0,

λXi ≤
1

β
λβ‖Xi‖βψα +

1

α

|Xi|α

‖Xi‖αψα
which implies by convexity of the exponential and integration that for every λ ≥ 0,

E expλXi ≤
1

β
exp

(
λβ‖Xi‖βψα

)
+

1

α
e.

Therefore, if λ ≥ 1/2‖Xi‖ψα , then e ≤ exp
(

2βλβ‖Xi‖βψα
)
≤ exp

(
22λ2‖Xi‖2ψα

)
since

β < 2 and we get that if λ ≥ 1/(2‖Xi‖ψα)

E expλXi ≤ exp
(

2βλβ‖Xi‖βψα
)
≤ exp

(
22λ2‖Xi‖2ψα

)
.

Since ‖Xi‖ψ1 ≤ ‖Xi‖ψα and 2β ≤ 4, we glue both estimates and get (1.8). We
conclude as before that for Z =

∑n
i=1Xi, for every λ > 0,

E expλZ ≤ exp
(
cmin

(
A2
αλ

2, Bβαλ
β
))
.

The end of the proof is identical to the preceding case.

1.3. A geometric application: the Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma [JL84] states that a finite number of points
in a high-dimensional space can be embedded into a space of much lower dimension
(which depends of the cardinality of the set) in such a way that distances between
the points are nearly preserved. The mapping which is used for this embedding is a
linear map and can even be chosen to be an orthogonal projection. We present here
an approach with random Gaussian matrices.

Let G1, . . . , Gk be independent Gaussian vectors in Rn distributed according to
the normal law N (0, Id). Let Γ : Rn → Rk be the random operator defined for every
x ∈ Rn by

Γx =

 〈G1, x〉
...

〈Gk, x〉

 ∈ Rk. (1.9)

We will prove that with high probability, this random matrix satisfies the desired
property in the Johnson-Lindenstrauss lemma.

Lemma 1.3.1 (Johnson-Lindenstrauss lemma). — There exists a numerical
constant C such that, given 0 < ε < 1, a set T of N distinct points in Rn and an
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integer k > k0 = C log(N)/ε2, there exists a linear operator A : Rn → Rk such that
for every x, y ∈ T ,

√
1− ε |x− y|2 ≤ |A(x− y)|2 ≤

√
1 + ε |x− y|2.

Proof. — Let Γ be as in (1.9). For z ∈ Rn and i = 1, . . . , k, we have E〈Gi, z〉2 = |z|22.
Therefore, for every x, y ∈ T ,∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22 =
1

k

k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2.

Define Xi = 〈Gi, x−y〉2−E〈Gi, x−y〉2 for every i = 1, . . . , k. It is a centered random
variable. Since eu ≥ 1 + u, we know that E〈Gi, x − y〉2 ≤ (e − 1)

∥∥〈Gi, x− y〉2∥∥ψ1
.

Hence by definition of the ψ2 norm,

‖Xi‖ψ1
≤ 2(e− 1)

∥∥〈Gi, x− y〉2∥∥ψ1
= 2(e− 1) ‖〈Gi, x− y〉‖2ψ2

. (1.10)

By definition of the Gaussian law, 〈Gi, x − y〉 is distributed like |x − y|2 g where g
is a standard real Gaussian variable. With our definition of the ψ2 norm, ‖g‖2ψ2

=

2e2/(e2 − 1). We call c20 this number and set c21 = 2(e − 1)c20. We conclude that

‖〈Gi, x− y〉‖2ψ2
= c20 |x − y|22 and ‖Xi‖ψ1

≤ c21 |x − y|22. We apply Theorem 1.2.7

together with M1 = σ1 ≤ c21 |x− y|22 and get for t = ε|x− y|22 and 0 < ε < 1,

P

(∣∣∣∣∣1k
k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2
∣∣∣∣∣ > ε|x− y|22

)
≤ 2 exp(−c′ k ε2)

since t ≤ |x−y|22 ≤ c21 |x−y|22 ≤ σ2
1/M1. The constant c′ is defined by c′ = c/c41 where

c comes from Theorem 1.2.7. Since the cardinality of the set {(x, y) : x ∈ T, y ∈ T}
is less than N2, we get by the union bound that

P

(
∃x, y ∈ T :

∣∣∣∣∣
∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22

∣∣∣∣∣ > ε|x− y|22

)
≤ 2N2 exp(−c′ k ε2)

and if k > k0 = log(N2)/c′ε2 then the probability of this event is strictly less than

one. This means that there exists some realization of the matrix Γ/
√
k that defines

A and that satisfies the contrary i.e.

∀x, y ∈ T,
√

1− ε |x− y|2 ≤ |A(x− y)|2 ≤
√

1 + ε |x− y|2.

Remark 1.3.2. — The value of C is less than 1800.
In fact, the proof uses only the ψ2 behavior of 〈Gi, x〉. The Gaussian vectors can be
replaced by any copies of an isotropic vector Y with independent entries and bounded
ψ2 norms, like e.g. a random vector with independent Rademacher coordinates. In-
deed, by Theorem 1.2.1, ‖〈Y, x−y〉‖ψ2 ≤ c|x−y|2 can be used in place of (1.10). Then
the rest of the proof is identical.
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1.4. Complexity and covering numbers

The study of covering and packing numbers is a wide subject. We present only a
few useful estimates.

In approximation theory as well as in compressed sensing and statistics, it is im-
portant to measure the complexity of a set. An important tool is the entropy numbers
which measure the compactness of a set. Given U and V two closed sets of Rn, we
define the covering number N(U, V ) to be the minimum number of translates of V
needed to cover U . The formal definition is

N(U, V ) = inf

{
N : ∃x1, . . . , xN ∈ Rn, U ⊂

N⋃
i=1

(xi + V )

}
.

If moreover V is a symmetric closed convex set (we always mean symmetric with
respect to the origin), the packing number M(U, V ) is the maximal number of points
in U that are 1-separated for the norm induced by V . Formally, for every closed sets
U, V ⊂ Rn,

M(U, V ) = sup

{
N : ∃x1, . . . , xN ∈ U,∀i 6= j, xi − xj /∈ V

}
.

If V is a symmetric closed convex set, the semi-norm associated to V is defined for
x ∈ Rn by

‖x‖V = inf{t > 0, x ∈ tV }.
Hence xi − xj /∈ V is equivalent to ‖xi − xj‖V > 1. For any ε > 0, we also use the

notation

N(U, ε, ‖ · ‖V ) = N(U, εV ).

Moreover, a family x1, . . . , xN is called an ε-net if it is such that U ⊂
⋃N
i=1 (xi + εV ).

Finally, if the polar of V is defined by

V o = {y ∈ Rn : ∀x ∈ V, 〈x, y〉 ≤ 1}

then the dual space of the normed vector space (Rn, ‖·‖V ) is isometric to (Rn, ‖·‖V o).
In the case where V is a symmetric closed convex set, the notions of packing and

covering numbers are closely related.

Proposition 1.4.1. — If U, V ⊂ Rn are closed and 0 ∈ V then N(U, V ) ≤M(U, V ).
If moreover, U is convex and V convex symmetric then M(U, V ) ≤ N(U, V/2).

Proof. — Let N = M(U, V ) and x1, . . . , xN be in U such that for every i 6= j,
xi − xj /∈ V . Let u ∈ U \ {x1, . . . , xN}. Then {x1, . . . , xN , u} is not 1-separated in
V , which means that there exists i ∈ {1, . . . , N} such that u− xi ∈ V . Consequently,

since 0 ∈ V , U ⊂
⋃N
i=1 (xi + V ) and N(U, V ) ≤M(U, V ).

Let x1, . . . , xM be a family of vectors of U that are 1-separated. Let z1, . . . , zN be

a family of vectors such that U ⊂
⋃N
i=1 (zi + V/2). Since for i = 1, . . . ,M , xi ∈ U , we

define a mapping j : {1, . . . ,M} → {1, . . . , N} where j(i) is such that xi ∈ zj(i) +V/2.
If j(i1) = j(i2) then xi1 − xi2 ∈ V/2 − V/2. By convexity and symmetry of V ,
V/2 − V/2 = V . Hence xi1 − xi2 ∈ V . But the family x1, . . . , xM is 1-separated in
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V and necessarily i1 = i2. Therefore, j is injective and this implies that M(U, V ) ≤
N(U, V/2).

Moreover, it is not difficult to check that for any U , V , W closed convex bodies, one
has N(U,W ) ≤ N(U, V )N(V,W ). The following simple volumetric estimate is an
important tool.

Lemma 1.4.2. — Let V be a symmetric compact convex set in Rn. Then, for every
ε > 0,

N(V, εV ) ≤
(

1 +
2

ε

)n
.

Proof. — By Proposition 1.4.1, N(V, εV ) ≤ M(V, εV ). Let M = M(V, εV ) be the
maximal number of points x1, . . . , xM in V such that for every i 6= j, xi − xj /∈ εV .
Since V is a symmetric compact convex set, the sets xi + εV/2 are pairwise disjoints
and

M⋃
i=1

(xi + εV/2) ⊂ V + εV/2 =
(

1 +
ε

2

)
V.

Taking the volume, we get

M
(ε

2

)n
≤
(

1 +
ε

2

)n
which gives the desired estimate.

We present some classical tools to estimate the covering numbers of the unit ball
of `n1 by parallelepipeds and some classical estimates relating covering numbers of T
by a multiple of the Euclidean ball with a parameter of complexity associated to T .

The empirical method. — We introduce this method through a concrete example.
Let d be a positive integer and Φ be an d× d matrix. We assume that the entries of
Φ satisfy for all i, j ∈ {1, . . . , d},

|Φij | 6
K√
d

(1.11)

where K > 0 is an absolute constant.
We denote by Φ1, . . . ,Φd the row vectors of Φ and we define for all p ∈ {1, . . . , d}

the semi-norm ‖·‖∞,p, for x ∈ Rd, by

‖x‖∞,p = max
16j6p

| 〈Φj , x〉 |.

Let B∞,p = {x ∈ Rd : ‖x‖∞,p 6 1} denote its unit ball. If E = span{Φ1, . . . ,Φp}
and PE is the orthogonal projection on E, then B∞,p = PEB∞,p + E⊥, moreover,
PEB∞,p is a parallelepiped in E. In the next theorem, we obtain an upper bound
of the logarithm of the covering numbers of the unit ball of `d1, denoted by Bd1 , by a
multiple of B∞,p. Observe first that from hypothesis (1.11) on the entries of the matrix

Φ, we get that for any x ∈ Bd1 and any j = 1, . . . , p, |〈Φj , x〉| ≤ |Φj |∞|x|1 ≤ K/
√
d.

Therefore

Bd1 ⊂
K√
d
B∞,p (1.12)
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and for ε ≥ K/
√
d, N(Bd1 , εB∞,p) = 1.

Theorem 1.4.3. — With the preceding notations, we have for 0 < t < 1,

logN

(
Bd1 ,

tK√
d
B∞,p

)
6 min

{
c0

log(p) log(2d+ 1)

t2
, p log

(
1 +

2

t

)}
where c0 is an absolute constant.

The first estimate is proven using an empirical method, while the second one is based
on a volumetric estimate.

Proof. — Let x be in Bd1 . Define a random variable Z by

P
(
Z = Sign(xi)ei

)
= |xi| for all i = 1, . . . , d and P(Z = 0) = 1− |x|1

where (e1, . . . , ed) is the canonical basis of Rd. Observe that EZ = x.
We use a well known symmetrization argument, see Chapter 5 for a more complete

description. Let m be some integer to be chosen later and Z1, . . . , Zm, Z
′
1, . . . , Z

′
m be

i.i.d. copies of Z. We have by Jensen’s inequality

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

=

∥∥∥∥∥ 1

m

m∑
i=1

E′Z ′i − Zi

∥∥∥∥∥
∞,p

≤ EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

.

The random variable (Z ′i−Zi) is symmetric hence and has the same law as εi(Z
′
i−Zi)

where ε1, . . . , εm are i.i.d. Rademacher random variables. Therefore, by the triangle
inequality

EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

=
1

m
EE′Eε

∥∥∥∥∥
m∑
i=1

εi(Z
′
i − Zi)

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

.

and

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

=
2

m
EEε max

1≤j≤p

∣∣∣∣∣
m∑
i=1

εi〈Zi,Φj〉

∣∣∣∣∣ . (1.13)

By definition of Z and (1.11), we know that |〈Zi,Φj〉| ≤ K/
√
d. Let aij be any

sequence of real numbers such that |aij | ≤ K/
√
d. For any j, let Xj =

∑m
i=1 aijεi.

From Theorem 1.2.1, we deduce that

∀j = 1, . . . , p, ‖Xj‖ψ2
≤ c

(
m∑
i=1

a2
ij

)1/2

≤ cK
√
m√
d
.

Therefore, by Proposition 1.1.3 and remark 1.1.4, we get

E max
1≤j≤p

|Xj | ≤ c
√

(1 + log p)
K
√
m√
d
.
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From (1.13) and the preceding argument, we conclude that

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤
2 cK

√
(1 + log p)√
md

Let m satisfy

4c2(1 + log p)

t2
≤ m ≤ 4c2(1 + log p)

t2
+ 1

For this choice of m we have

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

6
tK√
d
.

In particular, there exists ω ∈ Ω such that∥∥∥∥∥x− 1

m

m∑
i=1

Zi(ω)

∥∥∥∥∥
∞,p

6
tK√
d
.

So the set { 1

m

m∑
i=1

zi : z1, . . . , zm ∈ {±e1, . . . ,±ed} ∪ {0}
}

is a tK/
√
d-net of Bd1 with respect to ‖·‖∞,p. Since its cardinality is less than (2d+1)m,

we get the first estimate:

logN

(
Bd1 ,

tK√
d
B∞,p

)
6
c0(1 + log p) log(2d+ 1)

t2

where c0 is an absolute constant.
To prove the second estimate, we recall that by (1.12) Bd1 ⊂ K/

√
dB∞,p. Hence

N

(
Bd1 ,

tK√
d
B∞,p

)
≤ N

(
K√
d
B∞,p,

tK√
d
B∞,p

)
= N (B∞,p, tB∞,p) .

Moreover, we have already observed that B∞,p = PEB∞,p + E⊥ which means that

N (B∞,p, tB∞,p) = N(V, tV )

where V = PEB∞,p. Since dimE ≤ p, we may apply Lemma1.4.2 to conclude that

N

(
Bd1 ,

tK√
d
B∞,p

)
≤
(

1 +
2

t

)p
.
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Sudakov’s inequality and dual Sudakov’s inequality. — Among the classical
tools to compute covering numbers of a closed set by Euclidean balls, or in the dual
situation, covering numbers of a Euclidean ball by translates of a symmetric closed
convex set, are the Sudakov and dual Sudakov inequalities. They relate these covering
numbers with an important parameter which measures the size of a subset T of Rn,
`∗(T ). Define

`∗(T ) = E sup
t∈T
〈G, t〉

where G is a Gaussian vector in Rn distributed according to the normal law N (0, Id).
We refer to Chapter 2 and 3 for deeper results involving this parameter. Remark that
`∗(T ) = `∗(conv T ) where conv T denotes the convex hull of T .

Theorem 1.4.4. — Let T be a closed subset of RN and V be a symmetric closed
convex set in RN . Then, the following inequalities hold:

sup
ε>0

ε
√

logN(T, εBN2 ) 6 c `∗(T ) (1.14)

and

sup
ε>0

ε
√

logN(BN2 , εV ) 6 c `∗(V
o). (1.15)

The proof of the Sudakov inequality (1.14) is based on comparison properties be-
tween Gaussian processes. We recall the Slepian-Fernique comparison lemma without
proving it.

Lemma 1.4.5. — Let X1, . . . , XM , Y1, . . . , YM be Gaussian random variables such
that for i, j = 1, . . . ,M

E|Yi − Yj |2 ≤ E|Xi −Xj |2

then
E max

1≤k≤M
Yk ≤ E max

1≤k≤M
Xk.

Proof of Theorem 1.4.4. — We start by proving (1.14). Let x1, . . . , xM be M points
of T that are ε-separated with respect to the Euclidean norm | · |2. Define for i =
1, . . . ,M , the Gaussian variables Xi = 〈xi, G〉 where G is a standard Gaussian vector
in RN . We have

E|Xi −Xj |2 = |xi − xj |22 ≥ ε2 for all i 6= j.

Let g1, . . . , gM be standard independent Gaussian random variables and for i =
1, . . . ,M , define Yi = ε√

2
gi. We have for all i 6= j

E|Yi − Yj |2 = ε2

and by Lemma1.4.5
ε√
2
E max

1≤k≤M
gk ≤ E max

1≤k≤M
〈xk, G〉 ≤ 2`(T ).

Moreover there exists a constant c > 0 such that for every positive integer M

E max
1≤k≤M

gk ≥
√

logM
/
c (1.16)
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which proves ε
√

logM ≤ c
√

2`(T ). By Proposition 1.4.1, the proof of inequality
(1.14) is complete. The lower bound (1.16) is a classical fact. First, we observe that
Emax(g1, g2) is computable, it is equal to 1/

√
π. Hence we can assume that M is

large enough (say greater than 104). In this case, we observe that

2E max
1≤k≤M

gk ≥ E max
1≤k≤M

|gk| − E|g1|.

Indeed,

E max
1≤k≤M

gk = E max
1≤k≤M

(gk − g1) = E max
1≤k≤M

max((gk − g1), 0)

and by symmetry of the gi’s,

E max
1≤k≤M

|gk − g1| ≤ E max
1≤k≤M

max((gk − g1), 0) + E max
1≤k≤M

max((g1 − gk), 0)

= 2E max
1≤k≤M

(gk − g1) = 2E max
1≤k≤M

gk.

But, by independence of the gi’s

E max
1≤k≤M

|gk| =
∫ +∞

0

P
(

max
1≤k≤M

|gk| > t

)
dt =

∫ +∞

0

(
1− P

(
max

1≤k≤M
|gk| ≤ t

))
dt

=

∫ +∞

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

and it is easy to see that for every t > 0,∫ +∞

t

e−u
2/2du ≥ e−(t+1)2/2.

Let t0 + 1 =
√

2 logM then

E max
1≤k≤M

|gk| ≥
∫ t0

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

≥ t0

1−

(
1−

√
2

M
√
π

)M ≥ t0(1− e−
√

2/π)

which concludes the proof of (1.16).
To prove the dual Sudakov inequality (1.15), the argument is very similar to the

volumetric argument introduced in Lemma 1.4.2, replacing the Lebesgue measure by
the Gaussian measure. Let r > 0 to be chosen later. By definition, N(BN2 , εV ) =
N(rBN2 , rεV ). Let x1, . . . , xM be in rBN2 that are rε separated for the norm induced
by the symmetric convex set V . By Proposition 1.4.1, it is enough to prove that

ε
√

logM ≤ c `∗(V o).
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The balls xi + (rε/2)V are disjoints and taking the Gaussian measure of the union
of these sets, we get

γN

(
M⋃
i=1

(xi + rε/2V )

)
=

M∑
i=1

∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≤ 1.

However, by the change of variable z − xi = ui, we have∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
= e−|xi|

2
2/2

∫
‖ui‖V ≤rε/2

e−|ui|
2
2/2e−〈ui,xi〉

dui
(2π)N/2

and from Jensen’s inequality and the symmetry of V ,

1

γN
(
rε
2 V

) ∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≥ e−|xi|

2
2/2.

Since xi ∈ rBN2 , we proved

M e−r
2/2 γN

(rε
2
V
)
≤ 1.

To conclude, we choose r such that rε/2 = 2`∗(V
o). By Markov inequality,

γN
(
rε
2 V

)
≥ 1/2 and M ≤ 2er

2/2 which means that for some constant c,

ε
√

logM ≤ c `∗(V o).

The metric entropy of the Schatten balls. — As a first application of Sudakov
and dual Sudakov, we compute the metric entropy of Schatten balls with respect to
Schatten norms. We denote by Bm,np the unit ball of the Banach spaces of matrices
in Mm,n endowed with the Schatten norm ‖·‖Sp defined for any A ∈Mm,n by

‖A‖Sp =
(

Tr
(
(A∗A)p/2

))1/p

.

It is also the `p-norm of the singular values of A. We refer to Chapter 4 for more
information about the singular values of a matrix.

Proposition 1.4.6. — For m ≥ n > 1, p, q ∈ [1,+∞] and ε > 0, one has

ε
√

logN(Bm,np , εBm,n2 ) 6 c1
√
m n(1−1/p) (1.17)

and

ε
√

logN(Bm,n2 , εBm,nq ) 6 c2
√
m n1/q (1.18)

where c1 and c2 are numerical constants. Moreover, for n ≥ m ≥ 1 the same result
holds by exchanging m and n.

Proof. — We start by proving a rough upper bound of the operator norm of a Gaus-
sian random matrix Γ ∈ Mm,n i.e. a matrix with independent standard Gaussian
entries:

E ‖Γ‖S∞ ≤ c(
√
n+
√
m) (1.19)
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for some numerical constant c. Let Xu,v be the Gaussian process defined for u ∈
Bm2 , v ∈ Bn2 by

Xu,v = 〈Γv, u〉
so

E ‖Γ‖S∞ = E sup
u∈Bm2 ,v∈Bn2

Xu,v.

From Lemma 1.4.2, there exists (1/4)-nets Λ ⊂ Bm2 and Λ′ ⊂ Bn2 of Bm2 and Bn2
for their own metric such that |Λ| 6 9m and |Λ′| 6 9n. Let (u, v) ∈ Bm2 × Bn2 and
(u′, v′) ∈ Λ× Λ′ such that |u− u′|2 < 1/4 and |v − v′|2 < 1/4. Then we have

|Xu,v −Xu′,v′ | = |〈Γv, u− u′〉+ 〈Γ(v − v′), u′〉| ≤ ‖Γ‖S∞ |u− u
′|2 + ‖Γ‖S∞ |v − v

′|2.

We deduce that ‖Γ‖S∞ 6 supu′∈Λ,v′∈Λ′ |Xu′,v′ |+ (1/2) ‖Γ‖S∞ and therefore

‖Γ‖S∞ 6 2 sup
u′∈Λ,v′∈Λ′

|Xu′,v′ |.

Now Xu′,v′ is a Gaussian centered random variable with variance |u′|22 |v′|22 6 1. By
Lemma 1.1.3,

E sup
u′∈Λ,v′∈Λ′

|Xu′,v′ | 6 c
√

log |Λ||Λ′| ≤ c
√

log 9 (
√
m+

√
n)

and (1.19) follows.
Now, we first prove (1.17) when m ≥ n ≥ 1. Using Sudakov inequality (1.14), we

have for all ε > 0,

ε
√

logN(Bm,np , εBm,n2 ) 6 c`∗(B
m,n
p ).

Since

`∗(B
m,n
p ) = E sup

A∈Bm,np

〈Γ, A〉

where 〈Γ, A〉 = Tr(ΓA∗). If p′ satisfies 1/p+ 1/p′ = 1, we have by trace duality

〈Γ, A〉 ≤ ‖Γ‖Sp′ ‖A‖Sp 6 n1/p′ ‖Γ‖S∞ ‖A‖Sp .

Taking the supremum over A ∈ Bm,np , the expectation and using (1.19), we get

`∗(B
m,n
p ) ≤ n1/p′E ‖Γ‖S∞ ≤ c

√
m n1/p′

which ends the proof of (1.17)
To prove (1.18) in the case m ≥ n ≥ 1, we use the dual Sudakov inequality (1.15)

and (1.19) to get that for q ∈ [1,+∞]:

ε
√

logN(Bm,n2 , εBm,nq ) 6 cE ‖Γ‖Sq 6 c n1/qE ‖Γ‖S∞ 6 c′n1/q
√
m.

The proof of the case n ≥ m is similar.
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Concentration of norms of Gaussian vectors. — We finish this chapter by an-
other important property of Gaussian processes, a concentration of measure inequality
which will be used in the next chapter. It is stated without proof. The reader is re-
ferred to [Led01] to learn more about this and to [Pis89] for other consequences in
geometry of Banach spaces.

Theorem 1.4.7. — Let G ∈ Rn be a Gaussian vector distributed according to the
normal law N (0, Id). Let T ⊂ Rn and let

σ(T ) = sup
t∈T
{
(
E〈G, t〉|2

)1/2}.
We have

∀u > 0 P
(∣∣∣∣sup

t∈T
〈G, t〉 − E sup

t∈T
〈G, t〉

∣∣∣∣ > u

)
≤ 2 exp

(
−u2/2σ2(T )

)
(1.20)

where c is a numerical constant.

1.5. Notes and comments

In this chapter, we focused on some very particular concentration inequalities. Of
course, there exist different and powerful other type of concentration inequalities.
Several books and surveys are devoted to this subject and we refer for example to
[LT91, vdVW96, Led01, BBL04, Mas07] for the interested reader. The classical
references for Orlicz spaces are [KR61, LT77, LT79, RR91, RR02].

Tail and moment estimates for Rademacher averages are well understood. Theo-
rem 1.2.3 is due to Montgomery-Smith [MS90] and several extensions to the vector
valued case are known [DMS93, MS95]. The case of sum of independent random
variables with logarithmically concave tails has been studied by Gluskin and Kwapien
[GK95]. For the proof of Theorem 1.2.8, we could have followed a classical prob-
abilistic trick which reduces the proof of the result to the case of Weibull random
variables. These variables are defined such that their tails are equals to e−t

α

. Hence,
they are logarithmically concave and the conclusion follows from a result of Gluskin
and Kwapien in [GK95]. We have presented here an approach which follows the line
of [Tal94]. The results are only written for random variables with densities cαe

−tα ,
but the proofs work in the general context of ψα random variables.

Originally, Lemma 1.3.1 was proved in [JL84] and the operator is chosen at random
in the set of orthogonal projections onto a random k-dimensional subspace of `2,
uniformly according to the Haar measure on the Grassman manifold Gn,k.

The classical references for the study of entropy numbers are [Pie72, Pie80,
Pis89, CS90]. The method of proof of Theorem 1.4.3 has been introduced by Mau-
rey, in particular for studying entropy numbers of operators from `d1 into a Banach
space of type p. This was published in [Pis81]. The method was extended and devel-
oped by Carl in [Car85]. Sudakov inequality 1.14 is due to Sudakov [Sud71] while
the dual Sudakov inequality 1.15 is due to Pajor and Tomczak-Jaegermann [PTJ86].
The proof that we presented follows the lines of Ledoux-Talagrand [LT91]. We have
chosen to speak only about Slepian-Fernique inequality which is Lemma 1.4.5. The
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result of Slepian [Sle62] is more general and tells about distribution inequality. In
the context of Lemma 1.4.5, however, a multiplicative factor 2 appears when applying
Slepian’s lemma. Fernique [Fer74] proved that the constant 2 can be replaced by 1
and Gordon [Gor85, Gor87] extended these results to min-max of some Gaussian
processes. About the covering numbers of the Schatten balls, Proposition 1.4.6 is due
to Pajor [Paj99]. Theorem 1.4.7 is due to Cirel′son, Ibragimov, Sudakov [CIS76]
(see the book [Pis89] and [Pis86] for variations on the same theme).





CHAPTER 2

COMPRESSED SENSING AND GELFAND WIDTHS

2.1. A short introduction to compressed sensing

Compressed Sensing is a quite new framework that enables to get exact and ap-
proximate reconstruction of sparse or almost sparse signals from incomplete measure-
ments. The ideas and principles are strongly related to other problems coming from
different fields such as approximation theory, in particular to the study of Gelfand
and Kolmogorov widths of classical Banach spaces (diameter of sections). Since the
seventies an important work was done in this direction, in Approximation Theory and
in Asymptotic Geometric Analysis (called Geometry of Banach spaces at that time).

It is not in our aim to give a comprehensive and exhaustive presentation of com-
pressed sensing, there are many good references for that, but mainly to emphasize
some interactions with other fields of mathematics, in particular with asymptotic
geometric analysis, random matrices and empirical processes. The possibility of re-
constructing any vector from a given subset is highly related to some complexity of
this subset and in the field of Geometry of Banach spaces, many tools were developed
to analyze various concepts of complexity.

In this introduction to compressive sensing, for simplicity, we will consider only the
real case, real vectors and real matrices. Let 1 ≤ n ≤ N be integers. We are given a
rectangular n ×N real matrix A. One should think of N � n. We have in mind to
compress some vectors from RN for large N into vectors in Rn. Let X1, . . . , XN ∈ Rn
be the columns of A and let Y1, · · · , Yn ∈ RN its rows. We write

A =
(
X1 · · · · · · · · ·XN

)
=


Y1

Y2

...
Yn

 .

We are also given a subset T ⊂ RN of vectors. Let x ∈ T be an unknown vector.
The data one is given are n linear measurements of x (again, think of N � n)

〈Y1, x〉, · · · , 〈Yn, x〉
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or equivalently

y = Ax.

We wish to recover x or more precisely to reconstruct x, exactly or approximately,
within a given accuracy and in an efficient way (fast algorithm).

2.2. The exact reconstruction problem

Let us first discuss the exact reconstruction question. Let x ∈ T be unknown and
recall that the given data is y = Ax. When N � n, the problem is ill-posed because
the system At = y, t ∈ RN is highly under-determined. Thus if we want to recover x
we need some information on its nature. Moreover if we want to recover any x from
T , one should have some a priori information on the set T , on its complexity whatever
it means at this stage. We shall consider here various parameters of complexity in
these notes. The a priori hypothesis that we investigate now is sparsity.

Sparsity. — We first introduce some notation. We equip Rn and RN with the
canonical scalar product 〈 ·, ·〉 and Euclidean norm | · |2. We use the notation | · | to
denote the cardinality of a set. By BN2 we denote the unit Euclidean ball of RN and
by SN−1 its unit sphere.

Definition 2.2.1. — Let 0 ≤ m ≤ N be integers. For x = (x1, . . . , xN ) ∈ RN ,
denote by suppx = {k : 1 ≤ k ≤ N, xk 6= 0} the support of x, that is the set of indices
of non-zero coordinates of x. A vector x is said to be m-sparse if |suppx| ≤ m. The
set of m-sparse vectors of RN is denoted by Σm = Σm(RN ) and its unit sphere by

S2(Σm) = {x ∈ RN : |x|2 = 1 and |suppx| ≤ m} = Σm(RN ) ∩ SN−1.

Similarly let

B2(Σm) = {x ∈ RN : |x|2 ≤ 1 and |suppx| ≤ m} = Σm(RN ) ∩BN2 .

Note that Σm is not a linear subspace and that B2(Σm) is not convex (except when
m = N).

Problem 2.2.2. — The exact reconstruction problem. We wish to reconstruct
exactly any m-sparse vector x ∈ Σm from the given data y = Ax. Thus we are looking
for a decoder ∆ such that

∀x ∈ Σm, ∆(A,Ax) = x.

Claim 2.2.3. — Linear algebra tells us that such a decoder ∆ exists iff

kerA ∩ Σ2m = {0}.

Example 2.2.4. — Let m ≥ 1, N ≥ 2m and 0 < a1 < · · · < aN = 1. Let n = 2m
and build the Vandermonde matrix A = (ai−1

j ), 1 ≤ i ≤ n, 1 ≤ j ≤ N . Clearly all the
2m × 2m minors of A are non singular Vandermonde matrices. Unfortunately it is
known that such matrices are ill-conditioned. Therefore reconstructing x ∈ Σm from
y = Ax is numerically unstable.
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Metric entropy. — As already said, there are many different approaches to seize
and measure complexity of a metric space. The most simple is probably to estimate
a degree of compactness via the so-called covering and packing numbers.

Since all the metric spaces that we will consider here are subsets of normed spaces,
we restrict to this setting. We denote by conv(Λ) the convex hull of a subset Λ of a
linear space.

Definition 2.2.5. — Let B and C be subsets of a vector space and let ε > 0. An
ε-net of B by translates of εC is a subset Λ of B such that for every x ∈ B, there
exits y ∈ Λ and z ∈ C such that x = y + εz. In other words, one has

B ⊂ Λ + εC =
⋃
y∈Λ

(y + εC) ,

where Λ + εC := {a+ εc : a ∈ Λ, c ∈ C} is the Minkowski sum of the sets Λ and εC.
The covering number of B by εC is the smallest cardinality of such an ε-net and is
denoted by N(B, εC). The function ε→ logN(B, εC) is called the metric entropy of
B by C.

Remark 2.2.6. — If (B, d) is a metric space, an ε-net of (B, d) is a covering of B
by balls of radius ε for the metric d. The covering number is the smallest cardinality
of an ε-net and is denoted by N(B, d, ε). In our setting, the metric d will be defined
by a norm with unit ball say C. Then x+ εC is the ball of radius ε centered at x.

Let us start with an easy but important fact. A subset C ⊂ RN , is said to be
symmetric or centrally symmetric, if it is symmetric with respect to the origin, that
is if C = −C. Let C ⊂ RN be a symmetric convex body, that is a symmetric convex
compact subset of RN with non-empty interior. Equivalently, C is unit ball of a norm
on RN . Consider a subset Λ ⊂ C of maximal cardinality such that the points of Λ
are εC-apart in the sense that:

∀x 6= y, x, y ∈ Λ, one has x− y 6∈ εC
(recall that C = −C). It is clear that Λ is an ε-net of C by εC. Moreover the balls

(x+ (ε/2)C)x∈Λ

of radius (ε/2) centered at the points of Λ are pairwise disjoint and their union is a
subset of (1 + (ε/2))C (this is where convexity is involved). Taking volume of this

union, we get that N(C, εC) ≤ (1 + (2/ε))
N
. This proves part ii) of the following

proposition.

Proposition 2.2.7. — Let ε ∈ (0, 1). Let C ⊂ RN be a symmetric convex body.

i) Let Λ ⊂ C be an ε-net of C by translates of εC, then Λ ⊂ C ⊂ (1−ε)−1 conv (Λ).
ii) There exists an ε-net Λ of C by translates of εC such that |Λ| ≤ (1 + 2/ε)N .

Proof. — We prove i) by successive approximation. Since Λ is an ε-net of C by
translates of εC, every z ∈ C can be written as z = x0 + εz1, where x0 ∈ Λ and
z1 ∈ C. Iterating, it follows that z = x0 +εx1 +ε2x2 + . . ., with xi ∈ Λ, which implies
by convexity that C ⊂ (1− ε)−1conv (Λ).
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This gives the next result:

Claim 2.2.8. — Covering the unit Euclidean sphere by Euclidean balls of radius ε.
One has

∀ε ∈ (0, 1), N(SN−1, εBN2 ) ≤
(

3

ε

)N
.

Now, since S2(Σm) is the union of spheres of dimension m,

N(S2(Σm), εBN2 ) ≤
(
N

m

)
N(Sm−1, εBm2 ).

Using the well known inequality
(
N
m

)
≤ (eN/m)m, we get:

Claim 2.2.9. — Covering the set of sparse unit vectors by Euclidean balls of ra-
dius ε. Let 1 ≤ m ≤ N and ε ∈ (0, 1), then

N(S2(Σm), εBN2 ) ≤
(

3eN

mε

)m
.

The `1-minimization method. — Coming back to the exact reconstruction prob-
lem, if we want to solve in t the system

At = y

where y = Ax is given and x is m-sparse, it is tempting to test all possible supports
of the unknown vector x. This is the so-called `0-method. But there are

(
N
m

)
possible

supports, too many to answer the request of a fast algorithm. A more clever approach
was proposed, namely the convex relaxation of the `0-method. Let x be the unknown
vector. The given data is y = Ax. For t = (ti) ∈ RN denote by

|t|1 =

N∑
i=1

|ti|

its `1 norm. The `1-minimization method (also called basis pursuit) is the following
program:

(P ) min
t∈RN

|t|1 subject to At = y.

This program may be recast as a linear programming by

min

N∑
i=1

si, subject to s ≥ 0,−s ≤ t ≤ s,At = y.

Definition 2.2.10. — Exact reconstruction by `1-minimization. We say that
a n×N matrix A has the exact reconstruction property of order m by `1-minimization
if, for every x ∈ Σm, the problem

(P ) min
t∈RN

|t|1 subject to At = Ax has a unique solution equal to x. (2.1)
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Note that the above property is not specific to the matrix A but rather a property
of its null space. In order to emphasize this point, let us introduce some notation.

For any subset I ⊂ [N ] where [N ] = {1, . . . , N}, let Ic be its complement. For
any x ∈ RN , let us write xI for the vector in RN with the same coordinates as x for
indices in I and 0 for indices in Ic. We are ready for a criterion on the null space.

Proposition 2.2.11. — The null space property. Let A be n×N matrix. The
following properties are equivalent

i) For any x ∈ Σm, the problem

(P ) min
t∈RN

|t|1 subject to At = Ax

has a unique solution equal to x (that is A has the exact reconstruction property
of order m by `1-minimization)

ii)
∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, one has |hI |1 < |hIc |1. (2.2)

Proof. — On one side, let h ∈ kerA, h 6= 0 and I ⊂ [N ], |I| ≤ m. Put x = −hI . Then
x ∈ Σm and (2.1) implies that |x+ h|1 > |x|1, that is |hIc |1 > |hI |1.

For the reverse implication, suppose that ii) holds. Let x ∈ Σm and I = supp(x).
Then |I| ≤ m and for any h ∈ kerA such that h 6= 0,

|x+ h|1 = |xI + hI |1 + |hIc |1 > |xI + hI |1 + |hI |1 ≥ |x|1,
which shows that x is the unique minimizer of the problem (P ).

Definition 2.2.12. — Let 1 ≤ m ≤ N . We say that an n × N matrix A satisfies
the null space property of order m if it satisfies (2.2).

This property has a nice geometric interpretation. To introduce it, we need some
more notation. Recall that conv( · ) denotes the convex hull. Let (ei)1≤i≤N be the
canonical basis of RN . Let `N1 be the N -dimensional space RN equipped with the `1
norm and BN1 be its unit ball. Denote also

S1(Σm) = {x ∈ Σm : |x|1 = 1} and B1(Σm) = {x ∈ Σm : |x|1 ≤ 1} = Σm ∩BN1 .
We have BN1 = conv(±e1, . . . ,±eN ). A (m − 1)-dimensional face of BN1 is of the

form conv({εiei : i ∈ I}) with I ⊂ [N ], |I| = m and (εi) ∈ {−1, 1}I . From the
geometric point of view, S1(Σm) is the union of the (m− 1)-dimensional faces of BN1 .

Let A be an n×N matrix and X1, . . . , XN ∈ Rn be its columns then

A(BN1 ) = conv(±X1, . . . ,±XN ).

Proposition 2.2.11 can be reformulated in the following geometric language:

Proposition 2.2.13. — The geometry of faces of A(BN1 ). Let 1 ≤ m ≤ n ≤ N .
Let A be an n×N matrix with columns X1, . . . , XN ∈ Rn. Then A satisfies the null
space property (2.2) if and only if one has

∀I ⊂ [N ], 1 ≤ |I| ≤ m,∀(εi) ∈ {−1, 1}I ,
conv({εiXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1}) = ∅. (2.3)
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Proof. — Let I ⊂ [N ], 1 ≤ |I| ≤ m and (εi) ∈ {−1, 1}I . Observe that
y ∈ conv({θjXj : j /∈ I, θj = ±1}) iff there exists (λj)j∈Ic ∈ [−1, 1]I

c

such that∑
j∈Ic
|λj | 6 1 and y =

∑
j∈Ic

λjXj .

Therefore

conv({εiXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1}) 6= ∅

iff there exist (λi)i∈I ∈ [0, 1]I and (λj)j∈Ic ∈ [−1, 1]I
c

such that∑
i∈I

λi = 1 >
∑
j∈Ic
|λj |

and

h =
∑
i∈I

λiεiei −
∑
j∈Ic

λjej ∈ kerA.

We have hi = λiεi for i ∈ I and hj = −λj for j /∈ I, thus |hI |1 > |hIc |1. This shows
that if (2.3) fails, the null space property (2.2) is not satisfied.

Conversely, assume that (2.2) fails. Thus there exist I ⊂ [N ], 1 ≤ |I| ≤ m and
h ∈ kerA, h 6= 0, such that |hI |1 > |hIc |1 and since h 6= 0, we may assume by
homogeneity that |hI |1 = 1. For every i ∈ I, let λi = εihi where εi is the sign of hi
if hi 6= 0 and εi = 1 otherwise and set y =

∑
i∈I hiXi. Since h ∈ kerA, we also have

y = −
∑
j∈Ic hjXj . Clearly, y ∈ conv({εiXi : i ∈ I})∩conv({θjXj : j /∈ I, θj = ±1})

and therefore (2.3) is not satisfied. This concludes the proof.

Proposition 2.2.14. — Let 1 ≤ m ≤ n ≤ N . Let A be an n × N matrix with
columns X1, . . . , XN ∈ Rn. Then A satisfies the null space property (2.2) if and only
if one has

∀I ⊂ [N ], 1 ≤ |I| ≤ m, ∀(εi) ∈ {−1, 1}I ,

Aff({εiXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1}) = ∅ (2.4)

where Aff({εiXi : i ∈ I}) denotes the affine hull of {εiXi : i ∈ I}.

Proof. — In view of Proposition 2.2.13, we are left to prove that (2.3) implies (2.4).
Assume that (2.4) fails, let I ⊂ [N ], 1 ≤ |I| ≤ m and (εi) ∈ {−1, 1}I . If

y ∈ Aff({εiXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1}),

there exist (λi)i∈I ∈ RI and (λj)j∈Ic ∈ [−1, 1]I
c

such that
∑
i∈I λi = 1 >

∑
j∈Ic |λj |

and y =
∑
i∈I λiεiXi =

∑
j∈Ic λjXj . Let

I+ = {i ∈ I : λi > 0} and I− = {i ∈ I : λi 6 0}.

Clearly,

y ∈ conv({ε′iXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1})
where ε′i = εi for i ∈ I+ and ε′i = −εi for i ∈ I−. This shows that (2.3) fails.



2.2. THE EXACT RECONSTRUCTION PROBLEM 49

Observe that a face of A(BN1 ) = conv(±X1, . . . ,±XN ) is a subset of the form
conv({εiXi : i ∈ I}) for some I ⊂ [N ] and some (εi) ∈ {−1, 1}I , that satisfies

Aff({εiXi : i ∈ I}) ∩ conv({θjXj : j /∈ I, θj = ±1}) = ∅.

Note that the dimension of this face may be strictly less than |I| − 1 and that in
general not every subset conv({εiXi : i ∈ I}) is a face of A(BN1 ). The next definition
introduces very special polytopes.

Definition 2.2.15. — Let 1 ≤ m ≤ n. A centrally symmetric polytope P ⊂ Rn is
said to be centrally symmetric m-neighborly if every set of m of its vertices, containing
no antipodal pair, is the set of all vertices of some face of P .

Note that every centrally symmetric polytope is centrally symmetric 1-neighborly.
Neighborliness property becomes non-trivial when m > 2.

Proposition 2.2.16. — Let 1 ≤ m ≤ n ≤ N . Let A be an n × N matrix with
columns X1, . . . , XN ∈ Rn. The matrix A has the null space property of order m iff
its columns ±X1, . . . ,±XN are the 2N vertices of A(BN1 ) and moreover A(BN1 ) is
centrally symmetric m-neighborly.

Proof. — Proposition 2.2.14 and (2.4) show that if A has the null space property of
order m then its columns ±X1, . . . ,±XN are the 2N vertices of A(BN1 ) and A(BN1 )
is centrally symmetric m-neighborly.

Assume conversely that ±X1, . . . ,±XN are the 2N vertices of A(BN1 ) and that
A(BN1 ) is centrally symmetric m-neighborly. Let m > 1, I ⊂ [N ], |I| = m and
(εi) ∈ {−1, 1}I . Then for any k ∈ I, εkXk /∈ Aff({εiXi : i ∈ I \{k}}), because if not,
εkXk ∈ conv({ε′iXi : i ∈ I \ {k}}) for some (ε′i) ∈ {−1, 1}I , which contradicts the
hypothesis that εkXk is a vertex of conv({ε′iXi : i ∈ I \{k}}∪{εkXk}). We conclude
that conv({εiXi : i ∈ I) is a face of dimension m − 1 so that it is a simplex. This
is also valid when m = 1 since ±X1, . . . ,±XN are all vertices. Therefore the faces
of conv({εiXi : i ∈ I}) are the simplices conv({εiXi : i ∈ J}) for J ⊂ I. Since a
face of a face is a face, (2.4) is satisfied and Proposition 2.2.14 allows to conclude the
proof.

Let A : RN → Rn. Consider the quotient map

Q : `N1 −→ `N1 / kerA.

If A has rank n, then `N1 / kerA is n-dimensional. Denote by ‖·‖ the quotient norm
on `N1 / kerA defined by

‖Qx‖ = min
h∈kerA

|x+ h|1.

Property (2.1) implies that Q is norm preserving on Σm. Since Σbm/2c−Σbm/2c ⊂ Σm,
Q is an isometry on Σbm/2c equipped with the `1 metric. In other words,

∀x, y ∈ Σbm/2c ‖Qx−Qy‖ = |x− y|1.

As it is classical in approximation theory, we can take benefit of such an isometric
embedding to bound the entropic complexity by comparing the metric entropy of
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the source space (Σbm/2c, `
N
1 ) with the target space, which lives in a much lower

dimension.

The following lemma is a well-known fact on packing.

Lemma 2.2.17. — There exists a family Λ of subsets of [N ] each of cardinality

m 6 N/2 such that for every I, J ∈ Λ, I 6= J, |I ∩ J | ≤ bm/2c and |Λ| ≥
⌊
N

8em

⌋bm/2c
.

Proof. — We use successive enumeration of the subsets of cardinality m and exclusion
of wrong items. Without loss of generality, assume that m/2 is an integer. Pick any
subset I1 of {1, ..., N} of cardinality m and throw away all subsets J of {1, ..., N}
of size m such that the Hamming distance |I1∆J | ≤ m, where ∆ stands for the
symmetric difference. There are at most

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
such subsets and since m ≤ N/2 we have

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
≤ 2m max

m/2≤k≤m

(
N −m
m− k

)
≤ 2m

(
N

m/2

)
.

Now, select a new subset I2 of size m from the remaining subsets. Repeating this
argument, we obtain a family Λ = {I1, I2, . . . , Ip}, p = |Λ|, of subsets of cardinality
m which are m-separated in the Hamming metric and such that

|Λ| ≥
⌊(

N

m

)/
2m
(
N

m/2

)⌋
.

Since for m ≤ N/2 we have
(
N
m

)m ≤ (Nm) ≤ ( eNm )m, we get that

|Λ| ≥
⌊

(N/m)m

2m(Ne/(m/2))(m/2)

⌋
≥

⌊(
N

8em

)m/2⌋
≥
⌊
N

8em

⌋bm/2c
which concludes the proof.

Let Λ be the family constructed in the previous lemma. For every I ∈ Λ, define
x(I) = 1

m

∑
i∈I ei. Then x(I) ∈ S1(Σm) and for every I, J ∈ Λ, I 6= J , one has

|x(I)− x(J)|1 = 2

(
1− |I ∩ J |

m

)
> 2

(
1− bm/2c

m

)
≥ 1.

If the matrix A has the exact reconstruction property of order 2m, then

∀I, J ∈ Λ I 6= J, ‖Q(x(I))−Q(x(J))‖ = ‖Q(x(I)− x(J))‖ = |x(I)− x(J)|1 ≥ 1.

On one side |Λ| ≥
⌊
C N
bm/2c

⌋bm/2c
, but on the other side, the cardinality of the set

(Q(x(I)))I∈Λ cannot be too big. Indeed, it is a subset of the unit ball Q(BN1 ) of the
quotient space and we already saw that the maximum cardinality of a set of points
of a unit ball which are 1-apart is less than 3n. It follows that

bN/32emcbm/2c ≤ 3n
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and the next proposition is thus proved.

Proposition 2.2.18. — Let m > 1. If the matrix A has the exact reconstruction
property of order 2m by `1-minimization, then

m log(cN/m) ≤ Cn.

where C, c > 0 are universal constants.

Whatever the matrix A is, this proposition gives an upper bound on the size m
of sparsity such that any vectors from Σm can be exactly reconstructed by the `1-
minimization method.

2.3. The restricted isometry property

So far, we do not know of any “simple” condition in order to check whether a matrix
A satisfies the exact reconstruction property (2.1). Let us start with the following
definition which plays an important role in compressed sensing.

Definition 2.3.1. — Let A be an n×N matrix. For any 0 ≤ p ≤ N , the restricted
isometry constant of order p of A is the smallest number δp = δp(A) such that

(1− δp)|x|22 ≤ |Ax|22 ≤ (1 + δp)|x|22
for all p-sparse vectors x ∈ RN . Let δ ∈ (0, 1). We say that the matrix A satisfies
the Restricted Isometry Property of order p with parameter δ, shortly RIPp(δ), if
0 6 δp(A) < δ.

The relevance of the Restricted Isometry parameter is revealed in the following
result:

Theorem 2.3.2. — Let 1 6 m 6 N/2. Let A be an n×N matrix. If

δ2m (A) <
√

2− 1,

then A satisfies the exact reconstruction property of order m by `1-minimization.

For simplicity, we shall discuss an other parameter involving a more general con-
cept. The aim is to relax the constraint δ2m (A) <

√
2− 1 in Theorem 2.3.2 and still

get an exact reconstruction property of a certain order by `1-minimization.

Definition 2.3.3. — Let 0 ≤ p ≤ n be integers and let A be an n×N matrix. Define
αp = αp(A) and βp = βp(A) as the best constants such that

∀x ∈ Σp, αp|x|2 ≤ |Ax|2 ≤ βp|x|2.

Thus βp = max{|Ax|2 : x ∈ Σp |x|2 = 1} and αp = min{|Ax|2 : x ∈ Σp |x|2 = 1}.
Now we define the parameter γp = γp(A) by

γp(A) :=
βp(A)

αp(A)
·
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In other words, let I ⊂ [N ] with |I| = p. Denote by AI the n × p matrix with
columns (Xi)i∈I obtained by extracting from A the columns Xi with index i ∈ I.
Then αp is the smallest singular value of AI among all the block matrices AI with
|I| = p, and βp is the largest. In other words, denoting by B> the transposed matrix
of a matrix B and λmin((AI)>AI), respectively λmax((AI)>AI), the smallest and
largest eigenvalues of (AI)>AI , one has

α2
p = α2

p(A) = min
I⊂[N ],|I|=p

λmin((AI)>AI)

whereas

β2
p = β2

p(A) = max
I⊂[N ],|I|=p

λmax((AI)>AI).

Of course, if A satisfies RIPp(δ), one has γp(A)2 ≤ 1+δ
1−δ . The concept of RIP is

not homogenous, in the sense that A may satisfy RIPp(δ) but not a multiple of A.
One can “rescale” the matrix to satisfy a Restricted Isometry Property. This does not
ensure that the new matrix, say A′ will satisfy δ2m (A′) <

√
2− 1 and will not allow

to conclude to an exact reconstruction from Theorem 2.3.2 (compare with Corollary
2.4.3 in the next section). Also note that the Restricted Isometry Property for A can
be written

∀x ∈ S2(Σp)
∣∣|Ax|22 − 1

∣∣ ≤ δ
expressing a form of concentration property of |Ax|2. Such a property may not be
satisfied despite the fact that A does satisfy the exact reconstruction property of order
p by `1-minimization (see Example 2.6.6).

2.4. The geometry of the null space

Let 1 6 m 6 p 6 N . Let h ∈ RN and let ϕ = ϕh : [N ] → [N ] be a one-to-
one mapping associated to a non-increasing rearrangement of (|hi|); in others words
|hϕ(1)| ≥ |hϕ(2)| ≥ · · · ≥ |hϕ(N)|. Denote by I1 = ϕh({1, . . . ,m}) a subset of indices
of the largest m coordinates of (|hi|), then by I2 = ϕh({m+ 1, . . . ,m+ p}) a subset
of indices of the next p largest coordinates of (|hi|) and for k ≥ 2, iterate with
Ik+1 = ϕh({m+(k−1)p+1, . . . ,m+kp}), as long as m+kp ≤ N , in order to partition
[N ] in subsets of cardinality p, except for the first one I1, which has cardinality m
and the last one, which may have cardinality not greater than p. For J ⊂ [N ] and
h ∈ RN , let hJ ∈ RN be the vector with the same coordinates as h for indices in J
and 0 elsewhere.

Claim 2.4.1. — Let h ∈ RN . Suppose that 1 6 m 6 p 6 N and N ≥ m+ p. With
the previous notation, we have

∀k ≥ 2, |hIk+1
|2 ≤

1
√
p
|hIk |1

and ∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.
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Proof. — Let k ≥ 2. We have

|hIk+1
|2 ≤

√
|Ik+1| max{|hi| : i ∈ Ik+1}

and
max{|hi| : i ∈ Ik+1} ≤ min{|hi| : i ∈ Ik} ≤ |hIk |1/|Ik|.

We deduce that

∀k ≥ 2 |hIk+1
|2 ≤

√
|Ik+1|
|Ik|

|hIk |1.

Adding up these inequalities for all k ≥ 2, for which
√
|Ik+1|/|Ik| 6 1/

√
p, we con-

clude.

We are ready for the main result of this section

Theorem 2.4.2. — Let 1 6 m 6 p 6 N and N ≥ m+p. Let A be an n×N matrix.
Then

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m, |hI |1 <
√
m

p
γ2p(A) |hIc |1 (2.5)

and ∀h ∈ kerA, ∀I ⊂ [N ], |I| ≤ m,

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc |1 ≤

√
1 + γ2

2p(A)

p
|h|1. (2.6)

In particular,

rad (kerA ∩BN1 ) ≤

√
1 + γ2

2p(A)

p

where rad (B) = supx∈B |x|2 is the radius of B.

Proof. — Let h ∈ kerA, h 6= 0 and organize the coordinates of h as in the introduction
of Section 2.4. By definition of α2p (see 2.3.3), one has

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2)|2.

Since h ∈ kerA we obtain

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2 − h)|2 =

1

α2p
|A(−

∑
k≥3

hIk)|2.

Then from the definition of βp and γp (2.3.3), using Claim 2.4.1, we get

|hI1 |2 < |hI1 + hI2 |2 ≤
βp
α2p

∑
k≥3

|hIk |2 ≤
γ2p(A)
√
p
|hIc1 |1. (2.7)

This first inequality is strict because in case of equality, hI2 = 0, which implies hIc1 = 0
and thus from above, hI1 = 0, that is h = 0. To conclude the proof of (2.5), note that
for any subset I ⊂ [N ], |I| ≤ m, |hIc1 |1 ≤ |hIc |1 and |hI |1 ≤ |hI1 |1.

To prove (2.6), we start from

|h|22 = |h− hI1 − hI2 |22 + |hI1 + hI2 |22
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Using Claim 2.4.1, the first term satisfies

|h− hI1 − hI2 |2 ≤
∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.

From(2.7), |hI1 + hI2 |2 ≤
γ2p(A)√

p |hIc1 |1 and putting things together, we derive that

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc1 |1 ≤

√
1 + γ2

2p(A)

p
|h|1.

From relation (2.5) and the null space property (Proposition 2.2.11) we derive the
following corollary.

Corollary 2.4.3. — Let 1 6 p 6 N/2. Let A be an n×N matrix. If γ2p(A) ≤ √p,
then A satisfies the exact reconstruction property of order m by `1-minimization with

m =
⌊
p
/
γ2

2p(A)
⌋
.

Our main goal now is to find p such that γ2p is bounded by some numerical constant.
This means that we need a uniform control of the smallest and largest singular values
of all block matrices of A with 2p columns. By Corollary 2.4.3 this is a sufficient
condition for the exact reconstruction of m-sparse vectors by `1-minimization with
m ∼ p. When |Ax|2 satisfies good concentration properties, the restricted isometry
property is more adapted. In this situation, γ2p ∼ 1. When the isometry constant
δ2p is sufficiently small, A satisfies the exact reconstruction of m-sparse vectors with
m = p (see Theorem 2.3.2).

Similarly, an estimate of rad (kerA ∩BN1 ) gives an estimate of the size of sparsity
of vectors which can be reconstructed by `1-minimization.

Proposition 2.4.4. — Let A be an n×N matrix. If 1 ≤ m and

rad (kerA ∩BN1 ) <
1

2
√
m

then the matrix A satisfies the exact reconstruction property of order m by `1-
minimization.

Proof. — Let h ∈ kerA and I ⊂ [N ], |I| ≤ m. By our assumption, we have that

∀h ∈ kerA, h 6= 0 |h|2 < |h|1/2
√
m.

Thus |hI |1 ≤
√
m |hI |2 ≤

√
m |h|2 < |h|1/2 and |hI |1 < |hIc |1. We conclude using

the null space property (Proposition 2.2.11).

To conclude the section, note that (2.6) implies that whenever an n×N matrix A

satisfies a restricted isometry property of order m ≥ 1, then rad (kerA∩BN1 ) = O(1)√
m
.



2.5. GELFAND WIDTHS 55

2.5. Gelfand widths

The study of the previous section leads to the notion of Gelfand widths.

Definition 2.5.1. — Let T be a bounded subset of a normed space E. Let k ≥ 0 be
an integer. The k-th Gelfand width of T is defined as

dk(T,E) := inf
S

sup
x∈S∩T

‖x‖E ,

where ‖ · ‖E denotes the norm of E and the infimum is taken over all linear subspaces
S of E of codimension less than or equal to k.

A different notation is used in Banach space and Operator Theory. Let u : X −→ Y
be an operator between two normed spaces X and Y . The k-th Gelfand number is
defined by

ck(u) = inf{‖ u|S ‖ : S ⊂ X, codimS < k}
where u|S denotes the restriction of the operator u to the subspace S. This reads
equivalently as

ck(u) = inf
S

sup
x∈S∩BX

‖u(x)‖Y ,

where BX denotes the unit ball of X and the infimum is taken over all subspaces S
of X with codimension strictly less than k. These different notations are related by

ck+1(u) = dk(u(BX), Y ).

If F is a linear space (RN for instance) equipped with two norms defining two normed
spaces X and Y and if id : X → Y is the identity mapping of F considered from the
normed spaces X to Y , then

dk(BX , Y ) = ck+1(id : X → Y ).

As a particular but important instance, we have

dk(BN1 , `
N
2 ) = ck+1(id : `N1 → `N2 ) = inf

codimS6k
rad (S ∩BN1 ).

The study of these numbers has attracted a lot of attention during the seventies
and the eighties. An important result is the following.

Theorem 2.5.2. — There exist c, C > 0 such that for any integers 1 ≤ k ≤ N ,

cmin

{
1,

√
log(N/k) + 1

k

}
≤ ck(id : `N1 → `N2 ) ≤ C min

{
1,

√
log(N/k) + 1

k

}
.

Moreover, if P is the rotation invariant probability measure on the Grassmann mani-
fold of subspaces S of RN with codim(S) = k − 1, then

P

(
rad (S ∩BN1 ) ≤ C min

{
1,

√
log(N/k) + 1

k

})
≥ 1− exp(−ck).
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Coming back to compressed sensing, let 1 6 m 6 n and let us assume that

dn(BN1 , `
N
2 ) <

1

2
√
m
.

In other words, we assume that there is a subspace S ⊂ RN of codimension less than
or equal to n such that rad (S ∩BN1 ) < 1

2
√
m

. Choose any n×N matrix A such that

kerA = S, then

rad (kerA ∩BN1 ) <
1

2
√
m
.

Proposition 2.4.4 shows that A satisfies the exact reconstruction property of order m
by `1-minimization.

It follows from Theorem 2.5.2 that there exists a matrix A satisfying the exact
reconstruction property of order

bc1n/ log(c2N/n)c
where c1, c2 are universal constants. From Proposition 2.2.18 it is the optimal order.

Performance of sensing algorithm and Gelfand widths. — The optimal per-
formance of sensing algorithm is closely connected to Gelfand widths. Consider the
problem of reconstruction of a vector x ∈ T ⊂ RN from the data y = Ax ∈ Rn,
where A is an n × N matrix, called the encoder and T is some given subset of RN .
Let ∆ : Rn → RN be a decoder which to every x ∈ T returns ∆(A,Ax) = ∆(Ax),
an approximation to x (see Problem 2.2.2). Let E be the space RN equipped with
a norm ‖ · ‖E . To evaluate the optimal performance of a pair (A,∆) with respect to
this norm, the following quantity was considered

En(T,E) = inf
(A,∆)

sup
x∈T
‖x−∆(Ax)‖

where (A,∆) describes all possible pairs of encoder-decoder with A linear. As shown
by the following well known lemma, it is equivalent to the Gelfand width dn(T,E).

Lemma 2.5.3. — Let T ⊂ RN be a symmetric subset such that T + T ⊂ 2aT for
some a > 0. Let E be the space RN equipped with a norm ‖ . ‖E. Then

∀1 ≤ n ≤ N, dn(T,E) 6 En(T,E) 6 2a dn(T,E).

Proof. — Let (A,∆) be a pair of encoder-decoder. To prove the left-hand side in-
equality, observe that

dn(T,E) = inf
B

sup
x∈kerB∩T

‖x‖E

where the infimum is taken over all n×N matrices B. Since kerA∩ T is symmetric,
for any x ∈ kerA, one has

2‖x‖E 6 ‖x−∆(0)‖E + ‖ − x−∆(0)‖E 6 2 sup
z∈kerA∩T

‖z −∆(Az)‖E .

Therefore
dn(T,E) 6 sup

x∈kerA∩T
‖x‖E 6 sup

z∈T
‖z −∆(Az)‖E .

This shows that dn(T,E) 6 En(T,E).
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To prove the right-hand side inequality, let A be an n×N matrix. It is enough to
define ∆ on A(T ). Let x ∈ T and let y = Ax be the data. Denote by S(y) the affine
subspace {x′ ∈ RN : Ax′ = y}. We choose some x′ ∈ T ∩ S(y) and define ∆(y) = x′.
Since T is symmetric and T + T ⊂ 2aT , one has x− x′ ∈ kerA ∩ (2aT ) and

‖x− x′‖E 6 2a sup
z∈kerA∩T

‖z‖E .

Therefore

En(T,E) 6 ‖x−∆(Ax)‖ = ‖x− x′‖E 6 2a sup
z∈kerA∩T

‖z‖E .

Taking the infimum over A, we deduce that En(T,E) 6 2adn(T,E).

This equivalence between dn(T,E) and En(T,E) can be used to estimate Gelfand
widths by means of methods from compressed sensing. This approach gives a simple
way to prove the upper bound of Theorem 2.5.2. The condition T + T ⊂ 2aT is of
course satisfied when T is convex (with a = 1). See Claim 2.7.13 for non-convex
examples.

2.6. Gaussian random matrices satisfy a RIP

So far, we did not give yet any example of matrices satisfying the exact recon-
struction property of order m with large m. It is known that with high probability
Gaussian matrices do satisfy this property.

The subgaussian Ensemble. — We consider here a probability P on the space
M(n,N) of real n×N matrices satisfying the following concentration inequality: there
exists an absolute constant c0 such that for every x ∈ RN we have

P
(∣∣|Ax|22 − |x|22∣∣ ≥ t|x|22) ≤ 2e−c0t

2n for all 0 < t ≤ 1. (2.8)

Definition 2.6.1. — For a real random variable Z we define the ψ2-norm by

‖Z‖ψ2
= inf

{
s > 0 : E exp (|Z|/s)2 6 e

}
.

We say that a random vector Y ∈ RN is isotropic if it is centered and satisfies

∀y ∈ RN , E|〈Y, y〉|2 = |y|22.

A random vector Y ∈ RN satisfies a ψ2-estimate with constant α (shortly Y is ψ2

with constant α) if

∀y ∈ RN , ‖〈Y, y〉‖ψ2 6 α|y|2.

It is well-known that a real random variable Z is ψ2 (with some constant) if and
only if it satisfies a subgaussian tail estimate. In particular if Z is a real random
variable with ‖Z‖ψ2 ≤ α, then for every t ≥ 0,

P(|Z| ≥ t) ≤ e−(t/α)2+1.
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This ψ2 property can also be characterized by the growth of moments. Well known
examples are Gaussian random variables and bounded centered random variables (see
Chapter 1 for details).

Let Y1, . . . , Yn ∈ RN be independent isotropic random vectors which are ψ2 with
the same constant α. Let A be the matrix with Y1, . . . , Yn ∈ RN as rows. We
consider the probability P on the space of matrices M(n,N) induced by the mapping
(Y1, . . . , Yn)→ A.

Let us recall Bernstein’s inequality (see Chapter 1). For y ∈ SN−1 consider the
average of n independent copies of the random variable 〈Y1, y〉2. Then for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

〈Yi, y〉2 − 1

∣∣∣∣∣ > t

)
6 2 exp

(
−cnmin

{
t2

α4
,
t

α2

})
,

where c is an absolute constant. Note that since E〈Y1, y〉2 = 1, one has α > 1 and∣∣∣Ay√n ∣∣∣22 = 1
n

∑n
i=1〈Yi, y〉2. This shows the next claim:

Claim 2.6.2. — Let Y1, . . . , Yn ∈ RN be independent isotropic random vectors that
are ψ2 with constant α. Let P be the probability induced on M(n,N). Then for every
x ∈ RN we have

P
(∣∣∣∣∣∣ A√

n
x
∣∣∣2
2
− |x|22

∣∣∣ ≥ t|x|22) ≤ 2e−
c
α4 t

2n for all 0 < t ≤ 1

where c > 0 is an absolute constant.

Among the most important examples of model of random matrices satisfying (2.8)
are matrices with independent subgaussian rows, normalized in the right way.

Example 2.6.3. — Some classical examples:

– Y1, . . . , Yn ∈ RN are independent copies of the Gaussian vector Y = (g1, . . . , gN )
where the gi’s are independent N (0, 1) Gaussian variables

– Y1, . . . , Yn ∈ RN are independent copies of Y = (ε1, . . . , εN ) where the εi’s are
independent, symmetric ±1 (Bernoulli) random variables

– Y1, . . . , Yn ∈ RN are independent copies of a random vector uniformly distributed
on the Euclidean sphere of radius

√
N .

In all these cases Y1, . . . , Yn ∈ RN are independent isotropic with a ψ2 constant α,
for a suitable α > 1. For the last case see e.g. [LT91]. For more details on Orlicz
norm and probabilistic inequalities used here see Chapter 1.

Sub-Gaussian matrices are almost norm preserving on Σm. — An important
feature of Σm and its subsets S2(Σm) and B2(Σm) is their peculiar structure: the last
two are the unions of the unit spheres, and unit balls, respectively, supported on
m-dimensional coordinate subspaces of RN .

We begin with the following lemma which allows to step up from a net to the whole
unit sphere.
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Lemma 2.6.4. — Let q ≥ 1 be an integer and B be a symmetric q × q matrix. Let
Λ ⊂ Sq−1 be a θ-net of Sq−1 by θBq2 for some θ ∈ (0, 1/2). Then

‖B‖ = sup
x∈Sq−1

|〈Bx, x〉| 6 (1− 2θ)−1 sup
y∈Λ
|〈By, y〉|.

Proof. — For any x, y ∈ Rq, 〈Bx, x〉 = 〈By, y〉+〈Bx, x−y〉+〈B(x−y), y〉. Theferore
|〈Bx, x〉| 6 |〈By, y〉| + 2|x − y|‖B‖. Since the matrix B is symmetric, its norm may
be computed using its associated quadratic form, that is ‖B‖ = supx∈Sq−1 |〈Bx, x〉|.
Thus, if |x− y| 6 θ, then ‖B‖ 6 supy∈Λ |〈By, y〉|+ 2θ‖B‖ and the conclusion follows.

We are able now to give a simple proof that subgaussian matrices satisfy the exact
reconstruction property of order m by `1-minimization with large m.

Theorem 2.6.5. — Let P be a probability on M(n,N) satisfying (2.8). Then there
exist positive constants c1, c2 and c3 depending only on c0 from (2.8), for which the
following holds: with probability at least 1− 2 exp(−c3n), A satisfies the exact recon-
struction property of order m by `1-minimization with

m =

⌊
c1n

log (c2N/n)

⌋
.

Moreover, A satisfies RIPm(δ) for any δ ∈ (0, 1) with m ∼ cδ2n/ log(CN/δ2n) where
c and C depend only on c0.

Proof. — Let yi, i = 1, 2, . . . , n, be the rows of A. Let 1 ≤ p ≤ N/2. For every subset
I of [N ] of cardinality 2p, let ΛI be a (1/3)-net of the unit sphere of RI by (1/3)BI2
satisfying |ΛI | ≤ 92p (see Claim 2.2.8).

For each subset I of [N ] of cardinality 2p, consider on RI , the quadratic form

qI(y) :=
1

n

n∑
i=1

〈yi, y〉2 − |y|2 , y ∈ RI .

There exist symmetric q × q matrices BI with q = 2p, such that qI(y) = 〈BIy, y〉.
Applying Lemma 2.6.4 with θ = 1/3, to each symmetric matrix BI and then taking

the supremum over I, we get that

sup
y∈S2(Σ2p)

∣∣∣ 1
n

n∑
i=1

(〈yi, y〉2 − 1)
∣∣∣ 6 3 sup

y∈Λ

∣∣∣ 1
n

n∑
i=1

(〈yi, y〉2 − 1)
∣∣∣,

where Λ ⊂ RN is the union of the ΛI for |I| = 2p.
Note that there is nothing random in that relation. This is why we changed the

notation of the rows from (Yi) to (yi). Thus checking how well the matrix A defined
by the rows (yi) is acting on Σ2p is reduced to checking that on the finite set Λ. Now

recall that |Λ| ≤
(
N
2p

)
92p ≤ exp

(
2p log

(
9eN
2p

))
.

Given a probability P on M(n,N) satisfying (2.8), and using a union bound esti-
mate, we get that

sup
y∈S2(Σ2p)

∣∣∣ 1
n

n∑
i=1

(〈yi, y〉2 − 1)
∣∣∣ 6 3ε
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holds with probability at least

1− 2|Λ|e−c0ε
2n ≥ 1− 2 exp

(
2p log

(
9eN

2p

))
e−c0ε

2n ≥ 1− 2e−c0ε
2n/2

whenever

2p log

(
9eN

2p

)
≤ c0ε2n/2.

Assuming this inequality, we get that

δ2p(A) ≤ 3ε

with probability larger than 1− 2 exp(−c0ε2n/2).
The moreover part of the statement is obtained by solving in p the relation

2p log (9eN/2p) ≤ c0ε
2n/2 with 3ε = δ. The first part of the statement follows from

Theorem 2.3.2 or Corollary 2.4.3 by a convenient choice of ε.

The strategy used in the preceding proof was the following:

– discretization: discretization of the set Σ2p by a net argument
– concentration: |Ax|22 concentrates around its mean for each individual x of the

net
– union bound: concentration should be good enough to balance the cardinality

of the net and to conclude to uniform concentration on the net of |Ax|22 around
its mean

– from the net to the whole set, that is checking RIP, is obtained by Lemma 2.6.4.

We conclude this section by an example of an n × N matrix A which is a good
compressed sensing matrix such that none of the n×N matrices with the same kernel
as A satisfy a restricted isometry property of any order ≥ 1 with good parameter. As
we already noticed, if A has parameter γp, one can find t0 > 0 and rescale the matrix
so that δp(t0A) = γ2

p − 1/γ2
p + 1 ∈ [0, 1). In this example, γp is large, δp(t0A) ∼ 1 and

one cannot deduce any result about exact reconstruction from Theorem 2.3.2.

Example 2.6.6. — Let 1 ≤ n ≤ N . Let δ ∈ (0, 1). There exists an n×N matrix A
such that for any p ≤ cn/ log(CN/n), one has γ2p(A)2 ≤ c′(1− δ)−1. Thus, for any
m ≤ c”(1− δ)n/ log(CN/n), the matrix A satisfies the exact reconstruction property
of m-sparse vectors by `1-minimization. Nevertheless, for any n × n matrix U , the
restricted isometry constant of order 1 of UA satisfies, δ1(UA) ≥ δ (think of δ ≥ 1/2).
Here, C, c, c′, c” > 0 are universal constants.

The proof is left as an exercise.

2.7. RIP for other “simple” subsets: almost sparse vectors

As already mentioned, various “random projection” operators act as “almost norm
preserving” on “thin” subsets of the sphere. We analyze a simple structure of the
metric entropy of a set T ⊂ RN in order that, with high probability, (a multiple of)
a Gaussian or subgaussian matrix acts almost like an isometry on T . This will apply
to a more general case than sparse vectors.
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Theorem 2.7.1. — Consider a probability on the space of n×N matrices satisfying
(2.8). Let T ⊂ SN−1 and 0 < ε < 1/15. Assume the following:

i) There exists an ε-net Λ ⊂ SN−1 of T satisfying |Λ| ≤ exp(c0ε
2n/2)

ii) There exists a subset Λ′ of εBN2 such that (T − T ) ∩ εBN2 ⊂ 2 conv Λ′ and
|Λ′| ≤ exp(c0n/2).

Then with probability at least 1− 4 exp(−c0ε2n/2), one has that for all x ∈ T ,

1− 15ε ≤ |Ax|22 ≤ 1 + 15ε. (2.9)

Proof. — The idea is to show that A acts on Λ in an almost norm preserving way.
This is the case because the degree of concentration of each variable |Ax|22 around its
mean defeats the cardinality of Λ. Then one shows that A(conv Λ′) is contained in a
small ball - thanks to a similar argument.

Consider the set Ω of matrices A such that

| |Ax0|2 − 1 | ≤
∣∣|Ax0|22 − 1

∣∣ ≤ ε for all x0 ∈ Λ, (2.10)

and

|Az|2 ≤ 2ε for all z ∈ Λ′. (2.11)

From our assumption (2.8), i) and ii), one has

P(Ω) ≥ 1− 2 exp(−c0ε2n/2)− 2 exp(−c0n/2) ≥ 1− 4 exp(−c0ε2n/2).

Let x ∈ T and consider x0 ∈ Λ such that |x− x0|2 ≤ ε. Then for every A ∈ Ω

|Ax0|2 − |A(x− x0)|2 ≤ |Ax|2 ≤ |Ax0|2 + |A(x− x0)|2 .

Since x− x0 ∈ (T − T ) ∩ εBN2 , property ii) and (2.11) give that

|A(x− x0)|2 ≤ 2 sup
z∈conv Λ′

|Az|2 = 2 sup
z∈Λ′
|Az|2 ≤ 4ε. (2.12)

Combining this with (2.10) implies that 1 − 5ε ≤ |Ax|2 ≤ 1 + 5ε. The proof is
completed by squaring.

Approximate reconstruction of almost sparse vectors. — After analyzing
the restricted isometry property for thin sets of the type of Σm, we look again at the
`1-minimization method in order to get approximate reconstruction of vectors which
are not far from the set of sparse vectors. As well as for the exact reconstruction,
approximate reconstruction depends on a null space property.

Proposition 2.7.2. — Let A be an n×N matrix and λ ∈ (0, 1). Assume that

∀h ∈ kerA, ∀I ⊂ [N ], |I| ≤ m, |hI |1 6 λ|hIc |1. (2.13)

Let x ∈ RN and let x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Then for any I ⊂ [N ], |I| 6 m,

|x− x]|1 ≤ 2
1 + λ

1− λ
|x− xI |1.
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Proof. — Let x] be a minimizer of (P ) and set h = x] − x ∈ kerA. Let m > 1 and
I ⊂ [N ] such that |I| 6 m. Observe that

|x|1 ≥ |x+ h|1 = |xI + hI |1 + |xIc + hIc |1 ≥ |xI |1 − |hI |1 + |hIc |1 − |xIc |1
and thus

|hIc |1 ≤ |hI |1 + 2|xIc |1.
On the other hand, from the null space assumption, we get

|hIc |1 ≤ |hI |1 + 2|xIc |1 ≤ λ|hIc |1 + 2|xIc |1.

Therefore

|hIc |1 ≤
2

1− λ
|xIc |1.

Since the null space assumption reads equivalently |h|1 6 (1 + λ) |hIc |1, we can con-
clude the proof.

Note that the minimum of |x−xI |1 over all subsets I such that |I| ≤ m, is obtained
when I is the support of the m largest coordinates of x. The vector xI is henceforth
the best m-sparse approximation of x (in the `1 norm). Thus if x is m-sparse we go
back to the exact reconstruction scheme.

Property (2.13), which is a strong form of the null space property, may be studied
by means of parameters such as the Gelfand widths, like in the next proposition.

Proposition 2.7.3. — Let A be an n×N matrix and 1 ≤ m ≤ n. Let x ∈ RN and
let x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Let ρ = rad (BN1 ∩ kerA) = supx∈BN1 ∩kerA |x|2. Assume that ρ 6 1/4
√
m. Then for

every I ⊂ [N ], |I| 6 m,

|x− x]|1 ≤ 4 |x− xI |1
and

|x− x]|2 ≤
1√
m
|x− xI |1.

Proof. — Let h = x− x] ∈ kerA. We have

|hI |1 ≤
√
m |hI |2 6

√
m |h|2 6

√
mρ|h|1.

Therefore

|hI |1 ≤
ρ
√
m

1− ρ
√
m
|hIc |1

whenever ρ
√
m < 1. We deduce that Property (2.13) is satisfied with λ = ρ

√
m

1−ρ
√
m

.

The inequality |x− x]|1 ≤ 4 |x− xI |1 follows directly from Proposition 2.7.2 and the
assumption ρ 6 1/4

√
m. The relation |h|2 6 ρ|h|1 ≤ 4ρ|x− xI |1 concludes the proof

of the last inequality.



2.7. RIP FOR OTHER “SIMPLE” SUBSETS: ALMOST SPARSE VECTORS 63

Let 1 ≤ m ≤ p ≤ n and N > m + p. The last proposition can be reformulated in
terms of the constant of the restricted isometry property or in terms of the parameter
γp, since from (2.6),

ρ ≤

√
1 + γ2

2p(A)

p
,

but we shall not go any further ahead.

Remark 2.7.4. — To sum up, Theorem 2.4.2 shows that if an n × N matrix A
satisfies a restricted isometry property of order m ≥ 1, then

rad (kerA ∩BN1 ) =
O(1)√
m
. (2.14)

On the other hand, Propositions 2.4.4 and 2.7.3 show that if an n × N matrix A
satisfies (2.14), then A satisfies the exact reconstruction property of order O(m) by
`1-minimization as well as an approximate reconstruction property.

Based on this remark, we could focus on estimates of the diameters, but the exam-
ple of Gaussian matrices shows that it may be easier to prove a restricted isometry
property than computing widths. We conclude this section by an application of
Proposition 2.7.3.

Corollary 2.7.5. — Let 0 < p < 1 and consider

T = BNp,∞ =
{
x = (x1, . . . , xN ) ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
the “unit ball” of `Np,∞. Let A be an n×N matrix and 1 ≤ m ≤ n. Let x ∈ T and let

x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Let ρ = rad (BN1 ∩ kerA) = supx∈BN1 ∩kerA |x|2 and assume that ρ 6 1/4
√
m, then

|x− x]|2 6 ((1/p)− 1)−1m1/2−1/p.

Proof. — Observe that for any x ∈ BNp,∞, one has x∗i ≤ 1/i1/p, for every i ≥ 1, where

(x∗i )
N
i=1 is a non-increasing rearrangement of (|xi|)Ni=1. Let I ⊂ [N ], such that |I| = m

and let xI be one of the best m-sparse approximation of x. Note that∑
i>m

i−1/p ≤ (1/p− 1)−1m1−1/p.

From Proposition 2.7.3, we get that if ρ 6 1/4
√
m and if x] is a minimizer of (P ),

then

|x− x]|2 ≤
1√
m
|x− xI |1 6 ((1/p)− 1)−1m1/2−1/p.
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Reducing the computation of Gelfand widths by truncation. — We begin
with a simple principle.

Definition 2.7.6. — We say that a subset T ⊂ RN is star-shaped around 0 or
shortly, star-shaped, if λT ⊂ T for every 0 ≤ λ ≤ 1. Let ρ > 0 and let T ⊂ RN be
star-shaped, we denote

Tρ = T ∩ ρSN−1.

Recall that rad (S) = supx∈S |x|2.

Lemma 2.7.7. — Let ρ > 0 and let T ⊂ RN be star-shaped. Then for any linear
subspace E ⊂ RN such that E ∩ Tρ = ∅, we have rad (E ∩ T ) < ρ.

Proof. — If rad (E ∩ T ) > ρ, there would be x ∈ E∩T of norm greater or equal to ρ.
Since T is star-shaped, so is E ∩ T and thus ρx/|x|2 ∈ E ∩ Tρ; a contradiction.

This easy lemma will be a useful tool in the next sections and in Chapter 5. The
subspace E will be the kernel of our matrix A, ρ a parameter that we try to estimate
as small as possible such that kerA ∩ Tρ = ∅, that is such that Ax 6= 0 for all x ∈ T
with |x|2 = ρ. This will be in particular the case when A or a multiple of A acts on
Tρ in an almost norm-preserving way.

With Theorem 2.7.1 in mind, we apply this plan to subsets T like Σm.

Corollary 2.7.8. — Let P be a probability on M(n,N) satisfying (2.8). Consider
a star-shaped subset T ⊂ RN and ρ > 0. Assume that 1

ρ Tρ ⊂ SN−1 satisfies the

hypothesis of Theorem 2.7.1 for some 0 < ε < 1/15. Then rad (kerA ∩ T ) < ρ, with
probability at least 1− 2 exp(−cn) where c > 0 is an absolute constant.

Application to subsets related to `p unit balls. — To illustrate this method,
we consider some examples of sets T :

– the unit ball of `N1
– the “unit ball” BNp = {x ∈ RN :

∑N
1 |xi|p ≤ 1} of `Np , 0 < p < 1

– the “unit ball” BNp,∞ =
{
x ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
of `Np,∞

(weak `Np ), for 0 < p < 1.

Note that for 0 < p < 1, the “unit balls” BNp or BNp,∞ are not really balls since they

are not convex. Note also that BNp ⊂ BNp,∞, so that for estimating Gelfand widths,

we can restrict to the balls BNp,∞.

We need two lemmas. The first uses the following classical fact:

Claim 2.7.9. — Let (ai), (bi) two sequences of positive numbers such that (ai) is
non-increasing. Then the sum

∑
aibπ(i) is maximized over all permutations π of the

index set, if bπ(1) ≥ bπ(2) ≥ . . ..
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Lemma 2.7.10. — Let 0 < p < 1, 1 6 m 6 N and r = (1/p − 1)m1/p−1/2. Then,
for every x ∈ RN ,

sup
z∈rBNp,∞∩BN2

〈x, z〉 6 2

(
m∑
i=1

x∗i
2

)1/2

,

where (x∗i )
N
i=1 is a non-increasing rearrangement of (|xi|)Ni=1. Equivalently,

rBNp,∞ ∩BN2 ⊂ 2 conv (S2(Σm)). (2.15)

Moreover one has √
mBN1 ∩BN2 ⊂ 2 conv (S2(Σm)). (2.16)

Proof. — We treat only the case of BNp,∞, 0 < p < 1. The case of BN1 is similar. Note

first that if z ∈ BNp,∞, then for any i ≥ 1, z∗i ≤ 1/i1/p, where (z∗i )Ni=1 is a non-increasing

rearrangement of (|zi|)Ni=1. Using Claim 2.7.9 we get that for any r > 0,m ≥ 1 and
z ∈ rBNp,∞ ∩BN2 ,

〈x, z〉 6

(
m∑
i=1

x∗i
2

)1/2

+
∑
i>m

rx∗i
i1/p

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

r√
m

∑
i>m

1

i1/p

)

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

(
1

p
− 1

)−1
r

m1/p−1/2

)
.

By the definition of r, this completes the proof.

The second lemma shows that m1/p−1/2BNp,∞ ∩ SN−1 is well approximated by
vectors on the sphere with short support.

Lemma 2.7.11. — Let 0 < p < 2 and δ > 0, and set ε = 2(2/p − 1)−1/2δ1/p−1/2.
Let 1 ≤ m ≤ N . Then S2(Σdm/δe) is an ε-net of m1/p−1/2BNp,∞ ∩ SN−1 with respect
to the Euclidean metric.

Proof. — Let x ∈ m1/p−1/2BNp,∞ ∩ SN−1 and assume without loss of generality that
x1 ≥ x2 ≥ . . . ≥ xN ≥ 0. Define z′ by z′i = xi for 1 ≤ i ≤ dm/δe and z′i = 0 otherwise.
Then

|x− z′|22 =
∑
i>m/δ

|xi|2 ≤ m2/p−1
∑
i>m/δ

1/i2/p < (2/p− 1)−1 δ2/p−1.

Thus 1 ≥ |z′|2 ≥ 1 − (2/p − 1)−1/2 δ1/p−1/2. Put z = z′/|z′|2. Then z ∈ S2(Σdm/δe)
and

|z − z′|2 = 1− |z′|2 ≤ (2/p− 1)−1/2 δ1/p−1/2.

By the triangle inequality |x− z|2 < ε. This completes the proof.
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The preceding lemmas will be used to show that the hypothesis of Theorem 2.7.1
are satisfied for an appropriate choice of T and ρ. Before that, property ii) of Theo-
rem 2.7.1, brings us to the following definition.

Definition 2.7.12. — We say that a subset T of RN is quasi-convex with constant
a ≥ 1, if T is star-shaped and T + T ⊂ 2aT .

Let us note the following easy fact.

Claim 2.7.13. — Let 0 < p < 1, then BNp,∞ and BNp are quasi-convex with constant

2(1/p)−1.

We come up now with the main claim:

Claim 2.7.14. — Let 0 < p < 1 and T = BNp,∞. Then (1/ρ)Tρ satisfies properties
i) and ii) of Theorem 2.7.1 with

ρ = Cp

(
n

log(cN/n)

)1/p−1/2

where Cp depends only on p and c > 0 is an absolute constant.
If T = BN1 , then (1/ρ)Tρ satisfies properties i) and ii) of Theorem 2.7.1 with

ρ =

(
c1n

log(c2N/n)

)1/2

where c1, c2 are positive absolute constants.

Proof. — We consider only the case of T = BNp,∞, 0 < p < 1. The case of BN1 is
similar. Since the mechanism has already been developed in details, we will only
indicate the different steps. Fix ε0 = 1/20. To get i) we use Lemma 2.7.11 with
ε = ε0/2 and δ obtained from the equation ε0/2 = 2(2/p − 1)−1/2δ1/p−1/2. Let
1 ≤ m ≤ N . We get that S2(Σdm/δe) is an (ε0/2)-net of m1/p−1/2BNp,∞ ∩ SN−1 with
respect to the Euclidean metric. Set m′ = dm/δe. By Claim 2.2.9, we have

N(S2(Σm′),
ε0

2
BN2 ) ≤

(
3eN

m′(ε0/2)

)m′
=

(
6eN

m′ε0

)m′
.

Thus, by the triangle inequality, we have

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤

(
6eN

m′ε0

)m′
so that

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤ exp(c0n/2)

whenever (
6eN

m′ε0

)m′
≤ exp(c0n/2).

Thus under this condition on m′ (therefore on m), m1/p−1/2BNp,∞ ∩ SN−1 satisfies i).
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In order to tackle ii), recall that Bp,∞ is quasi-convex with constant 21/p−1 (Claim
2.7.13). By symmetry, we have

BNp,∞ −BNp,∞ ⊂ 21/pBNp,∞.

Let r = (1/p− 1)m1/p−1/2. From Lemma 2.7.10, one has

rBNp,∞ ∩BN2 ⊂ 2 convS2(Σm).

As we saw previously,

N(S2(Σm),
1

2
BN2 ) ≤

(
3eN

m(1/2)

)m
=

(
6eN

m

)m
and by Proposition 2.2.7 there exists a subset Λ′ ⊂ SN−1 with |Λ′| ≤ N(S2(Σm), 1

2 B
N
2 )

such that S2(Σm) ⊂ 2 conv Λ′. We arrive at

ε02−1/p
(
rBNp,∞ − rBNp,∞

)
∩ ε0B

N
2 ⊂ ε0

(
rBNp,∞ ∩BN2

)
⊂ 4ε0 conv Λ′ ⊂ 2 conv (ε0Λ′ ∪ −ε0Λ′).

Therefore ε02−1/prBNp,∞ ∩ SN−1 satisfies ii) whenever (6eN/m)
m ≤ exp(c0n/2).

Finally ε02−1/prBNp,∞ ∩ SN−1 satisfies i) and ii) whenever the two conditions on
m are verified, that is when cm log(CN/m) ≤ c0n/2 where c, C > 0 are absolute
constants. We compute m and r and set ρ = ε02−1/pr to conclude.

Now we can apply Corollary 2.7.8, to conclude

Theorem 2.7.15. — Let P be a probability satisfying (2.8) on the space of n × N
matrices and let 0 < p < 1. There exist cp depending only on p, c′ depending on c0
and an absolute constant c such that the set Ω of n×N matrices A satisfying

rad
(
kerA ∩BNp

)
6 rad

(
kerA ∩BNp,∞

)
6 cp

(
log(cN/n)

n

)1/p−1/2

has probability at least 1− exp(−c′n).
In particular, if A ∈ Ω and if x′, x ∈ Bnp,∞ are such that Ax′ = Ax then

|x′ − x|2 6 c′p

(
log(cN/n)

n

)1/p−1/2

.

An analogous result holds for the ball BN1 .

Remark 2.7.16. — The estimate of Theorem 2.7.15 is optimal. In other words, for
all 1 6 n 6 N ,

dn(BNp , `
N
2 ) ∼p min

(
1,

log(N/n) + 1

n

)1/p−1/2

.

See the notes and comments at the end of this chapter.
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2.8. An other complexity measure

In this last section, we introduce a new parameter `∗(T ) which is a gaussian com-
plexity measure of a set T ⊂ RN . We define

`∗(T ) = E sup
t∈T

(
N∑
i=1

giti

)
, (2.17)

where t = (ti)
N
i=1 ∈ T and g1, ..., gN are independent N (0, 1) Gaussian random vari-

ables. This parameter plays an important role in empirical processes (see Chapter 1)
and in Geometry of Banach spaces.

Theorem 2.8.1. — There exist absolute constants c, c′ > 0 for which the following
holds. Let 1 ≤ n ≤ N . Let A be a Gaussian matrix with i.i.d. entries that are
centered and variance one Gaussian random variables. Let T ⊂ RN be a star-shaped
set. Then, with probability at least 1− exp(−c′n),

rad (kerA ∩ T ) ≤ c `∗(T )/
√
n.

Proof. — The plan of the proof consists first in proving a restricted isometry property

for T̃ = 1
ρT ∩ S

N−1 for some ρ > 0, then to argue as in Lemma 2.7.7. In a first part

we consider an arbitrary subset T̃ ⊂ SN−1. It will be specified in the last step.
Let δ ∈ (0, 1). The restricted isometry property is proved using a discretization by

a net argument and an approximation argument.

For any θ > 0, let Λ(θ) ⊂ T̃ be a θ-net of T̃ for the Euclidean metric. Let

πθ : T̃ → Λ(θ) be a mapping such that for every t ∈ T̃ , |t − πθ(t)|2 6 θ. Let Y be a
Gaussian random vector with the identity as covariance matrix. Note that because

T̃ ⊂ SN−1, one has E|〈Y, t〉|2 = 1 for any t ∈ T̃ . By the triangle inequality, we have

sup
t∈T̃

∣∣∣∣ |At|22n
− E|〈Y, t〉|2

∣∣∣∣ 6 sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− E|〈Y, s〉|2

∣∣∣∣+ sup
t∈T̃

∣∣∣∣ |At|22n
− |Aπθ(t)|

2
2

n

∣∣∣∣ .
– First step. Entropy estimate via Sudakov minoration. Let s ∈ Λ(θ). Let (Yi)

be the rows of A. Since 〈Y, s〉 is a standard Gaussian random variable, |〈Y, s〉|2 is a
χ2 random variable. By the definition of section 1.1 of Chapter 1, |〈Y, s〉|2 is ψ1 with
respect to some absolute constant. Thus Bernstein inequality from Theorem 1.2.7 of
Chapter 1 applies and gives for any 0 < δ < 1,∣∣∣∣ |As|22n

− E|〈Y, s〉|2
∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
1

(〈Yi, s〉2 − E|〈Y, s〉|2)

∣∣∣∣∣ 6 δ/2

with probability larger than 1 − 2 exp(−cnδ2), where c > 0 is a numerical constant.
A union bound principle ensures that

sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− E|〈Y, s〉|2

∣∣∣∣ 6 δ/2

holds with probability larger than 1− 2 exp(−cnδ2 + log |Λ(θ)|).
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From Sudakov inequality (1.14) (Theorem 1.4.4 of Chapter 1), there exists c′ > 0
such that, if

θ = c′
`∗(T̃ )

δ
√
n

then log |Λ(θ)| 6 c nδ2/2. Therefore, for that choice of θ, the inequality

sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− 1

∣∣∣∣ 6 δ/2

holds with probability larger than 1− 2 exp(−c nδ2/2).

– Second step. The approximation term. To begin with, observe that for any

s, t ∈ T̃ ,
∣∣|As|22 − |At|22∣∣ 6 |A(s− t)|2 |A(s+ t)|2 6 |A(s− t)|2 (|As|2 + |At|2). Thus

sup
t∈T̃

∣∣|At|22 − |Aπθ(t)|22∣∣ 6 2 sup
t∈T̃ (θ)

|At|2 sup
t∈T̃
|At|2

where T̃ (θ) = {s− t ; s, t ∈ T̃ , |s− t|2 6 θ}. In order to estimate these two norms of
the matrix A, we consider a (1/2)-net of Sn−1. According to Proposition 2.2.7, there
exists such a netN with cardinality not larger than 5n and such that Bn2 ⊂ 2 conv(N ).
Therefore

sup
t∈T̃
|At|2 = sup

t∈T̃
sup
|u|261

〈At, u〉 6 2 sup
u∈N

sup
t∈T̃
〈t, A>u〉.

Since A is a standard Gaussian matrix with i.i.d. entries, centered and with variance
one, for every u ∈ N , A>u is a standard Gaussian vector and

E sup
t∈T̃
〈t, A>u〉 = `∗(T̃ ).

It follows from Theorem 1.4.7 of Chapter 1 that for any fixed u ∈ N ,

∀z > 0 P

(∣∣∣∣∣sup
t∈T̃
〈t, A>u〉 − E sup

t∈T̃
〈t, A>u〉

∣∣∣∣∣ > z

)
≤ 2 exp

(
−c′′z2/σ2(T̃ )

)
for some numerical constant c′′, where σ(T̃ ) = supt∈T̃ {

(
E|〈t, A>u〉|2

)1/2}.
Combining a union bound inequality and the estimate on the cardinality of the

net, we get

∀z > 0 P

(
sup
u∈N

sup
t∈T̃
〈A>u, t〉 ≥ `∗(T̃ ) + zσ(T̃ )

√
n

)
≤ 2 exp (−c′′n( z2 − log 5 )) .

We deduce that

sup
t∈T̃
|At|2 6 2

(
`∗(T̃ ) + zσ(T̃ )

√
n
)

with probability larger than 1 − 2 exp (−c′′n( z2 − log 5 )). Observe that because

T̃ ⊂ SN−1, one has σ(T̃ ) = 1.

This reasoning applies as well to T̃ (θ), but notice that now σ(T̃ (θ)) 6 θ and because

of the symmetry of the Gaussian random variables, `∗(T̃ (θ)) 6 2`∗(T̃ ). Therefore,

sup
t∈T̃

∣∣|At|22 − |Aπθ(t)|22∣∣ ≤ 8
(
`∗(T̃ ) + z

√
n
)(

2`∗(T̃ ) + zθ
√
n
)
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with probability larger than 1− 4 exp (−c′′n( z2 − log 5 )).

– Third step. The restricted isometry property. Set z =
√

2 log 5, say, and recall
that δ < 1. Plugging the value of θ from step one, we get that with probability larger
than 1− 2 exp(−c nδ2/2)− 4 exp(−c′′nz2/2),

sup
t∈T̃

∣∣|At|22 − |Aπθ(t)|22∣∣ 6 8
(
`∗(T̃ ) + z

√
n
)(

2`∗(T̃ ) + zc′
`∗(T̃ )

δ

)
and

sup
t∈T̃

∣∣∣∣ |At|22n
− 1

∣∣∣∣ 6 δ

2
+ c′′′

(
`∗(T̃ )√

n
+ z

)
`∗(T̃ )

δ
√
n

for some new constant c′′′. It is now clear that one can choose c′′′′ such that, whenever

`∗(T̃ ) 6 c′′′′δ2
√
n

then

sup
t∈T̃

∣∣∣∣ |At|22n
− 1

∣∣∣∣ 6 δ

with probability larger than 1− 2 exp(−c nδ2/2)− 4 exp(−c′′nz2/2).

– Last step. Estimating the width. Let ρ > 0 be a parameter. We apply the

previous estimate with δ = 1/2 to the subset T̃ = 1
ρT ∩ S

N−1 of the unit sphere.

Because δ = 1/2, At 6= 0 whenever
∣∣∣ |At|22n − 1

∣∣∣ 6 δ. Therefore, with the above

probability,

kerA ∩
(

1

ρ
T ∩ SN−1

)
= ∅

whenever ρ satisfies the inequality

`∗

(
1

ρ
T ∩ SN−1

)
< c′′′′δ2

√
n.

Since `∗

(
1
ρT ∩ S

N−1
)
6 `∗(T )

ρ , the previous inequality is satisfied whenever

`∗(T )

ρ
< c′′′′δ2

√
n.

The conclusion follows from Lemma 2.7.7.

Remark 2.8.2. — The proof of Theorem 2.8.1 generalizes to the case of a matrix
with independent sub-Gaussian rows. Only the second step has to be modified by
using the majorizing measure theorem which precisely allows to compare deviation
inequalities of supremum of sub-Gaussian processes to their equivalent in the Gaussian
case. We will not give here the proof of this result, see Theorem 3.2.1 in Chapter 3,
where an other approach is developed.

We show now how Theorem 2.8.1 applies to some sets T .
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Corollary 2.8.3. — There exist absolute constants c, c′ > 0 such that the following
holds. Let 1 6 n 6 N and let A be as in Theorem 2.8.1. Let λ > 0. Let T ⊂ SN−1

and assume that T ⊂ 2 conv Λ for some Λ ⊂ BN2 with |Λ| ≤ exp(λ2n). Then with
probability at least 1− exp(−c′n),

rad (kerA ∩ T ) ≤ cλ.

Proof. — The main point in the proof is that if T ⊂ 2 conv Λ, Λ ⊂ BN2 and if we
have a reasonable control of |Λ|, then `∗(T ) can be bounded from above. The rest is
a direct application of Theorem 2.8.1. Let c, c′ > 0 be constants from Theorem 2.8.1.
It is well-known (see Chapter 3) that there exists an absolute constant c′′ > 0 such
that for every Λ ⊂ BN2 ,

`∗(conv Λ) = `∗(Λ) 6 c′′
√

log(|Λ|) ,
and since T ⊂ 2 conv Λ,

`∗(T ) ≤ 2`∗(conv Λ) 6 2c′′
(
λ2n

)1/2
.

The conclusion follows from Theorem 2.8.1.

2.9. Notes and comments

For further information on the origin and the genesis of compressed sensing and
on the `1-minimization method, the reader may consult the articles by D. Donoho
[Don06], E. Candes, J. Romberg and T. Tao [CRT06] and E. Candes and T. Tao
[CT06]. For further and more advanced studies on compressed sensing, see the book
[FR11].

Proposition 2.2.16 is due to D. Donoho [Don05]. Proposition 2.2.18 and its proof
is a particular case of a more general result from [FPRU11]. See also [LN06] where
the analogous problem for neighborliness is studied.

The definition 2.3.1 of the Restricted Isometry Property was introduced in [CT05]
and plays an important role in compressed sensing. The relevance of the Restricted
Isometry parameter for the reconstruction property was for instance revealed in
[CT06], [CT05], where it was shown that if

δm(A) + δ2m(A) + δ3m(A) < 1

then the encoding matrix A has the exact reconstruction property of order m. This
result was improved in [Can08] to δ2m(A) <

√
2−1 as stated in Theorem 2.3.2. This

constant
√

2 − 1 was recently improved in [FL09]. In the same paper these authors
introduced the parameter γp from Definition 2.3.3.

The proofs of results of Section 2.4 are following lines from [CT05], [CDD09],
[FL09], [FPRU11] and [KT07]. Relation (2.5) was proved in [FL09] with a better
numerical constant. Theorem 2.5.2 from [GG84] gives the optimal behavior of the
Gelfand widths of the cross-polytope. This completes a celebrated result of B. Kashin
[Kas77] which was proved using Kolmogorov widths (dual to the Gelfand widths) and
with a non-optimal power of the logarithm (power 3/2 instead of 1/2 later improved in
[GG84]). The upper bound of Kolmogorov widths was obtained via random matrices
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with i.i.d. Bernoulli entries, whereas [Glu83] and [GG84] used properties of random
Gaussian matrices.

The simple proof of Theorem 2.6.5 stating that subgaussian matrices satisfy the
exact reconstruction property of order m by `1-minimization with large m is taken
from [BDDW08] and [MPTJ08]. The strategy of this proof is very classical in
Approximation Theory, see [Kas77] and in Banach space theory where it has played
an important role in quantitative version of Dvoretsky’s theorem on almost spherical
sections, see [FLM77] and [MS86].

Section 2.7 follows the lines of [MPTJ08]. Proposition 2.7.3 from [KT07] is
stated in terms of Gelfand width rather than in terms of constants of isometry as in
[Can08] and [CDD09]. The principle of reducing the computation of Gelfand widths
by truncation as stated in Subsection 2.7 goes back to [Glu83]. The optimality of
the estimates of Theorem 2.7.15 as stated in Remark 2.7.16 is a result of [FPRU11].
The parameter `∗(T ) defined in Section 2.8 plays an important role in Geometry of
Banach spaces (see [Pis89]). Theorem 2.8.1 is from [PTJ86].

The restricted isometry property for the model of partial discrete Fourier matrices
will be studied in Chapter 5. There exists many other interesting models of ran-
dom sensing matrices (see [FR11]). Random matrices with i.i.d. entries satisfying
uniformly a sub-exponential tail inequality or with i.i.d. columns with log-concave
density, the so-called log-concave Ensemble, have been studied in [ALPTJ10] and in
[ALPTJ11] where it was shown that they also satisfy a RIP with m ∼ n/ log2(2N/n).



CHAPTER 3

INTRODUCTION TO CHAINING METHODS

The restricted isometry property has been introduced in Chapter 2 in order to
provide a simple way of showing that some matrices satisfy an exact reconstruction
property. Indeed, if A is a n×N matrix such that for every 2m-sparse vector x ∈ RN ,

(1− δ2m)|x|22 6 |Ax|22 6 (1 + δ2m)|x|22
where δ2m <

√
2 − 1 then A satisfies the exact reconstruction property of order m

by `1-minimization (cf. Chapter 2). In particular, if A is a random matrix with row
vectors n−1/2Y1, . . . , n

−1/2Yn, this property can be translated in terms of an empirical
processes property since

δ2m = sup
x∈S2(Σ2m)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣. (3.1)

If we show an upper bound on the supremum (3.1) smaller than
√

2 − 1, this will
prove that A has the exact reconstruction property of order m by `1-minimization.
In Chapter 2, it was shown that matrices from the subgaussian Ensemble satisfy the
restricted isometry property (with high probability) thanks to a technique called the
epsilon-net argument. In this chapter, we present a technique called the chaining
method in order to obtain upper bounds on the supremum of stochastic processes.
Upper bounds on the supremum (3.1) may follow from such chaining methods.

3.1. The chaining method

The chaining mechanism is a technique used to obtain upper bounds on the supre-
mum supt∈T Xt of a stochastic process (Xt)t∈T indexed by a set T . These upper
bounds are usually expressed in terms of some metric complexity measure of T .

One key idea behind the chaining method is the trade-off between the deviation or
concentration estimates of the increments of the process (Xt)t∈T and the complexity
of T which is endowed with a metric structure connected with (Xt)t∈T .

As an introduction, we show an upper bound on the supremum supt∈T Xt in terms
of an entropy integral known as the Dudley entropy integral . This entropy integral is
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based on some metric quantities of T that were introduced in Chapter 1 and that we
recall now.

Definition 3.1.1. — Let (T, d) be a semi-metric space, that is for every x, y and
z in T , d(x, y) = d(y, x) and d(x, y) 6 d(x, z) + d(z, y). For ε > 0, the ε-covering
number N(T, d, ε) of (T, d) is the minimal number of open balls for the semi-metric d
of radius ε needed to cover T . The metric entropy is the logarithm of the ε-covering
number, as a function of ε.

We develop the chaining argument under a subgaussian assumption on the incre-
ments of the process (Xt)t∈T saying that for every s, t ∈ T and u > 0,

P
[
|Xs −Xt| > ud(s, t)

]
6 2 exp(−u2/2), (3.2)

where d is a semi-metric on T . To avoid some technical complications that are
less important from our point of view, we only consider processes indexed by
finite sets T . To handle more general sets one may study the random variable
sup

T ′⊂T :T ′ finite supt∈T ′ Xt or the supremum sup
T ′⊂T :T ′ finite E supt,s∈T ′ |Xt−Xs|

which are equal to supt∈T Xt and E supt,s∈T |Xt − Xs| respectively under suitable
separability conditions on T .

Theorem 3.1.2. — There exist absolute constants c0, c1, c2 and c3 for which the
following holds. Let (T, d) be a semi-metric space and assume that (Xt)t∈T is a
stochastic process satisfying (3.2). Then, for every v > c0, with probability greater
than 1− c1 exp(−c2v2), one has

sup
s,t∈T

|Xt −Xs| 6 c3v

∫ ∞
0

√
logN(T, d, ε) dε.

In particular,

E sup
s,t∈T

|Xt −Xs| 6 c3

∫ ∞
0

√
logN(T, d, ε) dε.

Proof. — Put η−1 = rad(T, d) and for every integer i > 0 set

ηi = inf
{
η > 0 : N(T, d, η) 6 22i

}
.

Let (Ti)i>0 be a sequence of subsets of T defined as follows. Take T0 as a subset of
T containing only one element. Then, for every i > 0, by definition of ηi (note that
the infimum is not necessarily achieved), it is possible to take Ti+1 as a subset of T

of cardinality smaller than 22i+1

such that

T ⊂
⋃

x∈Ti+1

(
x+ ηiBd

)
,

where Bd is the unit ball associated with the semi-metric d. For every t ∈ T and
integer i, put πi(t) a nearest point to t in Ti (that is πi(t) is some point in Ti such
that d(t, πi(t)) = mins∈Ti d(t, s)). In particular, d(t, πi(t)) 6 ηi−1.
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Since T is finite, then for every t ∈ T , one has

Xt −Xπ0(t) =

∞∑
i=0

(
Xπi+1(t) −Xπi(t)

)
. (3.3)

Let i ∈ N and t ∈ T . By the subgaussian assumption (3.2), for every u > 0, with
probability greater than 1− 2 exp(−u2),

|Xπi+1(t) −Xπi(t)| 6 ud(πi+1(t), πi(t)) 6 u(ηi−1 + ηi) 6 2uηi−1. (3.4)

To get this result uniformly over every link (πi+1(t), πi(t)) for t ∈ T at level i, we

use an union bound (note that there are at most |Ti+1||Ti| 6 22i+2

such links): with
probability greater than 1 − 2|Ti+1||Ti| exp(−u2) > 1 − 2 exp

(
2i+2 log 2 − u2)

)
, for

every t ∈ T , one has
|Xπi+1(t) −Xπi(t)| 6 2uηi−1.

To balance the “complexity” of the set of “links” with our deviation estimate, we
take u = v2i/2, where v >

√
8 log 2. Thus, for the level i, we obtain with probability

greater than 1− 2 exp
(
− v22i−1

)
, for all t ∈ T ,

|Xπi+1(t) −Xπi(t)| 6 2v2i/2ηi−1,

for every v larger than an absolute constant.
Using (3.3) and summing over i ∈ N, we have with probability greater than 1 −

2
∑∞
i=0 exp

(
− v22i−1

)
> 1− c1 exp(−c2v2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 2v

∞∑
i=0

2i/2ηi−1 = 23/2v

∞∑
i=−1

2i/2ηi. (3.5)

Observe that if i ∈ N and η < ηi then N(T, d, η) > 22i . Therefore, one has√
log(1 + 22i)(ηi − ηi+1) 6

∫ ηi

ηi+1

√
logN(T, d, η)dη,

and since log(1 + 22i) > 2i log 2, summing over all i > −1, we get√
log 2

∞∑
i=−1

2i/2(ηi − ηi+1) 6
∫ η−1

0

√
logN(T, d, η)dη

and
∞∑

i=−1

2i/2(ηi − ηi+1) =

∞∑
i=−1

2i/2ηi −
∞∑
i=0

2(i−1)/2ηi >
(

1− 1√
2

) ∞∑
i=−1

2i/2ηi.

This proves that
∞∑

i=−1

2i/2ηi 6 c3

∫ ∞
0

√
logN(T, d, η)dη. (3.6)

We conclude that, for every v >
√

8 log 2, with probability greater than 1 −
c1 exp(−c2v2), we have

sup
t∈T
|Xt −Xπ0(t)| 6 c4v

∫ ∞
0

√
logN(T, d, η)dη.
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By integrating the tail estimate, we obtain

E sup
t∈T
|Xt −Xπ0(t)| =

∫ ∞
0

P
[

sup
t∈T
|Xt −Xπ0(t)| > u

]
du

6 c5

∫ ∞
0

√
logN(T, d, ε)dε.

Finally, since |T0| = 1, it follows that, for every t, s ∈ T ,

|Xt −Xs| 6 |Xt −Xπ0(t)|+ |Xs −Xπ0(s)|

and the theorem is shown.

In the case of a stochastic process with subgaussian increments (cf. condition (3.2)),
the entropy integral ∫ ∞

0

√
logN(T, d, ε)dε

is called the Dudley entropy integral. Note that the subgaussian assumption (3.2)
is equivalent to a ψ2 control on the increments: ‖Xs −Xt‖ψ2

6 d(s, t),∀s, t ∈ T .
It follows from the maximal inequality 1.1.3 and the chaining argument used in the
previous proof that the following equivalent formulation of Theorem 3.1.2 holds:∥∥∥∥ sup

s,t∈T
|Xs −Xt|

∥∥∥∥
ψ2

6 c

∫ ∞
0

√
logN(T, d, ε)dε.

A careful look at the previous proof reveals one potential source of looseness. At
each level of the chaining mechanism, we used a uniform bound (depending only on
the level) to control each link. Instead, one can use “individual” bounds for every link
rather than the worst at every level. This idea is the basis of what is now called the
generic chaining. The natural metric complexity measure coming from this method
is the γ2-functional which is now introduced.

Definition 3.1.3. — Let (T, d) be a semi-metric space. A sequence (Ts)s>0 of sub-

sets of T is said to be admissible if |T0| = 1 and 1 6 |Ts| 6 22s for every s > 1. The
γ2-functional of (T, d) is

γ2(T, d) = inf
(Ts)

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)

where the infimum is taken over all admissible sequences (Ts)s∈N and d(t, Ts) =
miny∈Ts d(t, y) for every t ∈ T and s ∈ N.

We note that the γ2-functional is upper bounded by the Dudley entropy integral:

γ2(T, d) 6 c0

∫ ∞
0

√
logN(T, d, ε)dε, (3.7)

where c0 is an absolute positive constant. Indeed, we construct an admissible sequence
(Ts)s∈N in the following way: let T0 be a subset of T containing one element and for
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every s ∈ N, let Ts+1 be a subset of T of cardinality smaller than 22s+1

such that for
every t ∈ T there exists x ∈ Ts+1 satisfying d(t, x) 6 ηs, where ηs is defined by

ηs = inf
(
η > 0 : N(T, d, η) 6 22s

)
.

Inequality (3.7) follows from (3.6) and

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)
6
∞∑
s=0

2s/2 sup
t∈T

d(t, Ts) 6
∞∑
s=0

2s/2ηs−1,

where η−1 = rad(T, d).
Now, we apply the generic chaining mechanism to show an upper bound on the

supremum of processes whose increments satisfy the subgaussian assumption (3.2).

Theorem 3.1.4. — There exist absolute constants c0, c1, c2 and c3 such that the
following holds. Let (T, d) be a semi-metric space. Let (Xt)t∈T be a stochastic process
satisfying the subgaussian condition (3.2). For every v > c0, with probability greater
than 1− c1 exp(−c2v2),

sup
s,t∈T

|Xt −Xs| 6 c3vγ2(T, d)

and

E sup
s,t∈T

|Xt −Xs| 6 c3γ2(T, d).

Proof. — Let (Ts)s∈N be an admissible sequence. For every t ∈ T and s ∈ N denote
by πs(t) a point in Ts such that d(t, Ts) = d(t, πs(t)). Since T is finite, we can write
for every t ∈ T ,

|Xt −Xπ0(t)| 6
∞∑
s=0

|Xπs+1(t) −Xπs(t)|. (3.8)

Let s ∈ N. For every t ∈ T and v > 0, with probability greater than 1 −
2 exp(−2s−1v2), one has

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

We extend the last inequality to every link of the chains at level s by using an union
bound (in the same way as in the proof of Theorem 3.1.2): for every v > c1, with
probability greater than 1− 2 exp(−c22sv2), for every t ∈ T , one has

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

An union bound on every level s ∈ N yields: for every v > c1, with probability
greater than 1− 2

∑∞
s=0 exp(−c22sv2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 v

∞∑
s=0

2s/2d(πs(t), πs+1(t)) 6 c3v

∞∑
s=0

2s/2d(t, Ts).

The claim follows since the sum in the last probability estimate is comparable to its
first term.
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Note that, by using the maximal inequality 1.1.3 and the previous generic chaining
argument, we get the following equivalent formulation of Theorem 3.1.4: under the
same assumption as in Theorem 3.1.4, we have∥∥∥∥ sup

s,t∈T
|Xs −Xt|

∥∥∥∥
ψ2

6 cγ2(T, d).

For Gaussian processes, the upper bound in expectation obtained in Theorem 3.1.4
is sharp up to some absolute constants. This deep result, called the Majorizing mea-
sure theorem, makes an equivalence between two different quantities measuring the
complexity of a set T ⊂ RN :

1. a metric complexity measure given by the γ2 functional

γ2(T, `N2 ) = inf
(Ts)

sup
t∈T

∞∑
s=0

2s/2d`N2 (t, Ts),

where the infimum is taken over all admissible sequences (Ts)s∈N of T ;
2. a probabilistic complexity measure given by the expectation of the supremum

of the canonical Gaussian process indexed by T :

`∗(T ) = E sup
t∈T

N∑
i=1

giti,

where g1, . . . , gN are N i.i.d. standard Gaussian variables.

Theorem 3.1.5 (Majorizing measure Theorem). — There exist two absolute
positive constants c0 and c1 such that for every countable subset T of RN , we have

c0γ2(T, `N2 ) 6 `∗(T ) 6 c1γ2(T, `N2 ).

3.2. An example of a more sophisticated chaining argument

In this section, we show upper bounds on the supremum

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ , (3.9)

where X1, . . . , Xn are n i.i.d. random variables with values in a measurable space X
and F is a class of real-valued functions defined on X . Once again and for the sake
of simplicity, we consider only finite classes F . Results can be extended beyond the
finite case under suitable separability conditions on F .

In Chapter 2, such a bound was used to show the restricted isometry property in
Theorem 2.7.1. In this example, the class F is a class of linear functions indexed by
a set of sparse vectors and was not, in particular, uniformly bounded.

In general, when ‖F‖∞ = supf∈F ‖f‖L∞(µ) < ∞, a bound on (3.9) follows from

a symmetrization argument combined with the contraction principle. In the present
study, we do not want to use a uniform bound on F but only that F has a finite
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diameter in Lψ2(µ) where µ is the probability distribution of the Xi’s. This means
that the norm (cf. Definition 1.1.1)

‖f‖ψ2(µ) = ‖f(X)‖ψ2
= inf

(
c > 0 : E exp

(
|f(X)|2/c2

)
6 e
)

is uniformly bounded on F where X is distributed according to µ. We denote this
bound by α and thus we assume that

α = rad(F,ψ2(µ)) = sup
f∈F
‖f‖ψ2(µ) <∞. (3.10)

In terms of random variables, Assumption (3.10) means that for all f ∈ F , f(X) has
a subgaussian behaviour and its ψ2 norm is uniformly bounded over F .

Under (3.10), we can apply the classical generic chaining mechanism and obtain a
bound on (3.9). Indeed, denote by (Xf )f∈F the empirical process defined by Xf =
n−1

∑n
i=1 f

2(Xi) − Ef2(X) for every f ∈ F . Assume that for every f and g in F ,
Ef2(X) = Eg2(X). Then, the increments of the process (Xf )f∈F are

Xf −Xg =
1

n

n∑
i=1

(
f2(Xi)− g2(Xi)

)
and we have (cf. Chapter 1)∥∥f2 − g2

∥∥
ψ1(µ)

6 ‖f + g‖ψ2(µ) ‖f − g‖ψ2(µ) 6 2α ‖f − g‖ψ2(µ) . (3.11)

In particular, the increment Xf−Xg is a sum of i.i.d. mean-zero ψ1 random variables.
Hence, the concentration properties of the increments of (Xf )f∈F follow from Theo-
rem 1.2.7. Provided that for some f0 ∈ F , we have Xf0 = 0 (for instance if F contains
a constant function f0) or (Xf )f∈F is a symmetric process then running the classical
generic chaining mechanism with this increment condition yields the following: for
every u > c0, with probability greater than 1− c1 exp(−c2u), one has

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3uα

(
γ2(F,ψ2(µ))√

n
+
γ1(F,ψ2(µ))

n

)
(3.12)

for some absolute positive constants c0, c1, c2 and c3 and with

γ1(F,ψ2(µ)) = inf
(Fs)

sup
f∈F

( ∞∑
s=0

2sdψ2(µ)(f, Fs)
)

where the infimum is taken over all admissible sequences (Fs)s∈N and dψ2(µ)(f, Fs) =
ming∈Fs ‖f − g‖ψ2(µ) for every f ∈ F and s ∈ N. Result (3.12) can be derived from

theorem 1.2.7 of [Tal05].
In some cases, computing γ1(F, d) for some metric d may be difficult and only

weak estimates can be shown. Getting upper bounds on (3.9) which does not require
the computation of γ1(F,ψ2(µ)) may be of importance. In particular, upper bounds
depending only on γ2(F,ψ2(µ)) can be useful when the metrics Lψ2

(µ) and L2(µ) are
equivalent on F because of the Majorizing measure theorem (cf. Theorem 3.1.5). In
the next result, we show an upper bound on the supremum (3.9) depending only on
the ψ2(µ) diameter of F and on the complexity measure γ2(F,ψ2(µ)).
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Theorem 3.2.1. — There exists absolute constants c0, c1, c2 and c3 such that the
following holds. Let F be a finite class of real-valued functions in S(L2(µ)), the unit
sphere of L2(µ), and denote by α the diameter rad(F,ψ2(µ)). Then, with probability

at least 1− c1 exp
(
− (c2/α

2) min
(
nα2, γ2(F,ψ2(µ))2

))
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2(µ))√

n
,
γ2(F,ψ2(µ))2

n

)
.

Moreover, if F is a symmetric subset of S(L2(µ)) then,

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2(µ))√

n
,
γ2(F,ψ2(µ))2

n

)
.

To show Theorem 3.2.1, we introduce the following notation. For every f ∈ L2(µ),
we set

Z(f) =
1

n

n∑
i=1

f2(Xi)− Ef2(X) and W (f) =
( 1

n

n∑
i=1

f2(Xi)
)1/2

. (3.13)

For the sake of shortness, in what follows, L2, ψ2 and ψ1 stand for L2(µ), ψ1(µ) and
ψ2(µ), for which we omit to write the probability measure µ.

To obtain upper bounds on the supremum (3.9) we study the deviation behaviour
of the increments of the underlying process. Namely, we need deviation results for
Z(f)− Z(g) for f, g ∈ F . Since the “end of the chains” will be analysed by different
means, the deviation behaviour of the increments W (f − g) will be of importance as
well.

Lemma 3.2.2. — There exists an absolute constant C1 such that the following holds.
Let F ⊂ S(L2(µ)) and α = rad(F,ψ2). For every f, g ∈ F , we have:

1. for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 2 exp

(
− C1nu

2
)

2. for every u > 0,

P
[
|Z(f)− Z(g)| > uα ‖f − g‖ψ2

]
6 2 exp

(
− C1nmin(u, u2)

)
and

P
[
|Z(f)| > uα2

]
6 2 exp

(
− C1nmin(u, u2)

)
.

Proof. — Let f, g ∈ F . Since f, g ∈ Lψ2
, we have

∥∥(f − g)2
∥∥
ψ1

= ‖f − g‖2ψ2
and by

Theorem 1.2.7, for every t > 1,

P
[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> t ‖f − g‖2ψ2

]
6 2 exp(−c1nt). (3.14)
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Using ‖f − g‖L2
6
√
e− 1 ‖f − g‖ψ2

together with Equation (3.14), it is easy to get
for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 P

[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> (u2 − (e− 1)) ‖f − g‖2ψ2

]
6 2 exp

(
− c2nu2

)
.

For the second statement, since Ef2 = Eg2, the increments are

Z(f)− Z(g) =
1

n

n∑
i=1

(
f2(Xi)− g2(Xi)

)
.

Thanks to (3.11), Z(f)−Z(g) is a sum of mean-zero ψ1 random variables and the result
follows from Theorem 1.2.7. The last statement is a consequence of Theorem 1.2.7,
since

∥∥f2
∥∥
ψ1

= ‖f‖2ψ2
6 α2 for all f in F .

Once obtained the deviation properties of the increments of the underlying pro-
cess(es) (that is (Z(f))f∈F and (W (f))f∈F ), we use the generic chaining mechanism
to obtain a uniform bound on (3.9). Since we work in a special framework (sum
of squares of ψ2 random variables), we will perform a particular chaining argument
which allows us to avoid the γ1(F,ψ2) term coming from the classical generic chaining
(cf. (3.12)).

If γ2(F,ψ2) = ∞, then the upper bound of Theorem 3.2.1 is trivial, otherwise
consider an almost optimal admissible sequence (Fs)s∈N of F with respect to ψ2(µ),
that is an admissible sequence (Fs)s∈N such that

γ2(F,ψ2) >
1

2
sup
f∈F

( ∞∑
s=0

2s/2dψ2(f, Fs)
)
.

For every f ∈ F and integer s, put πs(f) a nearest point to f in Fs with respect to
the ψ2(µ) distance.

The idea of the proof is for every f ∈ F to analyze the links πs+1(f) − πs(f) for
s ∈ N of the chain (πs(f))s∈N in three different regions - values of the level s in [0, s1],
[s1 + 1, s0 − 1] or [s0,∞) for some well chosen s1 ans s0 - depending on the deviation
properties of the increments of the underlying process(es) at the s stage:

1. The end of the chain: we study the link f − πs0(f). In this part of the
chain, we work with the process

(
W (f − πs0(f))

)
f∈F which is subgaussian (cf.

Lemma 3.2.2). Thanks to this remark, we avoid the sub-exponential behaviour
of the process (Z(f))f∈F and thus the term γ1(F,ψ2(µ)) appearing in (3.12);

2. The middle of the chain: for these stages, we work with the process (Z(πs0(f))−
Z(πs1(f)))f∈F which has subgaussian increments in this range;

3. The beginning of the chain: we study the process (Z(πs1(f))f∈F . For this part
of the chain, the complexity of Fs1 is so small that a trivial comparison of the
process with the ψ2-diameter of F will be enough.
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Proposition 3.2.3 (End of the chain). — There exist absolute constant c0, c1, c2
and c3 for which the following holds. Let F ⊂ S(L2(µ)) be finite and α = rad(F,ψ2).
For every v > c0, with probability greater than 1− c1 exp(−c2nv2), one has

sup
f∈F

W (f − πs0(f)) 6 c3v
γ2(F,ψ2)√

n
,

where s0 = min
(
s > 0 : 2s > n

)
.

Proof. — Let f be in F . Since F is finite, we can write

f − πs0(f) =

∞∑
s=s0

πs+1(f)− πs(f),

and, since W is the empirical L2(Pn) norm (where Pn is the empirical distribution
n−1

∑n
i=1 δXi), it is sub-additive and so

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)).

Now, fix a level s > s0. Using a union bound on the set of links {(πs+1(f), πs(f)) :
f ∈ F} (note that there are at most |Fs+1||Fs| such links) and the subgaussian
property of W (i.e. Lemma 3.2.2), we get, for every u > 2, with probability greater
than 1− 2|Fs+1||Fs| exp(−C1nu

2), for every f ∈ F ,

W (πs+1(f)− πs(f)) 6 u ‖πs+1(f)− πs(f)‖ψ2
.

Then, note that for every s ∈ N, |Fs+1||Fs| 6 22s22s+1

= 22s+2

so that a union
bound over all the levels s > s0 yields for every u such that nu2 is larger than some ab-
solute constant, with probability greater than 1−2

∑∞
s=s0
|Fs+1||Fs| exp(−C1n2su2) >

1− c1 exp(−c0n2s0u2), for every f ∈ F ,

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)) 6
∞∑
s=s0

u2s/2 ‖πs+1(f)− πs(f)‖ψ2

6 2u

∞∑
s=s0

2s/2dψ2(f, Fs).

We conclude with v2 = 2s0u2 for v large enough and noting that 2s0 ∼ n by
definition of s0 and with the quasi-optimality of the admissible sequence (Fs)s>0.

Proposition 3.2.4 (Middle of the chain). — There exist absolute constants c0,
c1, c2 and c3 for which the following holds. Let s1 ∈ N be such that s1 6 s0 (where s0 =
min

(
s > 0 : 2s > n

)
has been defined in Proposition 3.2.3). Let F ⊂ S(L2(µ)) and

α = rad(F,ψ2). For every u > c0, with probability greater than 1− c1 exp(−c22s1u),

sup
f∈F

∣∣Z(πs0(f))− Z(πs1(f))
∣∣ 6 c3uα

γ2(F,ψ2)√
n

.
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Proof. — For every f ∈ F , we write

Z(πs0(f))− Z(πs1(f)) =

s0−1∑
s=s1

Z(πs+1(f))− Z(πs(f)).

Let s1 6 s 6 s0−1 and u > 0. Thanks to the second deviation result of Lemma 3.2.2,
with probability greater than 1− 2 exp

(
− C1nmin

(
(u2s/2/

√
n), (u22s/n)

))
,

|Z(πs+1(f))− Z(πs(f))| 6 u2s/2√
n
α ‖πs+1(f)− πs(f)‖ψ2

. (3.15)

Now, s 6 s0 − 1, thus 2s/n 6 1 and so min
(
u2s/2/

√
n, u22s/n

)
> min(u, u2)(2s/n).

In particular, (3.15) holds with probability greater than

1− 2 exp
(
− C12s min(u, u2)

))
.

Now, a union bound on the set of links for every level s = s1, . . . , s0 − 1
yields, for any u > 0, with probability greater than 1 − 2

∑s0−1
s=s1

|Fs+1||Fs| exp
(
−

C12s min(u, u2)
)
, for every f ∈ F ,

∣∣Z(πs0(f))− Z(πs1(f))
∣∣ 6 s0−1∑

s=s1

u2s/2√
n
α ‖πs+1(f)− πs(f)‖ψ2

.

The result follows since |Fs+1||Fs| 6 22s+2

for every integer s and so for u large
enough,

2

s0−1∑
s=s1

|Fs+1||Fs| exp
(
− C12s min(u, u2)

)
6 c1 exp(−c22s1u).

Proposition 3.2.5 (Beginning of the chain). — There exist c0, c1 > 0 such that
the following holds. Let w > 0 and s1 be such that 2s1 < (C1/2)nmin(w,w2) (where
C1 is the constant appearing in Lemma 3.2.2). Let F ⊂ S(L2(µ)) and α = rad(F,ψ2).
For every t > w, with probability greater than 1− c0 exp(−c1nmin(t, t2)), one has

sup
f∈F

∣∣Z(πs1(f))
∣∣ 6 α2t.

Proof. — It follows from the third deviation result of Lemma 3.2.2 and a union bound
over Fs1 , that with probability greater than 1−2|Fs1 | exp

(
−C1nmin(t, t2)

)
, one has

for every f ∈ F ,

|Z(πs1(f))| 6 α2t.

Since |Fs1 | 6 22s1 < exp
(
(C1/2)nmin(t, t2)

)
, the result follows.

Proof of Theorem 3.2.1. — Denote by (Fs)s∈N an almost optimal admissible se-
quence of F with respect to the ψ2-norm and, for every s ∈ N and f ∈ F , denote
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by πs(f) one of the closest point of f in Fs with respect to the ψ2(µ) distance. Let
s0 ∈ N be such that s0 = min

(
s > 0 : 2s > n

)
. We have, for every f ∈ F ,

|Z(f)| =
∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ =

∣∣∣ 1
n

n∑
i=1

(f − πs0(f) + πs0(f))2(Xi)− Ef2(X)
∣∣∣

=
∣∣∣Pn(f − πs0(f))2 + 2Pn

(
(f − πs0(f))πs0(f)

)
+ Pnπs0(f)2 − Eπs0(f)2

∣∣∣
6W (f − πs0(f))2 + 2W (f − πs0(f))W (πs0(f)) + |Z(πs0(f))|

6W (f − πs0(f))2 + 2W (f − πs0(f))
(
Z(πs0(f)) + 1)1/2 + |Z(πs0(f))|

6 3W (f − πs0(f))2 + 2W (f − πs0(f)) + 3|Z(πs0(f))|, (3.16)

where we used ‖πs0(f)‖L2
= 1 = ‖f‖L2

and the notation Pn stands for the empirical

probability distribution n−1
∑n
i=1 δXi .

Thanks to Proposition 3.2.3 for v a constant large enough, with probability greater
than 1− c0 exp(−c1n), for every f ∈ F ,

W (f − πs0(f))2 6 c2
γ2(F,ψ2)2

n
. (3.17)

Let w > 0 to be chosen later and define s1 ∈ N by

s1 = max
(
s > 0 : 2s 6 min

(
2s0 , (C1/2)nmin(w,w2)

))
, (3.18)

where C1 is the constant defined in Lemma 3.2.2. We apply Proposition 3.2.4 for u
a constant large enough and Proposition 3.2.5 to get, with probability greater than
1− c3 exp(−c42s1) that for every f ∈ F ,

|Z(πs0(f))| 6 |Z(πs0(f))− Z(πs1(f))|+ |Z(πs1(f))|

6 c5α
γ2(F,ψ2)√

n
+ α2w. (3.19)

We combine Equations (3.16), (3.17) and (3.19) to get, with probability greater than
1− c6 exp(−c72s1) that for every f ∈ F ,

|Z(f)| 6 c8
γ2(F,ψ2)2

n
+ c9

γ2(F,ψ2)√
n

+ c10α
γ2(F,ψ2)√

n
+ 3α2w.

The first statement of Theorem 3.2.1 follows for

w = max
(γ2(F,ψ2)

α
√
n

,
γ2(F,ψ2)2

α2n

)
. (3.20)

For the last statement, we use Proposition 3.2.3 to get

E sup
f∈F

W (f − πs0(f))2 =

∫ ∞
0

P
[

sup
f∈F

W (f − πs0(f))2 > t
]
dt 6 c11

γ2(F,ψ2)2

n
(3.21)

and

E sup
f∈F

W (f − πs0(f)) 6 c12
γ2(F,ψ2)√

n
. (3.22)
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It follows from Propositions 3.2.4 and 3.2.5 for s1 and w defined in (3.18) and (3.20)
that

E sup
f∈F
|Z(πs0(f))| 6 E sup

f∈F
|Z(πs0(f))− Z(πs1(f))|+ E sup

f∈F
|Z(πs1(f))|

6
∫ ∞

0

P
[

sup
f∈F
|Z(πs0(f))− Z(πs1(f))| > t

]
dt+

∫ ∞
0

P
[

sup
f∈F
|Z(πs1(f))| > t

]
dt

6 cmax
(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
. (3.23)

The claim follows by combining Equations (3.21), (3.22) and (3.23) in Equation (3.16).

3.3. Application to Compressed Sensing

In this section, we apply Theorem 3.2.1 to prove that a n × N random matrix
with i.i.d. isotropic row vectors which are ψ2 with constant α satisfies RIP2m(δ)
with overwhelming probability under suitable assumptions on n,N,m,α and δ. Let
A be such a matrix and denote by n−1/2Y1, . . . , n

−1/2Yn its rows vectors such that
Y1, . . . , Yn are distributed according to a probability measure µ.

For a functions class F in S(L2(µ)), it follows from Theorem 3.2.1 that with prob-

ability greater than 1− c1 exp
(
− (c2/α

2) min
(
nα2, γ2(F,ψ2)2

))
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Yi)− Ef2(Y )

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

where α = rad(F,ψ2(µ)). In particular, for a class F of linear functions indexed by a
subset T of SN−1, the ψ2(µ) norm and the L2(µ) norm are equivalent on F and so
with probability greater than 1− c1 exp

(
− c2 min

(
n, γ2(T, `N2 )2

))
,

sup
x∈T

∣∣∣∣∣ 1n
n∑
i=1

〈Yi, x〉2 − 1

∣∣∣∣∣ 6 c3α
2 max

(
γ2(T, `N2 )√

n
,
γ2(T, `N2 )2

n

)
. (3.24)

A bound on the restricted isometry constant δ2m follows from (3.24). Indeed let
T = S2(Σ2m) then with probability greater than

1− c1 exp
(
− c2 min

(
n, γ2(S2(Σ2m), `N2 )2

))
,

δ2m 6 c3α
2 max

(
γ2(S2(Σ2m), `N2 )√

n
,
γ2(S2(Σ2m), `N2 )2

n

)
.

Now, it remains to bound γ2(S2(Σ2m), `N2 ). Such a bound may follow from the Ma-
jorizing measure theorem (cf. Theorem 3.1.5):

γ2(S2(Σ2m), `N2 ) ∼ `∗(S2(Σ2m)).
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Since S2(Σ2m) can be written as a union of spheres with short support, it is easy to
obtain

`∗(S2(Σ2m)) = E
( 2m∑
i=1

(g∗i )2
)1/2

(3.25)

where g1, . . . , gN are N i.i.d. standard Gaussian variables and (g∗i )Ni=1 is a non-
decreasing rearrangement of (|gi|)Ni=1. A bound on (3.25) follows from the following
technical result.

Lemma 3.3.1. — There exist absolute positive constants c0, c1 and c2 such that the
following holds. Let (gi)

N
i=1 be a family of N i.i.d. standard Gaussian variables. De-

note by (g∗i )Ni=1 a non-increasing rearrangement of (|gi|)Ni=1. For any k = 1, . . . , N/c0,
we have √

c1 log
(N
k

)
6 E

(1

k

k∑
i=1

(g∗i )2
)1/2

6 2

√
log
(c2N

k

)
.

Proof. — Let g be a standard real-valued Gaussian variable and define c1 > 0 such
that E exp(g2/4) = c1. By convexity, it follows that

exp
(
E
(1

k

k∑
i=1

(g∗i )2

4

))
6

1

k

k∑
i=1

E exp
(
(g∗i )2/4

)
6

1

k

N∑
i=1

E exp(g2
i /4) 6

c1N

k
.

Finally,

E
(1

k

k∑
i=1

(g∗i )2
)1/2

6
(
E

1

k

k∑
i=1

(g∗i )2
)1/2

6 2
√

log
(
c1N/k

)
.

For the lower bound, we note that for x > 0,√
2

π

∫ ∞
x

exp(−s2/2)ds >

√
2

π

∫ 2x

x

exp(−s2/2)ds >

√
2

π
x exp(−2x2).

In particular, for any c0 > 0 and 1 6 k 6 N ,

P
[
|g| >

√
c0 log

(
N/k

)]
>

√
2c0
π

log
(N
k

)( k
N

)2c0
. (3.26)

It follows from Markov inequality that

E
(1

k

k∑
i=1

(g∗i )2
)1/2

> Eg∗k >
√
c0 log

(
N/k

)
P
[
g∗k >

√
c0 log

(
N/k

)]
=
√
c0 log

(
N/k

)
P
[ N∑
i=1

I
(
|gi| >

√
c0 log

(
N/k

))
> k

]
=
√
c0 log

(
N/k

)
P
[ N∑
i=1

δi > k
]

where I(·) denotes the indicator function and δi = I
(
|gi| >

√
c0 log

(
N/k

))
for

i = 1, . . . , N . Since (δi)
N
i=1 is a family of i.i.d. Bernoulli variables with mean δ =
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P
[
|g| >

√
c0 log

(
N/k

)]
, it follows from Bernstein inequality (cf. Theorem 1.2.6) that,

as long as k 6 δN/2 and Nδ > 10 log 4,

P
[ N∑
i=1

δi > k
]
> P

[ 1

N

N∑
i=1

δi − δ >
−δ
2

]
> 1/2.

Thanks to (3.26), it is easy to check that for c0 = 1/4, we have k 6 δN/2 as long as
k 6 N/ exp(4π).

It is now possible to prove the result announced at the beginning of the section.

Theorem 3.3.2. — There exist absolute positive constants c0, c1, c2 and c3 such
that the following holds. Let A be a n × N random matrix with rows vectors
n−1/2Y1, . . . , n

−1/2Yn. Assume that Y1, . . . , Yn are i.i.d. isotropic vectors of RN ,
which are ψ2 with constant α. Let m be an integer and δ ∈ (0, 1) such that

m log
(
c0N/m

)
= c1nδ

2/α4.

Then, with probability greater than 1 − c2 exp(−c3nδ2/α4), the restricted isometry
constant δ2m of order 2m of A satisfies

δ2m = sup
x∈S2(Σ2m)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣ 6 δ.

3.4. Notes and comments

Dudley entropy bound (cf. Theorem 3.1.2) can be found in [Dud67]. Other
Dudley type entropy bounds for processes (Xt)t∈T with Orlicz norm of the increments
satisfying, for every s, t ∈ T ,

‖Xt −Xs‖ψ 6 d(s, t) (3.27)

may be obtained (see [Pis80] and [Kôn80]). Under the increment condition (3.27)
and (1.1) and for ψ−1 denoting the inverse function of the Orlicz function ψ, the
Dudley entropy integral ∫ ∞

0

ψ−1
(
N(T, d, ε)

)
dε,

is an upper bound for
∥∥sups,t∈T |Xs −Xt|

∥∥
ψ

and in particular of E supt,s∈T |Xt−Xs|
(up to an absolute constant factor).

For the partition scheme method used in the generic chaining mechanism of Theo-
rem 3.1.4, we refer to [Tal05] and [Tal01]. The generic chaining mechanism was first
introduced using majorizing measures. This tool was introduced in [Fer74, Fer75]
and is implicit in earlier work by Preston based on an important result of Garcia,
Rodemich and Rumsey. In [Tal87], Talagrand proves that majorizing measures are
the key quantities to analyze the supremum of Gaussian processes. In particular, the
majorizing measure theorem (cf. Theorem 3.1.5) is shown in [Tal87]. More about ma-
jorizing measures and majorizing measure theorems for other processes than Gaussian
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processes can be found in [Tal96a] and [Tal95]. Connections between the majorizing
measures and partition schemes have been shown in [Tal05] and [Tal01].

The upper bounds on the process

sup
f∈F

∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ (3.28)

developed in Section 3.2 follow the line of [MPTJ07]. Other bounds on (3.28) can
be found in the next chapter (cf. Theorem 5.3.14).



CHAPTER 4

SINGULAR VALUES AND WISHART MATRICES

The singular values of a matrix are very natural geometrical quantities which play
an important role in pure and applied mathematics. The first part of this chapter
is a compendium on the properties of the singular values. The second part concerns
random matrices, and constitutes a quick tour in this vast subject. It starts with
properties of Gaussian random matrices, gives a proof of the universal Marchenko–
Pastur theorem regarding the counting probability measure of the singular values,
and ends with the Bai–Yin theorem statement on the extremal singular values.

For every square matrix A ∈ Mn,n(C), we denote by λ1(A), . . . , λn(A) the eigen-
values of A which are the roots in C of the characteristic polynomial det(A−zI) ∈ C[z]
where I denotes the identity matrix. Unless otherwise stated we label the eigenvalues
of A so that |λ1(A)| > · · · > |λn(A)|. In all this chapter, K stands for R or C, and
we say that U ∈ Mn,n(K) is K–unitary when UU∗ = I, where the star super-script
denotes the conjugate-transpose operation.

4.1. The notion of singular values

This section gathers a selection of classical results from linear algebra. We begin
with the Singular Value Decomposition (SVD), a fundamental tool in matrix analysis.
It expresses a diagonalization up to unitary transformations of the space.

Theorem 4.1.1 (Singular Value Decomposition). — For every A ∈Mm,n(K),
there exists a couple of K–unitary matrices U (m×m) and V (n×n) and a sequence
of real numbers s1 > · · · > sm∧n > 0 such that A = UDV ∗ where

D = U∗AV = diag(s1, . . . , sm∧n) ∈Mm,n(K).

This sequence of real numbers does not depend on the particular choice of U, V .

Proof. — Let v ∈ Kn be such that |v|2 = 1 and |Av|2 = max|x|2=1 |Ax|2 = ‖A‖2→2 =
s. If s = 0 then A = 0 and the result is trivial. If s > 0 then let us define u = Av/s.
One can find a K-unitary m ×m matrix U with first column vector equal to u, and
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a K-unitary n× n matrix V with first column vector equal to v. It follows that

U∗AV =

(
s w∗

0 B

)
= A1

for some w ∈ Mn−1,1(K) and B ∈ Mm−1,n−1(K). If t is the first row of A1 then

|A1t
∗|22 > (s2 + |w|22)2 and therefore ‖A1‖22→2 > s2 + |w|22 > ‖A‖22→2. On the other

hand, since A and A1 are unitary equivalent, we have ‖A1‖2→2 = ‖A‖2→2. Therefore
w = 0, and the desired decomposition follows by an induction on m ∧ n.

If one sees the diagonal matrix D = diag(s1(A)2, . . . , sm∧n(A)2) as an element of
Mm,m(K) or Mn,n(K) by appending as much zeros as needed, we have

U∗AA∗U = D and V ∗A∗AV = D.

The positive semidefinite Hermitian matrices AA∗ ∈Mm,m(K) and A∗A ∈Mn,n(K)
share the same sequence of eigenvalues, up to the multiplicity of the eigenvalue 0, and
for every k ∈ {1, . . . ,m ∧ n},

sk(A) = λk(
√
AA∗) =

√
λk(AA∗) =

√
λk(A∗A) = λk(

√
A∗A) = sk(A∗).

This shows the uniqueness of s1, . . . , sm∧n. The columns of U and V are the eigen-
vectors of the positive semidefinite Hermitian matrices AA∗ and A∗A.

Singular values. — The numbers sk(A) = sk for k ∈ {1, . . . ,m ∧ n} in Theorem
4.1.1 are called the singular values of A. It is often convenient to use the convention
sk(A) = 0 if k > m∧ n. For any A ∈Mm,n(K), the matrices A, Ā, A>, A∗, UA, AV
share the same sequences of singular values, for any K–unitary matrices U, V .

Normal matrices. — Recall that a square matrix A ∈ Mn,n(K) is normal when
AA∗ = A∗A. This is equivalent to say that there exists a K–unitary matrix U such
that U∗AU is diagonal, and the diagonal elements are indeed the eigenvalues of A. In
this chapter, the word “normal” is used solely in this way and never as a synonym for
“Gaussian”. Every Hermitian or unitary matrix is normal, while a non identically zero
nilpotent matrix is never normal. If A ∈Mn,n(K) is normal then sk(A) = |λk(A)| and
sk(Ar) = sk(A)r for every k ∈ {1, . . . , n} and for any r > 1. Moreover if A has unitary
diagonalization U∗AU then its SVD is U∗AV with V = UP and P = diag(ϕ1, . . . , ϕn)
where ϕk = λk/|λk| (here 0/0 = 1) is the phase of λk for every k ∈ {1, . . . , n}.

Polar decomposition. — If A ∈ Mn,n(K) has SVD D = U∗AV , then the Hermi-
tian matrix H = V DV ∗ and the unitary matrix W = UV ∗ form the polar decomposi-
tion A = WH of A. Conversely, one may deduce the SVD of a square matrix A from
its polar decomposition A = WH by using a unitary diagonalization of H.

Linear Hermitization. — The eigenvalues of the (m + n) × (m + n) Hermitian
matrix

HA =

(
0 A∗

A 0

)
(4.1)

are ±s1(A), . . . ,±sm∧n(A), 0, . . . , 0 where 0, . . . , 0 stands for a sequence of 0’s of
length m+n− 2(m∧n) = (m∨n)− (m∧n). This turns out to be useful because the
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mapping A 7→ HA is linear in A, in contrast with the mapping A 7→
√
AA∗. One may

deduce the singular values of A from the eigenvalues of H, and H2 = A∗A ⊕ AA∗.
If m = n and Ai,j ∈ {0, 1} for all i, j, then A is the adjacency matrix of an oriented
graph, and H is the adjacency matrix of a companion nonoriented bipartite graph.

Left and right eigenvectors. — If u1 ⊥ · · · ⊥ um ∈ Km and v1 ⊥ · · · ⊥ vn ∈ Kn
are the columns of U, V then for every k ∈ {1, . . . ,m ∧ n},

Avk = sk(A)uk and A∗uk = sk(A)vk (4.2)

while Avk = 0 and A∗uk = 0 for k > m ∧ n. The SVD gives an intuitive geometrical
interpretation of A and A∗ as a dual correspondence/dilation between two orthonor-
mal bases known as the left and right eigenvectors of A and A∗. Additionally, A has
exactly r = rank(A) nonzero singular values s1(A), . . . , sr(A) and

A =

r∑
k=1

sk(A)ukv
∗
k and

{
kernel(A) = span{vr+1, . . . , vn},
range(A) = span{u1, . . . , ur}.

We have also sk(A) = |Avk|2 = |A∗uk|2 for every k ∈ {1, . . . ,m ∧ n}.

Condition number. — The condition number of an invertible A ∈Mn,n(K) is

κ(A) = ‖A‖2→2

∥∥A−1
∥∥

2→2
=
s1(A)

sn(A)
.

The condition number quantifies the numerical sensitivity of linear systems involving
A. For instance, if x ∈ Kn is the solution of the linear equation Ax = b then x = A−1b.
If b is known up to precision δ ∈ Kn then x is known up to precision A−1δ. Therefore,
the ratio of relative errors for the determination of x is given by

R(b, δ) =

∣∣A−1δ
∣∣
2
/
∣∣A−1b

∣∣
2

|δ|2/|b|2
=

∣∣A−1δ
∣∣
2

|δ|2
|b|2
|A−1b|2

.

Consequently, we obtain

max
b 6=0,δ 6=0

R(b, δ) =
∥∥A−1

∥∥
2→2
‖A‖2→2 = κ(A).

Geometrically, κ(A) measures the “spherical defect” of the ellipsoid in Figure 1.

Computation of the SVD. — To compute the SVD of A ∈ Mm,n(K) one can
diagonalize AA∗ or diagonalize the Hermitian matrix H defined in (4.1). Unfortu-
nately, this approach can lead to a loss of precision numerically. In practice, and up
to machine precision, the SVD is better computed by using for instance a variant of
the QR algorithm after unitary bidiagonalization.

Let us explain how works the unitary bidiagonalization of a matrix A ∈Mm,n(K)
with m 6 n. If r1 is the first row of A, the Gram–Schmidt (or Householder) algorithm
provides a n × n K–unitary matrix V1 which maps r∗1 to a multiple of e1. Since V1

is unitary the matrix AV ∗1 has first row equal to |r1|2e1. Now one can construct
similarly a m×m K–unitary matrix U1 with first row and column equal to e1 which
maps the first column of AV ∗1 to an element of span(e1, e2). This gives to U1AV

∗
1

a nice structure and suggests a recursion on the dimension m. Indeed by induction
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one may construct bloc diagonal m ×m K–unitary matrices U1, . . . , Um−2 and bloc
diagonal n × n K–unitary matrices V1, . . . , Vm−1 such that if U = Um−2 · · ·U1 and
V = V ∗1 · · ·V ∗m−1 then the matrix

B = UAV (4.3)

is real m×n lower triangular bidiagonal i.e. Bi,j = 0 for every i and every j 6∈ {i, i+1}.
If A is Hermitian then taking U = V provides a Hermitian tridiagonal matrix B =
UAU∗ having the same spectrum as A.

4.2. Basic properties

It is very well known that the eigenvalues of a Hermitian matrix can be expressed
in terms of the entries via minimax variational formulas. The following result is the
counterpart for the singular values. It can be deduced from its Hermitian cousin.

Theorem 4.2.1 (Courant–Fischer minimax variational formulas)
For every A ∈Mm,n(K) and every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Gn,k

min
x∈V
|x|2=1

|Ax|2 = min
V ∈Gn,n−k+1

max
x∈V
|x|2=1

|Ax|2

where Gn,k is the set of all subspaces of Kn of dimension k. In particular, we have

s1(A) = max
x∈Kn
|x|2=1

|Ax|2 and sm∧n(A) = max
V ∈Gn,m∧n

min
x∈V
|x|2=1

|Ax|2.

We have also the following alternative formulas, for every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Gn,k
W∈Gm,k

min
(x,y)∈V×W
|x|2=|y|2=1

〈Ax, y〉.

Remark 4.2.2 (Smallest singular value). — The smallest singular value is al-
ways a minimum. Indeed, if m > n then Gn,m∧n = Gn,n = {Kn} and thus

sm∧n(A) = min
x∈Kn
|x|2=1

|Ax|2,

while if m 6 n then using the latter for A> we get

sm∧n(A) = sm∧n(A>) = min
x∈Km
|x|2=1

∣∣A>x∣∣
2
.

As an exercise, one can check that if A ∈ Mm,n(R) then the variational formulas
for K = C, if one sees A as an element of Mm,n(C), coincide actually with the
formulas for K = R. Geometrically, the matrix A maps the Euclidean unit ball to an
ellipsoid, and the singular values of A are exactly the half lengths of the m∧n largest
principal axes of this ellipsoid, see Figure 1. The remaining axes have zero length. In
particular, for A ∈Mn,n(K), the variational formulas for the extremal singular values
s1(A) and sn(A) correspond to the half length of the longest and shortest axes.
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A

Figure 1. Largest and smallest singular values of A ∈ M2,2(R).

From the Courant–Fischer variational formulas, the largest singular value is the
operator norm of A for the Euclidean norm |·|2, namely

s1(A) = ‖A‖2→2 .

The map A 7→ s1(A) is Lipschitz and convex. In the same spirit, if U, V are the couple
of K–unitary matrices from an SVD of A, then for any k ∈ {1, . . . , rank(A)},

sk(A) = min
B∈Mm,n(K)
rank(B)=k−1

‖A−B‖2→2 = ‖A−Ak‖2→2 where Ak =

k−1∑
i=1

si(A)uiv
∗
i

with ui, vi as in (4.2). Let A ∈ Mn,n(K) be a square matrix. If A is invertible then
the singular values of A−1 are the inverses of the singular values of A, in other words

∀k ∈ {1, . . . , n}, sk(A−1) = sn−k+1(A)−1.

Moreover, a square matrix A ∈Mn,n(K) is invertible iff sn(A) > 0, and in this case

sn(A) = s1(A−1)−1 =
∥∥A−1

∥∥−1

2→2
.

Contrary to the map A 7→ s1(A), the map A 7→ sn(A) is Lipschitz but is not convex
when n > 2. Regarding the Lipschitz nature of the singular values, the Courant–
Fischer variational formulas provide the following more general result.

Theorem 4.2.3 (Interlacing by perturbations). — If A,B ∈ Mm,n(K) then
for every i, j ∈ {1, . . . ,m ∧ n} with i+ j 6 1 + (m ∧ n),

si+j−1(A) 6 si(B) + sj(A−B).

In particular, taking j = r+1 and 1 6 i 6 (m∧n)−r gives, for every 1 6 k 6 m∧n,

sk+r(A) 6 sk(B) 6 sk−r(A)

where r = rank(A−B) and with si(A) =∞ if i < 1 and si(A) = 0 if i > m ∧ n.

Theorem 4.2.3 implies (take j = 1) that the map A 7→ s(A) = (s1(A), . . . , sm∧n(A))
is actually 1-Lipschitz from (Mm,n(K), ‖·‖2→2) to ([0,∞)m∧n, |·|∞) since

max
16k6m∧n

|sk(A)− sk(B)| 6 ‖A−B‖2→2 .

From the Courant–Fischer variational formulas we obtain also the following result.
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Theorem 4.2.4 (Interlacing by deletion). — Under the convention that si(C) =
0 for any C ∈ Mp,q(K) and any i > p ∧ q. Let A ∈ Mm,n(K) and let B be obtained
from A by deleting k rows and/or columns. Then for every i ∈ {1, . . . ,m ∧ n},

si(A) > si(B) > si+k(A)

Form Theorem 4.2.4, if B ∈ Mm−k,n(K) is obtained from A ∈ Mm,n(K) (m 6 n)
by deleting k ∈ {1, . . . ,m − 1} rows then [sm−k(B), s1(B)] ⊂ [sm(A), s1(A)]. Row
deletions produce a compression of the singular values interval. Another way to
express this phenomenon consists in saying that if we add a row to B then the largest
singular value increases while the smallest singular value is diminished.

Trace norm. — The trace norm ‖·‖HS on Mm,n(K) is defined by

‖A‖2HS = Tr(AA∗) = Tr(A∗A) =

m∑
i=1

n∑
j=1

|Ai,j |2 = s1(A)2 + · · ·+ sm∧n(A)2.

This norm is also known as the Frobenius norm, the Schur norm, or the Hilbert–
Schmidt norm (which explains our notation). For every A ∈Mm,n(K) we have

‖A‖2→2 6 ‖A‖HS 6
√

rank(A) ‖A‖2→2

where equalities are achieved respectively when rank(A) = 1 and when A = λI ∈
Mm,n(K) with λ ∈ K (here I stands for the m × n matrix Ii,j = δi,j for any i, j).
The advantage of ‖·‖HS over ‖·‖2→2 lies in its convenient expression in terms of the
matrix entries. Actually, the trace norm is Hilbertian for the Hermitian form

(A,B) 7→ 〈A,B〉 = Tr(AB∗).

We have seen that a matrix A ∈Mm,n(K) has exactly r = rank(A) non zero singular
values. If k ∈ {0, 1, . . . , r} and if Ak is obtained from the SVD of A by forcing si = 0
for all i > k then we have the Eckart and Young observation:

min
B∈Mm,n(K)
rank(B)=k

‖A−B‖2HS = ‖A−Ak‖2HS = sk+1(A)2 + · · ·+ sr(A)2. (4.4)

The following result shows that A 7→ s(A) is 1-Lipschitz for ‖·‖HS and |·|2.

Theorem 4.2.5 (Hoffman–Wielandt inequality). — If A,B ∈Mm,n(K) then

m∧n∑
k=1

(sk(A)− sk(B))2 6 ‖A−B‖2HS .

Proof. — Let us consider the case where A and B are d× d Hermitian. We have

C = UAU∗ = diag(λ1(A), . . . , λd(A)) and D = V BV ∗ = diag(λ1(B), . . . , λd(B))

for some d× d unitary matrices U and V . By unitary invariance, we have

‖A−B‖2HS = ‖U∗CU − V ∗DV ‖2HS = ‖CUV ∗ − UV ∗D‖2HS = ‖CW −WD‖2HS
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where W = UV ∗. This gives, denoting P = (|Wi,j |2)16i,j6d,

‖A−B‖2HS =

d∑
i,j=1

((CW )i,j − (WD)i,j)
2 =

d∑
i,j=1

Pi,j(λi(A)− λj(B))2.

The expression above is linear in P . Moreover, since W is unitary, the matrix P has
all its entries in [0, 1] and each of its rows and columns sums up to 1 (we say that P
is doubly stochastic). If Pd is the set of all d× d doubly stochastic matrices then

‖A−B‖2HS > inf
Q∈Pd

Φ(Q) where Φ(Q) =

d∑
i,j=1

Qi,j(λi(A)− λj(B))2.

But Φ is linear and Pd is convex and compact, and thus the infimum above is achieved
for some extremal point Q of Pd. Now the Birkhoff–von Neumann theorem states that
the extremal points of Pd are exactly the permutation matrices. Recall that P ∈ Pd
is a permutation matrix when for a permutation π belonging to the symmetric group
Sd of {1, . . . , d}, we have Pi,j = δπ(i),j for every i, j ∈ {1, . . . , d}. This gives

‖A−B‖2HS > min
π∈Sd

d∑
i=1

(λi(A)− λπ(i)(B))2.

Finally, the desired inequality for arbitrary matrices A,B ∈ Mm,n(K) follows from
the Hermitian case above used for their Hermitization HA and HB (see (4.1)).

Remark 4.2.6 (Fréchet–Wasserstein distance). — The Fréchet–Wasserstein
W2 coupling distance between two probability measures η1, η2 on R with finite second
moment is defined by W2(η1, η2) = inf

√
E(|X1 −X2|2) where the infimum runs over

the set of couples of random variables (X1, X2) on R×R with X1 ∼ η1 and X2 ∼ η2.
Let us consider the finite discrete case where η1 = 1

m

∑m
i=1 δai and η2 = 1

m

∑m
i=1 δbi

where (ai)16i6m and (bi)16i6m are non-increasing sequences in [0,∞). If (X1, X2)
is a couple of random variables in [0,∞)2 with X1 ∼ η1 and X2 ∼ η2, then, denoting
Ci,j = P(X1 = ai, X2 = bj) for every i, j ∈ {1, . . . ,m},

E(|X1 −X2|2) =
∑

16i,j6m

Ci,j(ai − bj)2.

The marginal constraints on the couple (X1, X2) are actually equivalent to state that
the matrix (mCi,j)16i,j6m is doubly stochastic. Consequently, as in the proof of The-

orem 4.2.5, by using the Birkhoff–von Neumann theorem, we get

W2(η1, η2)2 = inf
mC∈Pm

∑
16i,j6m

Ci,j(ai−bj)2 =
1

m
min
π∈Sm

m∑
i=1

(ai−bπ(i))
2 =

1

m

m∑
i=1

(ai−bi)2.

Unitary invariant norms. — For every k ∈ {1, . . . ,m ∧ n} and any real number
p > 1, the map A ∈Mm,n(K) 7→ (s1(A)p+ · · ·+sk(A)p)1/p is a left and right unitary
invariant norm on Mm,n(K). We recover the operator norm ‖A‖2→2 for k = 1 and
the trace norm ‖A‖HS for (k, p) = (m ∧ n, 2). The special case (k, p) = (m ∧ n, 1)
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gives the Ky Fan norms, while the special case k = m ∧ n gives the Schatten norms,
a concept already considered in the first chapter.

4.3. Relationships between eigenvalues and singular values

We know that if A ∈ Mn,n(K) is normal (i.e. AA∗ = A∗A) then sk(A) = |λk(A)|
for every k ∈ {1, . . . , n}. Beyond normal matrices, for every A ∈ Mn,n(K) with row
vectors R1, . . . , Rn, we have, by viewing |det(A)| as the volume of a parallelepiped,

|det(A)| =
n∏
k=1

|λk(A)| =
n∏
k=1

sk(A) =

n∏
k=1

dist(Rk, span{R1, . . . , Rk−1}) (4.5)

(basis × height etc.). The following result, due to Weyl, is less global and more subtle.

Theorem 4.3.1 (Weyl inequalities). — If A ∈Mn,n(K), then

∀k ∈ {1, . . . , n},
k∏
i=1

|λi(A)| 6
k∏
i=1

si(A) and

n∏
i=k

si(A) 6
n∏
i=k

|λi(A)|. (4.6)

Equalities are achieved in (4.6) for k = n and k = 1 respectively thanks to (4.5).

Proof. — Let us prove first that if A ∈ Mm,n(C) then for every unitary matrices
V ∈ Mm,m(C) and W ∈ Mn,n(C) and for every k 6 m ∧ n, denoting Vk = V1:m,1:k

andWk = W1:n,1:k the matrices formed by the first k columns of V andW respectively,

|det(V ∗k AWk)| 6 s1(A) · · · sk(A). (4.7)

Indeed, since (V ∗AW )1:k,1:k = V ∗k AWk, we get from Theorem 4.2.4 and unitary in-
variance that si(V

∗
k AWk) 6 si(V

∗AW ) = si(A) for every i ∈ {1, . . . , k}, and therefore

|det(V ∗k AWk)| = s1(V ∗k AWk) · · · sk(V ∗k AWk) 6 s1(A) · · · sk(A),

which gives (4.7). We turn now to the proof of (4.6). The right hand side inequalities
follow actually from the left hand side inequalities, for instance by taking the inverse
if A is invertible, and using the density of invertible matrices and the continuity of
the eigenvalues and the singular values if not (both are continuous since they are the
roots of a polynomial with polynomial coefficients in the matrix entries). Let us prove
the left hand side inequalities in (4.6). By the Schur unitary decomposition, there
exists a C-unitary matrix U ∈ Mn,n(C) such that the matrix T = U∗AU is upper
triangular with diagonal λ1(A), . . . , λn(A). For every k ∈ {1, . . . , n}, we have

T1:k,1:k = (U∗AU)1:k,1:k = U∗kAUk.

Thus U∗kAUk is upper triangular with diagonal λ1(A), . . . , λk(A). From (4.7) we get

|λ1(A) · · ·λk(A)| = |det(T1:k,1:k)| = |det(U∗kAUk)| 6 s1(A) · · · sk(A).
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In matrix analysis and convex analysis, it is customary to say that Weyl’s inequali-
ties express a logarithmic majorization between the sequences |λn(A)|, . . . , |λ1(A)| and
sn(A), . . . , s1(A). Such a logarithmic majorization has a number of consequences. In
particular, it implies that for every real valued function ϕ such that t 7→ ϕ(et) is
increasing and convex on [sn(A), s1(A)], we have

∀k ∈ {1, . . . , n},
k∑
i=1

ϕ(|λi(A)|) 6
k∑
i=1

ϕ(si(A)). (4.8)

In particular, we obtain from (4.8) that

n∑
k=1

|λk(A)|2 6
n∑
k=1

sk(A)2 = Tr(AA∗) =

n∑
i,j=1

|Ai,j |2 = ‖A‖2HS . (4.9)

The following result is a sort of converse to Weyl inequalities (4.6).

Theorem 4.3.2 (Horn inverse problem). — If λ ∈ Cn and s ∈ [0,∞)n satisfy
|λ1| > · · · > |λn| and s1 > · · · > sn and the Weyl relationships (4.6) then there exists
A ∈Mn,n(C) such that λi(A) = λi and si(A) = si for every i ∈ {1, . . . , n}.

From (4.6) we get sn(A) 6 |λn(A)| 6 |λ1(A)| 6 s1(A) for any A ∈ Mn,n(K). In
particular, we have the following spectral radius / operator norm comparison:

ρ(A) = |λ1(A)| 6 s1(A) = ‖A‖2→2 .

In this spirit, the following result allows to estimate the spectral radius ρ(A) with
the operator norm of the powers of A. The proof relies on the fact that thanks to
the finite dimension, all norms are equivalent, and in particular equivalent to a sub-
multiplicative norm. The result remains valid on Banach algebras, for which the norm
is sub-multiplicative by definition (the proof is less elementary than for matrices).

Theorem 4.3.3 (Gelfand spectral radius formula). — For any norm ‖·‖ on
the finite dimensional vector space Mn,n(C) and for every matrix A ∈Mn,n(C),

ρ(A) = |λ1(A)| = lim
k→∞

∥∥Ak∥∥1/k
.

Proof. — Recall that the `n∞(C) operator norm defined for every A ∈Mn,n(C) by

‖A‖∞ = max
x∈Cn
‖x‖∞=1

‖Ax‖∞ = max
16i6n

n∑
j=1

|Ai,j |

is sub-multiplicative, as every operator norm, i.e. ‖AB‖∞ 6 ‖A‖∞ ‖B‖∞ for every
A,B ∈ Mn,n(C). From now on, we fix A ∈ Mn,n(C). Let `1, . . . , `r be the distinct
eigenvalues of A, with multiplicities n1, . . . , nr. We have n1+· · ·+nr = n. The Jordan
decomposition states that there exists an invertible matrix P ∈Mn,n(C) such that

J = PAP−1 = J1 ⊕ · · · ⊕ Jr
is bloc diagonal, upper triangular, and bidiagonal, with for all m ∈ {1, . . . , r}, Jm =
`mI + N ∈ Mnm,nm(C) where I is the m ×m identity matrix and where N is the
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m ×m nilpotent matrix given by Ni,j = δi+1,j for every i, j ∈ {1, . . . , nm}. Let us
prove now the following couple of statements:

(i) ρ(A) < 1 if and only if limk→∞Ak = 0,
(ii) if ρ(A) > 1 then limk→∞

∥∥Ak∥∥ =∞.

Proof of (i). If limk→∞Ak = 0 then for any eigenvalue λ of A with eigenvector x,

lim
k→∞

λkx = lim
k→∞

Akx = 0.

Since x 6= 0, we get limk→∞ λk = 0, giving ρ(A) < 1. Conversely, if ρ(A) < 1 then
the eigenvalues of A have module < 1, and computing Jk gives then limk→∞Ak = 0.

Proof of (ii). If ρ(A) > 1 then A has an eigenvalue λ with |λ| > 1, and thus
limk→∞ |(Jk)i,i| = limk→∞ |λ|k =∞ for some i ∈ {1, . . . , n}. This gives

lim
k→∞

∥∥Jk∥∥∞ =∞.

Now since Jk = PAkP−1 and since ‖·‖∞ is sub-multiplicative, we get

lim
k→∞

∥∥Ak∥∥∞ =∞.

Finally, since all norms are equivalent we obtain

lim
k→∞

∥∥Ak∥∥ =∞.

Proof of main result. For any ε > 0, if Aε = (ρ(A) + ε)−1A and since ρ(Aε) < 1,
we get by (i) that limk→∞Akε = 0. In particular,

∥∥Akε∥∥ 6 1 for k large enough. In

other words,
∥∥Ak∥∥ 6 (ε+ ρ(A))k for k large enough. Next, if A−ε = (ρ(A)− ε)−1A,

then ρ(A−ε) > 1, and (ii) gives limk→∞
∥∥Ak∥∥ =∞, and thus

∥∥Ak∥∥ > (ρ(A)− ε)k for

k large enough. Since ε > 0 is arbitrary, we get limk→∞
k
√
‖Ak‖ = ρ(A).

The eigenvalues of non normal matrices are far more sensitive to perturbations
than the singular values, and this is captured by the notion of pseudo-spectrum:

pseudospecε(A) =
⋃

‖B−A‖2→26ε

{λ1(B), . . . , λn(B)}.

If A is normal then pseudospecε(A) is an ε-neighborhood of the spectrum of A.

4.4. Relation with rows distances

The following couple of results relate the singular values of matrices to distances
between rows (or columns). For square random matrices, they provide a convenient
control on the operator norm and trace norm of the inverse respectively. Such bounds
are particularly helpful for random matrices.

Theorem 4.4.1 (Rows and operator norm). — If A ∈ Mm,n(K) with m 6 n
has row vectors R1, . . . , Rm, then, denoting R−i = span{Rj : j 6= i}, we have

m−1/2 min
16i6m

dist2(Ri, R−i) 6 sm∧n(A) 6 min
16i6m

dist2(Ri, R−i).
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Proof. — Note that R1, . . . , Rm are the columns of B = A> ∈Mn,m(K) and that A
and B have the same singular values. For every x ∈ Km and every i ∈ {1, . . . ,m},
the triangle inequality and the identity Bx = x1R1 + · · ·+ xmRm give

|Bx|2 > dist2(Bx,R−i) = min
y∈R−i

|Bx− y|2 = min
y∈R−i

|xiRi − y|2 = |xi|dist2(Ri, R−i).

If |x|2 = 1 then necessarily |xi| > m−1/2 for some i ∈ {1, . . . ,m}, and therefore

sn∧m(B) = min
|x|2=1

|Bx|2 > m−1/2 min
16i6m

dist2(Ri, R−i).

Conversely, for any i ∈ {1, . . . ,m}, there exists a vector y ∈ Km with yi = 1 such that

dist2(Ri, R−i) = |y1R1 + · · ·+ ymRm|2 = |By|2 > |y|2 min
|x|2=1

|Bx|2 > sn∧m(B)

where we used the fact that |y|22 = |y1|2 + · · ·+ |yn|2 > |yi|2 = 1.

Theorem 4.4.2 (Rows and trace norm). — If A ∈ Mm,n(K) with m 6 n has
rows R1, . . . , Rm and if rank(A) = m then, denoting R−i = span{Rj : j 6= i},

m∑
i=1

s−2
i (A) =

m∑
i=1

dist2(Ri, R−i)
−2.

Proof. — The orthogonal projection of R∗i on R−i is B∗(BB∗)−1BR∗i where B is the
(m− 1)× n matrix obtained from A by removing the row Ri. In particular, we have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗i
∣∣2
2

= (BR∗i )
∗(BB∗)−1BR∗i

by the Pythagoras theorem. On the other hand, the Schur bloc inversion formula
states that if M is a m×m matrix then for every partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)
−1MIc,I)

−1.

Now we take M = AA∗ and I = {i}, and we note that (AA∗)i,j = RiR
∗
j , which gives

((AA∗)−1)i,i = (RiR
∗
i − (BR∗i )

∗(BB∗)−1BR∗i )
−1 = dist2(Ri, R−i)

−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}.

4.5. Gaussian random matrices

This section gathers some facts concerning random matrices with i.i.d. Gaussian
entries. The standard Gaussian law on K is N (0, 1) if K = R and N (0, 1

2I2) if

K = C = R2. If Z is a standard Gaussian random variable on K then

Var(Z) = E(|Z − EZ|2) = E(|Z|2) = 1.

Let (Gi,j)i,j>1 be i.i.d. standard Gaussian random variables on K. For any m,n > 1,

G = (Gi,j)16i6m, 16j6n
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is a random m× n matrix with density in Mm,n(K) ≡ Knm proportional to

G 7→ exp

−β
2

m∑
i=1

n∑
j=1

|Gi,j |2
 = exp

(
−β

2
Tr(GG∗)

)
= exp

(
−β

2
‖G‖2HS

)
where

β =

{
1 if K = R,

2 if K = C.

The law of G is unitary invariant in the sense that UGV
d
= G for every deterministic

K–unitary matrices U (m×m) and V (n×n). We say that the random m×n matrix
G belongs to the Ginibre Ensemble, real if β = 1 and complex if β = 2.

Remark 4.5.1 (Complex Ginibre and GUE). — If m = n and β = 2 then
H1 = 1

2 (G + G∗) and H2 = 1
2
√
−1

(G − G∗) are independent and in the Gaussian

Unitary Ensemble (GUE). Conversely, if H1 and H2 are independent m×m random
matrices in the GUE then H1 +

√
−1H2 has the law of G with m = n and β = 2.

Theorem 4.5.2 (Wishart). — Let S+
m be the cone of m × m Hermitian positive

definite matrices. If m 6 n then the law of the random Hermitian matrix W = GG∗

is a Wishart distribution with Lebesgue density proportional to

W 7→ det(W )β(n−m+1)/2−1 exp

(
−β

2
Tr(W )

)
1S+

m
(W ).

Idea of the proof. — The Gram–Schmidt algorithm for the rows ofG furnishes a n×m
matrix V such that T = GV is m×m lower triangular with a real positive diagonal.
Note that V can be completed into a n× n K–unitary matrix. We have

W = GV V ∗G∗ = TT ∗, det(W ) = det(T )2 =

m∏
k=1

T 2
k,k, and Tr(W ) =

m∑
i,j=1

|Ti,j |2.

The desired result follows from the formulas for the Jacobian of the change of variables
G 7→ (T, V ) and T 7→ TT ∗ and the integration of the independent variable V .

From the statistical point of view, the Wishart distribution can be understood as a
sort of multivariate χ2 distribution. Note that the determinant det(W β(n−m+1)/2−1)
disappears when n = m + (2 − β)/β (i.e. m = n if β = 2 or n = m + 1 if β = 1).
From the physical point of view, the “potential” – which is minus the logarithm of
the density – is purely spectral and is given up to an additive constant by

W 7→
m∑
i=1

E(λi(W )) where E(λ) =
β

2
λ− β(n−m+ 1)− 2

2
log(λ).

Theorem 4.5.3 (Bidiagonalization). — If m 6 n then there exists two random
K–unitary matrices U (m ×m) and V (n × n) such that B =

√
βUGV ∈ Mm,n(K)
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is lower triangular and bidiagonal with independent real entries of law

χβn 0 0 0 · · · 0
χβ(m−1) χβ(n−1) 0 0 · · · 0

0 χβ(m−2) χβ(n−2) 0 · · · 0

0 0
. . .

. . . · · · 0
...

... · · · 0
0 0 0 · · · 0 χβ χβ(n−(m−1)) 0 · · · 0


.

Recall that if X1, . . . , X` are independent and identically distributed with law
N (0, 1) then ‖X‖22 = X2

1 + · · · + X2
` ∼ χ2

` and ‖X‖2 =
√
X2

1 + · · ·+X2
` ∼ χ`. The

densities of χ2
` and χ` are proportional to t 7→ t`/2−1e−t/2 and t 7→ t`−1e−t

2/2.

Idea of the proof. — The desired result follows from (4.3) and basic properties of
Gaussian laws (Cochran’s theorem on the orthogonal Gaussian projections).

Here is an application of Theorem 4.5.3 : since B and G have same singular values,
one may use B for their simulation, reducing the dimension from nm to 2m− 1.

Theorem 4.5.4 (Laguerre Ensembles). — If m 6 n then the random vector

(s2
1(G), . . . , s2

m(G)) = (λ1(GG∗), . . . , λm(GG∗))

admits a density on {λ ∈ [0,∞)m : λ1 > · · · > λn} proportional to

λ 7→ exp

(
−β

2

m∑
i=1

λi

)
m∏
i=1

λ
β(n−m+1)/2−1
i

∏
16i<j6m

(λi − λj)β .

The correlation is captured by the Vandermonde determinant and expresses an
electrostatic logarithmic repulsive potential, given up to an additive constant by

λ 7→ β

2

 m∑
i=1

λi − (β(n−m+ 1)− 2)
∑

16i<j6m

log(λi − λj)

.
On the other hand, we recognize in the expression of the density the Laguerre weight
t 7→ tαe−t. We say that GG∗ belongs to the β–Laguerre ensemble or Laguerre Or-
thogonal Ensemble (LOE) for β = 1 and Laguerre Unitary Ensemble (LUE) for β = 2.

Proof. — Let us consider the m×m tridiagonal real symmetric matrix

T =


am bm−1

bm−1 am−1 bm−2

. . .
. . .

. . .

b2 a2 b1
b1 a1

 .

We denote by λ1, . . . , λm ∈ R its eigenvalues. Let v1, . . . , vm be an orthonormal
system of eigenvectors. If V is the m×m orthogonal matrix with columns v1, . . . , vm
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then T = V diag(λ1, . . . , λm)V >. For every k ∈ {1, . . . ,m}, the equation Tvk = λkvk
writes, for every i ∈ {1, . . . ,m}, with the convention b0 = bm = vk,0 = vk,m+1 = 0,

bm−i+1vk,i−1 + am−i+1vk,i + bm−ivk,i+1 = λkvk,i.

It follows from these recursive equations that the matrix V is entirely determined by
its first row r = (r1, . . . , rm) = (v1,1, . . . , vm,1) and λ1, . . . , λm. From now on, we
assume that λi 6= λj for every i 6= j and that r1 > 0, . . . , rm > 0, which makes V
unique. Our first goal is to compute the Jacobian of the change of variable

(a, b) 7→ (λ, r).

Note that r2
1 + · · ·+ r2

m = 1. For every λ 6∈ {λ1, . . . , λm} we have

((T − λI)−1)1,1 =

m∑
i=1

r2
i

λi − λ
.

On the other hand, for every m×m matrix A with det(A) 6= 0, we have

(A−1)1,1 =
det(Am−1)

det(A)

where Ak stands for the k × k right bottom sub-matrix Ak = (Ai,j)m−k+16i,j6m. If
λk,1, . . . , λk,k are the eigenvalues of Tk, then we obtain, with A = T − λI,∏m−1

i=1 (λm−1,i − λ)∏m
i=1(λi − λ)

=

m∑
i=1

r2
i

λi − λ
.

Recall that λ1, . . . , λm are all distinct. By denoting Pk(λ) =
∏k
i=1(λ − λk,i) the

characteristic polynomial of Tk, we get, for every i ∈ {1, . . . ,m},
Pm−1(λi)

P ′m(λi)
= r2

i .

Since P ′m(λi) =
∏

16j 6=i6m(λi − λj) we obtain

m∏
i=1

r2
i =

∏m
i=1 |Pm−1(λi)|∏

16i<j6m(λi − λj)2
.

Let us rewrite the numerator of the right hand side. By expanding the first row in
the determinant det(λI − T ) = Pm(λ), we get, with P−1 = 0 and P0 = 1,

Pm(λ) = (λ− am)Pm−1(λ)− b2m−1Pm−2(λ).

Additionally, we obtain

m−1∏
i=1

|Pm(λm−1,i)| = b
2(m−1)
m−1

m−1∏
i=1

|Pm−2(λm−1,i)|.

Now the observation
m−1∏
i=1

|Pm−2(λm−1,i)| =
m−1∏
i=1

m−2∏
j=1

|λm−2,j − λm−1,i| =
m−2∏
j=1

|Pm−1(λm−2,j)|
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leads by induction to the identity

m−1∏
i=1

|Pm(λm−1,i)| =
m−1∏
i=1

b2ii .

Finally, we have shown that ∏
16i<j6m

(λi − λj)2 =

∏m−1
i=1 b2ii∏m
i=1 r

2
i

. (4.10)

To compute the Jacobian of the change of variable (a, b) 7→ (λ, r), we start from

((I − λT )−1)1,1 =

m∑
i=1

r2
i

1− λλi

with |λ| < 1/max(λ1, . . . , λm) (this gives ‖λT‖2→2 < 1). By expanding both sides in
power series of λ and identifying the coefficients, we get the system of equations

(T k)1,1 =

m∑
i=1

r2
i λ

k
i where k ∈ {0, 1, . . . , 2m− 1}.

Since (T k)1,1 =
〈
T ke1, e1

〉
and since T is tridiagonal, we see that this system of

equations is triangular with respect to the variables am, bm−1, am−1, bm−2, . . .. The
first equation is 1 = r2

1 + · · ·+r2
m and gives −rmdrm = r1dr1 + · · ·+rm−1drm−1. This

identity and the remaining triangular equations give, after some tedious calculus,

dadb = ± 1

rm

∏m−1
i=1 bi∏m
i=1 ri

( ∏m
i=1 r

2
i∏m−1

i=1 b2ii

)2 ∏
16i<j6m

(λi − λj)4 dλdr.

which gives, using (4.10),

dadb = ± 1

rm

∏m−1
i=1 bi∏m
i=1 ri

dλdr. (4.11)

Let us consider now the m× n lower triangular bidiagonal real matrix (m 6 n)

B =


xn
ym−1 xn−1

. . .
. . .

y1 xn−(m−1)


The matrix T = BB> is m×m symmetric tridiagonal and for i ∈ {1, . . . ,m− 1},

am = x2
n, ai = y2

i + x2
n−(m−i), bi = yixn−(m−i)+1. (4.12)

Let us assume that B has real non negative entries. We get, after some calculus,

dxdy =

(
2mxn−(m−1)

m−2∏
i=0

x2
n−i

)−1

dadb. (4.13)
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From Theorem 4.5.3 we have, with a normalizing constant cm,n,β ,

dB = cm,n,β

m−1∏
i=0

x
β(n−i)−1
n−i

m−1∏
i=1

yβi−1
i exp

(
−β

2

m−1∑
i=0

x2
n−i −

β

2

m−1∑
i=1

y2
i

)
dxdy.

Let us consider T as a function of λ and r. We first note that
m−1∑
i=0

x2
n−i +

m−1∑
i=1

y2
i = Tr(BB>) = Tr(T ) =

m∑
i=1

λi.

Since the law of B is unitary (orthogonal!) invariant, we get that λ and r are inde-
pendent and with probability one the components of λ are all distinct. Let ϕ be the
density of r (can be made explicit). Using (4.11-4.12-4.13), we obtain

dB = cm,n,β

∏m−1
i=0 x

β(n−i)−2
n−i

∏m−1
i=1 yβii

rm
∏m
i=1 ri

exp

(
−β

2

m∑
i=1

λi

)
ϕ(r) dλdr.

But using (4.10-4.12) we have∏
16i<j6m

|λi − λj | =
∏m−1
i=1 bii∏m
i=1 ri

=

∏m−1
i=1 yiix

i
n−(m−i)+1∏m

i=1 ri
=

∏m−1
i=0 xm−i−1

n−i
∏m−1
i=1 yii∏m

i=1 ri

and therefore

dB = cm,n,β

(∏m−1
i=0 x2

n−i

) 1
2β(n−m+1)−1

rm
∏m
i=1 ri

∏
16i<j6m

|λi − λj |β exp

(
−β

2

m∑
i=1

λi

)
ϕ(r) dλdr.

Now it remains to use the identity
∏m−1
i=0 x2

n−i = det(B)2 = det(T ) =
∏m
i=1 λi to get

only (λ, r) variables, and to eliminate the r variable by separation and integration.

Remark 4.5.5 (Universality of Gaussian models). — Gaussian models of ran-
dom matrices have the advantage to allow explicit computations. However, in some
applications such as in compressed sensing, Gaussian models can be less relevant than
discrete models such as Bernoulli/Rademacher models. It turns out that most large
dimensional properties are the same, such as in the Marchenko–Pastur theorem.

4.6. The Marchenko–Pastur theorem

The Marchenko–Pastur theorem concerns the asymptotics of the counting proba-
bility measure of the singular values of large random rectangular matrices, with i.i.d.
entries, when the aspect ratio (number of rows over number of columns) of the matrix
converges to a finite positive real number.

Theorem 4.6.1 (Marchenko–Pastur). — Let (Mi,j)i,j>1 be an infinite table of
i.i.d. random variables on K with unit variance and arbitrary mean. Let

νm,n =
1

m

m∑
k=1

δsk( 1√
n
M) =

1

m

m∑
k=1

δ
λk(
√

1
nMM∗)
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be the counting probability measure of the singular values of the m×n random matrix

1√
n
M =

(
1√
n
Mi,j

)
16i6m,16j6n

.

Suppose that m = mn depends on n in such a way that

lim
n→∞

mn

n
= ρ ∈ (0,∞).

Then with probability one, for any bounded continuous function f : [0,∞)→ R,∫
f dνm,n −→

n→+∞

∫
f dνρ

where νρ is the Marchenko–Pastur law with shape parameter ρ given by(
1− 1

ρ

)
+

δ0 +
1

ρπx

√
(b− x2)(x2 − a) 1[

√
a,
√
b](x)dx. (4.14)

where a = (1−√ρ)2 and b = (1 +
√
ρ)2 (atom at point 0 if and only if ρ > 1).

Theorem 4.6.1 is a sort of strong law of large numbers: it states the almost sure
convergence of the sequence (νm,n)n>1 to a deterministic probability measure νρ.

Weak convergence. — Recall that for probability measures, the weak convergence
with respect to bounded continuous functions is equivalent to the pointwise conver-
gence of cumulative distribution functions at every continuity point of the limit. This
convergence, known as the narrow convergence, corresponds also to the convergence in
law of random variables. Consequently, the Marchenko–Pastur Theorem 4.6.1 states
that if m depends on n with limn→∞m/n = ρ ∈ (0,∞) then with probability one,
for every x ∈ R (x 6= 0 if ρ > 1) denoting I = (−∞, x],

lim
n→∞

νm,n(I) = νρ(I).

Atom at 0. — The atom at 0 in νρ when ρ > 1 can be understood by the fact that
sk(M) = 0 for any k > m ∧ n. If m > n then νρ({0}) > (m− n)/m.

Quarter circle law. — When ρ = 1 then M is asymptotically square, a = 0, b = 4,
and ν1 is the so-called quarter circle law

1

π

√
4− x2 1[0,2](x)dx.

Actually, the normalization factor makes it an ellipse instead of a circle.
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Alternate formulation. — Recall that s2
k( 1√

n
M) = λk( 1

nMM∗) for every k ∈
{1, . . . ,m}. The image of νm,n by the map x 7→ x2 is the probability measure

µm,n =
1

m

m∑
k=1

δλk( 1
nMM∗).

Similarly, the image µρ of νρ by the map x 7→ x2 is given by(
1− 1

ρ

)
+

δ0 +
1

ρ2πx

√
(b− x)(x− a) 1[a,b](x)dx (4.15)

where a = (1−√ρ)2 and b = (1 +
√
ρ)2 as in Theorem 4.6.1. As an immediate con-

sequence, the Marchenko–Pastur theorem 4.6.1 can be usefully rephrased as follows:

Theorem 4.6.2 (Marchenko–Pastur). — Let (Mi,j)i,j>1 be an infinite table of
i.i.d. random variables on K with unit variance and arbitrary mean. Let

µm,n =
1

m

m∑
k=1

δλk( 1
nMM∗)

be the counting probability measure of the eigenvalues of the m ×m random matrix
1
nMM∗ where M = (Mi,j)16i6m,16j6n. Suppose that m = mn depends on n with

lim
n→∞

mn

n
= ρ ∈ (0,∞)

then with probability one, for any bounded continuous function f : [0,∞)→ R,∫
f dµm,n −→

n→+∞

∫
f dµρ

where µρ is the Marchenko–Pastur law defined by (4.15).

Remark 4.6.3 (First moment and tightness). — By the strong law of large
numbers, we have, with probability one,∫

x dµm,n(x) =
1

m

m∑
k=1

s2
k(

1√
n
M)

=
1

m
Tr

(
1

n
MM∗

)
=

1

nm

∑
16i6m
16j6n

|Mi,j |2 −→
n,m→+∞

1.

This shows the almost sure convergence of the first moment in the Marchenko–Pastur
theorem. Moreover, by Markov’s inequality, for any r > 0, we have

µm,n([0, r]c) 6
1

r

∫
x dµm,n(x).

This shows that almost surely the sequence (µmn,n)n>1 is tight.
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Figure 2. Absolutely continuous parts of the Marchenko–Pastur laws νρ
(4.14) and µρ (4.15) for different values of the shape parameter ρ. These
graphics were produced with the wxMaxima free software package.
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Remark 4.6.4 (Covariance matrices). — Suppose that M has centered entries.
The column vectors C1, . . . , Cn of M are independent and identically distributed ran-
dom vectors of Rm with mean 0 and covariance Im, and 1

nMM∗ is the empirical
covariance matrix of this sequence of vectors seen as a sample of N (0, Im). We have

1

n
MM∗ =

1

n

n∑
k=1

CkCk
∗.

Also, if m is fixed then by the strong law of large numbers, with probability one,
limn→∞

1
nMM∗ = E(C1C1

∗) = Im. This is outside the regime of the Marchenko–
Pastur theorem, for which m depends on n in such a way that limn→∞m/n ∈ (0,∞).

4.7. Proof of the Marchenko–Pastur theorem

This section is devoted to a proof of Theorem 4.6.1. We will actually provide a
proof of the equivalent version formulated in Theorem 4.6.2, by using the method of

moments. Let us define the truncated matrix M̃ = (M̃i,j)16i6m,16j6n where

M̃i,j = Mi,j1{|Mi,j |6C}

with C > 0. Let us denote the empirical spectral distribution of M and M̃ by

η1 =
1

m

m∑
i=1

δsi( 1√
n
M) and η2 =

1

m

m∑
i=1

δ
si(

1√
n
M̃)
.

From Remark 4.2.6 and the Hoffman–Wielandt inequality of Theorem 4.2.5, we get

W 2
2 (η1, η2) =

1

m

m∧n∑
k=1

(
sk

(
1√
n
M

)
− sk

(
1√
n
M̃

))2

6
1

m

∥∥∥∥ 1√
n
M − 1√

n
M̃

∥∥∥∥2

HS

=
1

nm

m∑
i=1

n∑
j=1

|Mi,j |21{|Mi,j |>C}.

By the strong law of large numbers, we get, with probability one,

lim
m,n→∞

W 2
2 (η1, η2) 6 E(|M1,1|21{|M1,1|>C}).

Since M1,1 has finite second moment, the right hand side can be made arbitrary small
by taking C sufficiently large. Now it is well known that the convergence for the
W2 distance implies the weak convergence with respect to continuous and bounded
functions. Therefore, one may assume that the entries of M have bounded support
(note that by scaling, one may take entries of arbitrary variance, for instance 1).

The next step consists in a reduction to the centered case. Let us define the m×n
centered matrix M = M − E(M), and this time the probability measures η1, η2 by

η1 = µm,n =
1

m

m∑
i=1

δs2i ( 1√
n
M) and η2 =

1

m

m∑
i=1

δs2i ( 1√
n
M).
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Let F1, F2 : R→ [0, 1] be their cumulative distribution functions defined by

F1(x) =
|{1 6 i 6 m : si(M) 6

√
nx}|

m
and F2(x) =

∣∣{1 6 i 6 m : si(M) 6
√
nx}

∣∣
m

.

Since rank(M −M) = rank(E(M)) 6 1, we get by Theorem 4.2.3 that

sup
x∈R
|F1(x)− F2(x)| 6 rank(M −M)

m
6

1

m
.

We recognize on the left hand side the Kolmogorov–Smirnov distance between η1

and η2. Recall that the convergence for this distance implies the weak convergence.
Consequently, one may further assume that M has mean 0. Recall that if µ is a
random probability measure then Eµ is the non random probability measure defined
by (Eµ)(A) = E(µ(A)) for every measurable set A. Lemma 4.7.1 below reduces the
problem to the weak convergence of Eµm,n to µρ (via the first Borel-Cantelli lemma
and the countable test functions f = 1(−∞,x] with x rational). Next, Lemmas 4.7.3
and 4.7.4 below reduce in turn the problem to the convergence of the moments of
Eµm,n to the ones of µρ computed in Lemma 4.7.5 below.

Summarizing, it remains to show that if M has i.i.d. entries of mean 0, variance 1,
and support [−C,C], and if limn→∞m/n = ρ ∈ (0,∞), then, for every r > 1,

lim
n→∞

E
∫
xr dµm,n =

r−1∑
k=0

ρk

k + 1

(
r

k

)(
r − 1

k

)
. (4.16)

The result is immediate for the first moment (r = 1) since

E
∫
x dµm,n =

1

mn
E

m∑
k=1

λk(MM∗)

=
1

nm
ETr(MM∗)

=
1

nm

∑
16i6m
16j6n

E(|Mi,j |2) = 1.

This shows actually that Eµm,n and µρ have even the same first moment for all values
of m and n. The convergence of the second moment (r = 2) is far more subtle:

E
∫
x2 dµm,n =

1

mn2
E

m∑
k=1

λ2
k(MM∗)

=
1

mn2
ETr(MM∗MM∗)

=
1

mn2

∑
16i,k6m
16j,l6n

E(Mi,jMk,jMk,lM i,l).

If an element of {(ij), (kj), (kl), (il)} appears one time and exactly one in the prod-
uct Mi,jMk,jMk,lM i,l then by the assumptions of independence and mean 0 we get

E(Mi,jMk,jMk,lM i,l) = 0. The case when the four elements are the same appears



110 CHAPTER 4. SINGULAR VALUES AND WISHART MATRICES

with mn possibilities and is thus asymptotically negligible. It remains only to con-
sider the cases where two different elements appear twice. The case (ij) = (kj) and
(kl) = (il) gives i = k and contributes E(|Mi,j |2|Mi,l|2) = 1 with m(n2 − n) possibil-
ities (here j 6= l since the case j = l was already considered). The case (ij) = (kl)
and (kj) = (il) gives i = k (and j = l) and was thus already considered. The case
(ij) = (il) and (kj) = (kl) gives j = l and contributes E(|Mi,j |2|Mk,j |2) = 1 with
n(m2 −m) possibilities (here i 6= k since the case i = k was already considered). We
used here the assumptions of independence, mean 0, and variance 1. At the end, the
second moment of Eµm,n tends to limn→∞(m(n2 − n) + n(m2 −m))/(mn2) = 1 + ρ
which is the second moment of µρ. We have actually in hand a method reducing the
proof of (4.16) to combinatorial arguments. Namely, for all r > 1, we write∫

xr dµm,n(x) =
1

mnr

m∑
k=1

λk(MM∗)r =
1

mnr
Tr((MM∗)r)

which gives

E
∫
xr dµm,n(x) =

1

mnr

∑
16i1,...,ir6m
16j1,...,jr6n

E(Mi1,j1M i2,j1Mi2,j2M i3,j2 · · ·Mir,jrM i1,jr ).

Draw i1, . . . , ir on a horizontal line representing N and j1, . . . , jr on another parallel
horizontal line below the previous one representing another copy of N. Draw r down
edges from is to js and r up edges from js to is+1, with the convention ir+1 = i1, for
all s = 1, . . . , r. This produces an oriented “MP” graph with possibly multiple edges
between two nodes (certain vertices or edges of this graph may have a degree larger
that one due to the possible coincidence of certain values of is or of js). We have

E
∫
xr dµm,n(x) =

1

nrm

∑
G

EMG

where
∑
G runs over the set of MP graphs and where MG is the product of Ma,b or

Ma,b over the edges ab of G. We say that two MP graphs are equivalent when they
are identical up to permutation of {1, . . . ,m} and {1, . . . , n}. Each equivalent class
contains a unique canonical graph such that i1 = j1 = 1 and is 6 max{i1, . . . , is−1}+1
and js 6 max{j1, . . . , js−1} + 1 for all s. A canonical graph possesses α + 1 distinct
i-vertices and β distinct j-vertices with 0 6 α 6 r − 1 and 1 6 β 6 r. We say that
such a canonical graph is T (α, β), and we distinguish three types :

– T1(α, β) : T (α, β) graphs for which each down edge coincides with one and only
one up edge. We have necessarily α+ β = r and we abridge T1(α, β) into T1(α)

– T2(α, β) : T (α, β) graphs with at least one edge of multiplicity exactly 1
– T3(α, β) : T (α, β) graphs which are neither T1(α, β) nor T2(α, β)

We admit the following combinatorial facts :

(C1) the cardinal of the equivalent class of each T (α, β) canonical graph is

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1).

(C2) each T3(α, β) canonical graph has at most r distinct vertices (i.e. α+ β < r).
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(C3) the number of T1(α, β) canonical graphs is

1

α+ 1

(
r

α

)(
r − 1

α

)
.

The quantity E(MG) depends only on the equivalent class of G. We denote by
E(MT (α,β)) the common value to all T (α, β) canonical graphs. We get, using (C1),

1

nrm

∑
G

MG =
1

nrm

∑
T (α,β)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1)E(MT (α,β))

where the sum runs over the set of all canonical graphs. The contribution of T2 graphs
is zero thanks to the assumption of independence and mean 0. The contribution of
T3 graphs is asymptotically negligible since there are few of them. Namely, by the
bounded support assumption we have |MT3(α,β)| 6 C2r, moreover the number of
T3(α, β) canonical graphs is bounded by a constant cr, and then, from (C2), we get

1

nrm

∑
T3(α,β)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1)E(MT (α,β))

6
cr
nrm

C2rmα+1nβ = O(n−1).

Therefore we know now that only T1 graphs contributes asymptotically. Let us con-
sider a T1(α, β) = T1(α) canonical graph (β = r − α). Since MT (α,β) = MT (α) is a
product of squared modules of distinct entries of M , which are independent, of mean
0, and variance 1, we have E(MT (α)) = 1. Consequently, using (C3) we obtain

1

nrm

∑
T1(α)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− r + α+ 1)E(MT (α,r−α))

=

r−1∑
α=0

1

1 + α

(
r

α

)(
r − 1

α

)
1

nrm
m(m− 1) · · · (m− α)n(n− 1) · · · (n− r + α+ 1)

=

r−1∑
α=0

1

1 + α

(
r

α

)(
r − 1

α

) α∏
i=1

(
m

n
− i

n

) r−α∏
i=1

(
1− i− 1

n

)
.

Therefore, denoting ρn = m/n, we have

E
∫
xr dµn(x) =

r−1∑
α=0

ραn
α+ 1

(
r

α

)(
r − 1

α

)
+O(n−1).

This achieves the proof of (4.16), and thus of the Marchenko–Pastur Theorem 4.6.2.

Concentration for empirical spectral distributions. — This section is devoted
to the proof of Lemma 4.7.1 below. This lemma provides a concentration inequality
which complements the results of the first chapter. The variation of f : R→ R is

V (f) = sup
(xk)k∈Z

∑
k∈Z
|f(xk+1)− f(xk)| ∈ [0,+∞],
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where the supremum runs over all non decreasing sequences (xk)k∈Z. If f is differen-
tiable with f ′ ∈ L1(R) then V (f) = ‖f ′‖1. If f = 1(−∞,s] for s ∈ R then V (f) = 1.

Lemma 4.7.1 (Concentration). — Let M be a m×n complex random matrix with
independent rows and µM = 1

m

∑m
k=1 δλk(MM∗). Then for every bounded measurable

function f : R→ R and every r > 0,

P
(∣∣∣∣∫ f dµM − E

∫
f dµM

∣∣∣∣ > r

)
6 2 exp

(
− mr2

2V (f)2

)
.

Proof. — Let A and B be two m × n complex matrices and let GA : R → [0, 1] and
GB : R→ [0, 1] be the cumulative distributions functions of the probability measures

µA =
1

m

m∑
k=1

δs2k(A) and µB =
1

m

m∑
k=1

δs2k(B),

defined for every t ∈ R by

GA(t) =

∣∣{1 6 k 6 m : sk(A) 6
√
t
}∣∣

m
and GB(t) =

∣∣{1 6 k 6 m : sk(B) 6
√
t
}∣∣

m
.

By Theorem 4.2.3 we get

sup
t∈R
|GA(t)−GB(t)| 6 rank(A−B)

m
.

Now if f : R→ R is differentiable with f ′ ∈ L1(R) then by integration by parts,∣∣∣∣∫ f dµA − ∫ f dµB∣∣∣∣ =

∣∣∣∣∫
R
f ′(t)(GA(t)−GB(t)) dt

∣∣∣∣ 6 rank(A−B)

m

∫
R
|f ′(t)| dt.

Since the left hand side depends on at most 2m points, we get, by approximation, for
every measurable function f : R→ R,∣∣∣∣∫ f dµA − ∫ f dµB∣∣∣∣ 6 rank(A−B)

m
V (f).

From now on, f : R → R is a fixed measurable function with V (f) 6 1. For every
row vectors x1, . . . , xm in Cn, we denote by A(x1, . . . , xm) the m×n matrix with row
vectors x1, . . . , xm and we define F : (Cn)m → R by

F (x1, . . . , xm) =

∫
f dµA(x1,...,xm).

For any i ∈ {1, . . . ,m} and any row vectors x1, . . . , xm, x
′
i of Cn, we have

rank(A(x1, . . . , xi−1, xi, xi+1, . . . , xm)−A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)) 6 1

and thus

|F (x1, . . . , xi−1, xi, xi+1, . . . , xm)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| 6 V (f)

m
.

Let us define X = F (R1, . . . , Rm) where R1, . . . , Rm are the rows of M . Let
(R′1, . . . , R

′
n) be an independent copy of (R1, . . . , Rn). If Fk is the σ-field generated

by R1, . . . , Rk then for every 1 6 k 6 n we have, with F0 = {∅,Ω},
E(X | Fk−1) = E(F (R1, . . . , Rk, . . . , Rn) | Fk−1) = E(F (R1, . . . , R

′
k, . . . , Rn) | Fk).
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Now the desired result follows from the Azuma–Hoeffding Lemma 4.7.2 since

dk = E(X | Fk)− E(X | Fk−1)

= E(F (R1, . . . , Rk, . . . , Rn)− F (R1, . . . , R
′
k, . . . , Rn) | Fk)

gives osc(dk) 6 2 ‖dk‖∞ 6 2V (f)/m for every 1 6 k 6 n.

The following lemma on concentration of measure is close in spirit to Theorem
1.2.1. The condition on the oscillation (support diameter) rather than on the variance
(second moment) is typical of Hoeffding type statements.

Lemma 4.7.2 (Azuma–Hoeffding). — If X ∈ L1(Ω,F ,P) then for every r > 0

P(|X − E(X)| > r) 6 2 exp

(
− 2r2

osc(d1)2 + · · ·+ osc(dn)2

)
where osc(dk) = sup(dk) − inf(dk) and where dk = E(X | Fk) − E(X | Fk−1) for an
arbitrary filtration {∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

Proof. — By convexity, for all t > 0 and a 6 x 6 b,

etx 6
x− a
b− a

etb +
b− x
b− a

eta.

Let U be a random variable with E(U) = 0 and a 6 U 6 b. Denoting p = −a/(b− a)
and ϕ(s) = −ps+ log(1− p+ pes) for any s > 0, we get

E(etU ) 6
b

b− a
eta − a

b− a
etb = eϕ(t(b−a)).

Now ϕ(0) = ϕ′(0) = 0 and ϕ′′ 6 1/4, so ϕ(s) 6 s2/8, and therefore

E(etU ) 6 e
t2

8 (b−a)2 .

Used with U = dk = E(X | Fk)− E(X | Fk−1) conditional on Fk−1, this gives

E(etdk | Fk−1) 6 e
t2

8 osc(dk)2 .

By writing the Doob martingale telescopic sum X − E(X) = dn + · · ·+ d1, we get

E(et(X−E(X))) = E(et(dn−1+···+d1)E(etdn | Fn−1)) 6 · · · 6 e
t2

8 (osc(d1)2+···+osc(dn)2).

Now the desired result follows from Markov’s inequality and an optimization of t.

Moments and weak convergence. — This section is devoted to the proof of
Lemmas 4.7.4 and 4.7.5 below. Let P be the set of probability measures µ on R such
that R[X] ⊂ L1(µ). For every µ ∈ P and n > 0, the n-th moment of µ is defined
by
∫
xn dµ(x). The knowledge of the sequence of moments of µ is equivalent to the

knowledge of
∫
P dµ for every P ∈ R[X]. We say that µ1, µ2 ∈ P are equivalent when∫

P dµ1 =

∫
P dµ2

for all P ∈ R[X], in other words µ1 and µ2 have the same moments. We say that
µ ∈ P is characterized by its moments when its equivalent class is a singleton. Lemma
4.7.3 below provides a simpler sufficient condition, which is strong enough to imply



114 CHAPTER 4. SINGULAR VALUES AND WISHART MATRICES

that every compactly supported probability measure, such as the Marchenko–Pastur
law µρ, is characterized by its moments. Note that by the Weierstrass theorem on the
density of polynomials, we already know that every compactly supported probability
measure is characterized by its moments among the class of compactly supported
probability measures.

Lemma 4.7.3 (Moments and analyticity). — Let µ ∈ P, ϕ(t) =
∫
eitx dµ(x)

and κn =
∫
xn dµ(x). The following three statements are equivalent :

(i) ϕ is analytic in a neighborhood of the origin
(ii) ϕ is analytic on R

(iii) limn

(
1

(2n)!κ2n

) 1
2n

<∞.

If these statement hold true then µ is characterized by its moments. This is the case
for instance if µ is compactly supported.

Proof. — For all n we have
∫
|x|n dµ <∞ and thus ϕ is n times differentiable on R.

Moreover, ϕ(n) is continuous on R and for all t ∈ R,

ϕ(n)(t) =

∫
R
(ix)neitx dµ(x).

In particular, ϕ(n)(0) = inκn, and the Taylor series of ϕ at the origin is determined
by (κn)n>1. The convergence radius r of the power series

∑
n anz

n associated to a se-

quence of complex numbers (an)n>0 is given by Hadamard’s formula r−1 = limn |an|
1
n .

Taking an = inκn/n! gives that (i) and (iii) are equivalent. Next, we have∣∣∣∣eisx(eitx − 1− itx

1!
− · · · − (itx)n−1

(n− 1)!

)∣∣∣∣ 6 |tx|nn!

for all n ∈ N, s, t ∈ R. In particular, it follows that for all n ∈ N and all s, t ∈ R,∣∣∣∣ϕ(s+ t)− ϕ(s)− t

1!
ϕ′(s)− · · · − t2n−1

(2n− 1)!
ϕ(2n−1)(s)

∣∣∣∣ 6 κ2n
t2n

(2n)!
,

and thus (iii) implies (ii). Since (ii) implies property (i) we get that (i)-(ii)-(iii) are
equivalent. If these properties hold then by the preceding arguments, there exists
r > 0 such that the series expansion of ϕ at any x ∈ R has radius > r, and thus, ϕ
is characterized by its sequence of derivatives at point 0. If µ is compactly supported

then supn |κn|
1
n <∞ and thus (iii) holds.

Lemma 4.7.4 (Moments convergence). — Let µ ∈ P be characterized by its mo-
ments. If (µn)n>1 is a sequence in P such that for every polynomial P ∈ R[X],

lim
n→∞

∫
P dµn =

∫
P dµ

then for every bounded continuous function f : R→ R,

lim
n→∞

∫
f dµn =

∫
f dµ.



4.7. PROOF OF THE MARCHENKO–PASTUR THEOREM 115

Proof. — By assumption, for any P ∈ R[X], we have CP = supn>1

∫
P dµn < ∞,

and therefore, by Markov’s inequality, for any real R > 0,

µn([−R,R]c) 6
CX2

R2
.

This shows that (µn)n>1 is tight. Thanks to Prohorov’s theorem, it suffices then to
show that if a subsequence (µnk)k>1 converges with respect to bounded continuous
functions toward a probability measure ν as k →∞ then ν = µ. Let us fix P ∈ R[X]
and a real number R > 0. Let ϕR : R→ [0, 1] be continuous and such that

1[−R,R] 6 ϕR 6 1[−R−1,R+1].

We have the decomposition∫
P dµnk =

∫
ϕRP dµnk +

∫
(1− ϕR)P dµnk .

Since (µnk)k>1 converges weakly to ν we have

lim
k→∞

∫
ϕRP dµnk =

∫
ϕRP dν.

Moreover, by the Cauchy-Schwarz and Markov inequalities we have∣∣∣∣∫ (1− ϕR)P dµnk

∣∣∣∣2 6 µnk([−R,R]c)

∫
P 2 dµnk 6

CX2CP 2

R2
.

On the other hand, we know that lim
k→∞

∫
P dµnk =

∫
P dµ and thus

lim
R→∞

∫
ϕRP dν =

∫
P dµ.

Using this for P 2 provides via monotone convergence that P ∈ L2(ν) ⊂ L1(ν) and by
dominated convergence that

∫
P dν =

∫
P dµ. Since P is arbitrary and µ is charac-

terized by its moments, we obtain µ = ν.

Lemma 4.7.5 (Moments of the M.–P. law µρ). — The sequence of moments of
the Marchenko–Pastur distribution µρ defined by (4.15) is given for all r > 1 by∫

xr dµρ(x) =

r−1∑
k=0

ρk

k + 1

(
r

k

)(
r − 1

k

)
.

In particular, µρ has mean 1 and variance ρ.

Proof. — Since a+ b = 2(1 + ρ) and ab = (1− ρ)2 we have

√
(b− x)(x− a) =

√
(a+ b)2

4
− ab−

(
x− a+ b

2

)2

=
√

4ρ− (x− (1 + ρ))2

The change of variable y = (x− (1 + ρ))/
√
ρ gives∫

xr dµρ(x) =
1

2π

∫ 2

−2

(
√
ρy + 1 + ρ)r−1

√
4− y2 dy.
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The even moments of the semicircle law are the Catalan numbers :

1

2π

∫ 2

−2

y2k+1
√

4− y2 dy = 0 and
1

2π

∫ 2

−2

y2k
√

4− y2 dy =
1

1 + k

(
2k

k

)
.

By using binomial expansions and the Vandermonde convolution identity,∫
xr dµρ(x) =

b(r−1)/2c∑
k=0

ρk(1 + ρ)r−1−2k

(
r − 1

2k

)(
2k

k

)
1

1 + k

=

b(r−1)/2c∑
k=0

ρk(1 + ρ)r−1−2k (r − 1)!

(r − 1− 2k)!k!(k + 1)!

=

b(r−1)/2c∑
k=0

r−1−2k∑
s=0

ρk+s (r − 1)!

k!(k + 1)!(r − 1− 2k − s)!s!

=

r−1∑
t=0

ρt
min(t,r−1−t)∑

k=0

(r − 1)!

k!(k + 1)!(r − 1− t− k)!(t− k)!

=
1

r

r−1∑
t=0

ρt
(
r

t

)min(t,r−1−t)∑
k=0

(
t

k

)(
r − t
k + 1

)

=
1

r

r−1∑
t=0

ρt
(
r

t

)(
r

t+ 1

)

=

r−1∑
t=0

ρt

t+ 1

(
r

t

)(
r − 1

t

)
.

Other proof of the Marchenko–Pastur theorem. — An alternate proof of the
Marchenko–Pastur theorem 4.6.1 is based on the Cauchy–Stieltjes transform. Recall
that the Cauchy–Stieltjes transform of a probability measure µ on R is

z ∈ C+ = {z ∈ C : Im(z) > 0} 7→ Sµ(z) =

∫
1

x− z
dµ(x).

For instance, the Cauchy–Stieltjes transform of the Marchenko–Pastur law µρ is

Sµρ(z) =
1− ρ− z +

√
(z − 1− ρ)2 − 4ρ

2ρz
.

The knowledge of Sµ fully characterizes µ, and the pointwise convergence along a
sequence of probability measures implies the weak convergence of the sequence. For
any m×m Hermitian matrix H with spectral distribution µH = 1

m

∑m
k=1 δλk(H), the

Cauchy–Stieltjes transform SµH is the normalized trace of the resolvent of H since

SµH (z) =
1

m
Tr((H − zI)−1).



4.8. THE BAI–YIN THEOREM 117

This makes the Cauchy–Stieltjes transform an analogue of the Fourier transform, well
suited for spectral distributions of matrices. Note that |Sµ(z)| 6 1/Im(z). To prove
the Marchenko–Pastur theorem one takes H = 1

nMM∗ and note that ESµH = SEµH .
Next the Schur bloc inversion allows to deduce a recursive equation for ESµH leading
to the fixed point equation S = 1/(1 − z − ρ − ρzS) at the limit m,n → ∞. This
quadratic equation in S admits two solutions including the Cauchy–Stieltjes transform
Sµρ of the Marchenko–Pastur law µρ.

The behavior of µH when H is random can be captured by looking at E
∫
f dµH

with a test function f running over a sufficiently large family F . The method of
moments corresponds to the family F = {x 7→ xr : r ∈ N} whereas the Cauchy–
Stieltjes transform method corresponds to the family F = {z 7→ 1/(x− z) : z ∈ C+}.
Each of these allows to prove Theorem 4.6.2, with advantages and drawbacks.

4.8. The Bai–Yin theorem

The convergence stated by the Marchenko–Pastur theorem 4.6.1 is too weak to
provide the convergence of the smallest and largest singular values. More precisely,
one can only deduce from Theorem 4.6.1 that with probability one,

lim
n→∞

sn∧m

(
1√
n
M

)
6
√
a = 1−√ρ and lim

n→∞
s1

(
1√
n
M

)
>
√
b = 1 +

√
ρ.

Of course if ρ = 1 then a = 0 and we obtain limn→∞ sn∧m

(
1√
n
M
)

= 0. The Bai and

Yin theorem below provides a complete answer for any value of ρ when the entries
have mean zero and finite fourth moment.

Theorem 4.8.1 (Bai–Yin). — Let (Mi,j)i,j>1 be an infinite table of i.i.d. random
variables on K with mean 0, variance 1 and finite fourth moment : E(|M1,1|4) <∞.
As in the Marchenko–Pastur theorem 4.6.1, let M be the m× n random matrix

M = (Mi,j)16i6m,16j6n.

Suppose that m = mn depends on n in such a way that

lim
n→∞

mn

n
= ρ ∈ (0,∞).

Then with probability one

lim
n→∞

sm∧n

(
1√
n
M

)
=
√
a and lim

n→∞
s1

(
1√
n
M

)
=
√
b.

Regarding the assumptions, it can be shown that if M is not centered or does not
have finite fourth moment then limn→∞ s1(M/

√
n) is infinite.

When m < n the Bai–Yin theorem can be roughly rephrased as follows
√
n−
√
m+

√
non→∞(1) 6 sm∧n(M) 6 s1(M) 6

√
n+
√
m+

√
non→∞(1).

The proof of the Bai–Yin theorem is tedious and is outside the scope of this book.
In the Gaussian case, the result may be deduced from Theorem 4.5.3. It is worthwhile
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to mention that in the Gaussian case, we have the following result due to Gordon:
√
n−
√
m 6 E(sm∧n(M)) 6 E(s1(M)) 6

√
n+
√
m.

Remark 4.8.2 (Jargon). — The Marchenko–Pastur theorem 4.6.1 concerns the
global behavior of the spectrum using the counting probability measure: we say bulk
of the spectrum. The Bai–Yin Theorem 4.8.1 concerns the boundary of the spectrum:
we say edge of the spectrum. When ρ = 1 then the left limit

√
a = 0 acts like a hard

wall forcing single sided fluctuations, and we speak about a hard edge. In contrast,
we have a soft edge at

√
b for any ρ and at

√
a for ρ 6= 1 in the sense that the

spectrum can fluctuate around the limit at both sides. The asymptotic fluctuation
at the edge depends on the nature of the edge: soft edges give rise to Tracy–Widom
laws, while hard edges give rise to (deformed) exponential laws (depending on K).

4.9. Notes and comments

A proof of the Courant–Fischer variational formulas for the singular values (The-
orem 4.2.1) can be found for instance in [HJ94, theorem 3.1.2] and in [GVL96,
theorem 8.6.1]. A proof of the interlacing inequalities (Theorem 4.2.3) can be found
in [HJ94, theorem 3.3.16] which also provides the multiplicative analogue statement.
A proof of the interlacing inequalities (Theorem 4.2.4) can be found in [GVL96,
theorem 8.6.3] or in [HJ94, theorem 3.1.4]. The formula (4.4) is due to Eckart and
Young [EY39]. Theorem 4.3.1 is due to Weyl [Wey49]. The derivation of (4.8)
using majorization techniques is also due to Weyl, see for instance [HJ94, theo-
rem 3.3.13]. The proof of the Horn inverse theorem (Theorem 4.3.2) can be found
in the short paper [Hor54]. It is worthwhile to mention the book [CG05] on in-
verse eigenvalue problems. Theorem 4.2.5 is due to Hoffman and Wielandt [HW53].
Theorem 4.3.3 is due to Gelfand [Gel41]. Beyond Gelfand’s result, it was shown
by Yamamoto that limk→∞ si(A

k)1/k = |λk(A)| for every A ∈ Mn,n(K) and every
i ∈ {1, . . . , n}, see [HJ94, theorem 3.3.1] for a proof. There are plenty of nice theo-
rems on the singular values and on the eigenvalues of deterministic matrices. We refer
to [HJ90, HJ94, Bha97, Zha02, BS10]. For the numerical aspects such as the
algorithms for the computation of the SVD, we refer to [GVL96]. Theorems 4.4.1
and 4.4.2 connecting the rows distances of a matrix with the norm of its inverse are
due to Rudelson and Vershynin [RV08a] (operator norm) and Tao and Vu [TV10]
(trace norm). The pseudo-spectra are studied by Trefethen and Embree in [TE05].

The SVD is typically used for dimension reduction and for regularization. For
instance, the SVD allows to construct the so-called Moore–Penrose pseudoinverse
[Moo20, Pen56] of a matrix by replacing the non null singular values by their
inverse while leaving in place the null singular values. Generalized inverses of integral
operators were introduced earlier by Fredholm in [Fre03]. Such generalized inverse of
matrices provide for instance least squares solutions to degenerate systems of linear
equations. A diagonal shift in the SVD is used in the so-called Tikhonov regularization
[Tik43, Tar05] or ridge regression for solving over determined systems of linear
equations. The SVD is at the heart of the so-called principal component analysis
(PCA) technique in applied statistics for multivariate data analysis [Jol02]. The
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partial least squares (PLS) regression technique is also connected to PCA/SVD. In
the last decade, the PCA was used together with the so-called kernel methods in
learning theory. Generalizations of the SVD are used for the regularization of ill
posed inverse problems [BB98].

The study of the singular values of random matrices takes its roots in the works
of Wishart [Wis28] on the empirical covariance matrices of Gaussian samples, and
in the works of von Neumann and Goldstine in numerical analysis [vNG47]. The
singular values of Gaussian random matrices were extensively studied and we refer
to [Jam60, Mui82, Ede89, DS01, ER05, HT03, For10]. A proof of Theorems
4.5.2 and 4.5.3 can be found in [For10, propositions 3.2.7 and introduction of sec-
tion 3.10]. Theorem 4.5.3 is due to Silverstein [Sil85], see also the more recent and
general work of Dumitriu and Edelman [DE02]. The analogous result for Gaussian
Hermitian matrices (GUE) consists in a unitary tridiagonalization and goes back to
Trotter [Tro84]. The proof of Theorem 4.5.4 is taken from Forrester [For10, propo-
sition 3.10.1]. For simplicity, we have skipped the link with Laguerre orthogonal
polynomials, which may be used to represent the determinant in the singular values
distribution, and which play a key role in the asymptotic analysis of the spectral edge.

The Marchenko–Pastur theorem (Theorem 4.6.1 or Theorem 4.6.2) goes back to
Marchenko and Pastur [MP67]. The modern universal version with minimal mo-
ments assumptions was obtained after a sequence of works including [Gir75] and can
be found in [PS11, BS10]. Most of the proof given in this chapter is taken from
[BS10, Chapter 3]. The argument using the Fréchet–Wasserstein distance is taken
from [BC12]. We have learned Lemma 4.7.1 from Bordenave in 2009, who discov-
ered later that it can also be found in [GL09]. The Azuma–Hoeffding inequality
of lemma 4.7.2 is taken from McDiarmid [McD89]. Beyond lemma 4.7.3, it is well
known that µ ∈ P is characterized by its moments (κn)n>1 if and only if the charac-
teristic function of µ is quasi-analytic i.e. characterized by its sequence of derivatives
at the origin, and the celebrated Carleman criterion states that this is the case if∑
n κ
−1/(2n)
2n = ∞, see [Fel71] (the odd moments do not appear here: they are con-

trolled by the even moments for instance via Hölder’s inequality). An extension of
the Marchenko–Pastur theorem to random matrices with independent row vectors or
column vectors is given in [MP06] and [PP09]. In the Gaussian case, and follow-
ing Pastur [Pas99], the Marchenko–Pastur theorem can be proved using Gaussian
integration by parts together with the method of moments or the Cauchy–Stieltjes
transform. Still in the Gaussian case, there exists additionally an approach due to
Haagerup and Thorbjørnsen [HT03], based on Laguerre orthogonal polynomials, and
further developed in [Led04] from a Markovian viewpoint.

The Bai–Yin theorem (Theorem 4.8.1) was obtained after a series of works by Bai
and Yin [BY93], see also [BS10]. The non-asymptotic analysis of the singular values
of random matrices is the subject of a recent survey by Vershynin [Ver12].





CHAPTER 5

EMPIRICAL METHODS AND SELECTION OF
CHARACTERS

The purpose of this chapter is to present the connections between two different
topics. The first one concerns the recent subject about reconstruction of signals with
small supports from a small amount of linear measurements, called also compressed
sensing and was presented in Chapter 2. A big amount of work was recently made
to develop some strategy to construct an encoder (to compress a signal) and an as-
sociate decoder (to reconstruct exactly or approximately the original signal). Several
deterministic methods are known but recently, some random methods allowed the
reconstruction of signal with much larger size of support. A lot of ideas are common
with a subject of harmonic analysis, going back to the construction of Λ(p) sets which
are not Λ(q) for q > p. This is the second topic that we would like to address, the
problem of selection of characters. The most powerful method was to use a random
selection via the method of selectors. We will discuss about the problem of selecting
a large part of a bounded orthonormal system such that on the vector span of this
family, the L2 and the L1 norms are as close as possible. Solving this type of problems
leads to questions about the Euclidean radius of the intersection of the kernel of a
matrix with the unit ball of a normed space. That is exactly the subject of study of
Gelfand width and Kashin splitting theorem. In all this theory, empirical processes
are essential tools. Numerous results of this theory are at the heart of the proofs and
we will present some of them.

Notations. — We briefly indicate some notations that will be used in this section.
For any p ≥ 1 and t = (t1, . . . , tN ) ∈ RN , we define its `p-norm by

|t|p =

(
N∑
i=1

|ti|p
)1/p

and its Lp-norm by

‖t‖p =

(
1

N

N∑
i=1

|ti|p
)1/p

.
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For p ∈ (0, 1), the definition is still valid but it is not a norm. For p = ∞, |t|∞ =
‖t‖∞ = max{|ti| : i = 1, . . . , N}. We denote by BNp the unit ball of the `p-norm in

RN . The radius of a set T ⊂ RN is

radT = sup
t∈T
|t|2.

More generally, if µ is a probability measure on a measurable space Ω, for any
p > 0 and any measurable function f , we denote its Lp-norm and its L∞-norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

The sup |f | should be everywhere understand as the essential supremum of the func-
tion |f |. The unit ball of Lp(µ) is denoted by Bp and the unit sphere by Sp. If
T ⊂ L2(µ) then its radius with respect to L2(µ) is defined by

RadT = sup
t∈T
‖t‖2.

Observe that if µ is the counting probability measure on RN , Bp = N1/pBNp and for

a subset T ⊂ L2(µ),
√
N RadT = radT.

The letters c, C are used for numerical constants which do not depend on any
parameter (dimension, size of sparsity, ...). Since the dependence on these parameters
is important in this study, we will always indicate it as precisely as we can. Sometimes,
the value of these numerical constants can change from line to line.

5.1. Selection of characters and the reconstruction property.

Exact and approximate reconstruction.— We start by recalling briefly from
Chapter 2 the `1-minimization method to reconstruct any unknown sparse signal
from a small number of linear measurements. Let u ∈ RN (or CN ) be an unknown
signal. We receive Φu where Φ is an n×N matrix with row vectors Y1, . . . , Yn ∈ RN
(or CN ) which means that

Φ =

 Y1

...
Yn

 and Φu = (〈Yi, u〉)1≤i≤n

and we assume that n ≤ N − 1. This linear system to reconstruct u is ill-posed.
However, the main information is that u has a small support in the canonical basis
chosen at the beginning, that is |suppu| ≤ m. We also say that u is m-sparse and we
denote by Σm the set of m-sparse vectors. Our aim is to find conditions on Φ, m, n
and N such that the following property is satisfied: for every u ∈ Σm, the solution of
the problem

min
t∈RN

{|t|1 : Φu = Φt} (5.1)
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is unique and equal to u. From Proposition 2.2.11, we know that this property is
equivalent to

∀h ∈ ker Φ, h 6= 0,∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i/∈I

|hi|.

It is also called the null space property. Let Cm be the cone

Cm = {h ∈ RN ,∃I ⊂ [N ] with |I| ≤ m, |hIc |1 ≤ |hI |1}.
The null space property is equivalent to ker Φ ∩ Cm = {0}. Taking the intersection
with the Euclidean sphere SN−1, we can say that

“for every signal u ∈ Σm, the solution of (5.1) is unique and equal to u”
if and only if

ker Φ ∩ Cm ∩ SN−1 = ∅.

Observe that if t ∈ Cm ∩ SN−1 then

|t|1 =

N∑
i=1

|ti| =
∑
i∈I
|ti|+

∑
i/∈I

|ti| ≤ 2
∑
i∈I
|ti| ≤ 2

√
m

since |I| ≤ m and |t|2 = 1. This implies that

Cm ∩ SN−1 ⊂ 2
√
mBN1 ∩ SN−1

from which we conclude that if

ker Φ ∩ 2
√
mBN1 ∩ SN−1 = ∅

then “for every u ∈ Σm, the solution of (5.1) is unique and equal to u”. We can now
restate Proposition 2.4.4 as follows.

Proposition 5.1.1. — Denote by radT the radius of a set T with respect to the
Euclidean distance: radT = supt∈T |t|2. If

rad (ker Φ ∩BN1 ) < ρ with ρ ≤ 1

2
√
m

(5.2)

then “for every u ∈ Σm, the solution of the basis pursuit algorithm (5.1) is unique
and equal to u”.

It has also been noticed in Chapter 2 Proposition 2.7.3 that it is very stable and
allows approximate reconstruction of vectors close to sparse signals. Indeed by
Proposition 2.7.3, if u] is a solution of the minimization problem (5.1)

min
t∈RN

{|t|1 : Φu = Φt}

and if for some integer m such that 1 ≤ m ≤ N , we have

rad (ker Φ ∩BN1 ) ≤ ρ < 1

2
√
m

then for any set I ⊂ {1, . . . , N} of cardinality less than m

|u] − u|2 ≤ ρ |u] − u|1 ≤
2ρ

1− 2ρ
√
m
|uIc |1.
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In particular: if rad (ker Φ ∩ BN1 ) ≤ 1/4
√
m then for any subset I of cardinality less

than m,

|u] − u|2 ≤
|u] − u|1

4
√
m

≤ |uI
c |1√
m

.

Moreover if u ∈ BNp,∞ i.e. if for all s > 0, |{i, |ui| ≥ s}| ≤ s−p then

|u] − u|2 ≤
|u] − u|1

4
√
m

≤ 1

(1− 1/p)m
1
p−

1
2

.

A problem coming from Harmonic Analysis. — Let µ be a probability measure
and let (ψ1, . . . , ψN ) be an orthonormal system of L2(µ), bounded in L∞(µ) i.e. such
that for every i ≤ N , ‖ψi‖∞ ≤ 1. Typically, we consider a system of characters in
L2(µ). It is clear that for any subset I ⊂ [N ]

∀ (ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤
√
|I|

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Dvoretzky theorem, as proved by Milman and improved by Gordon, asserts that for
any ε ∈ (0, 1), there exists a subspace E ⊂ span{ψ1, . . . , ψN} of dimension dimE =
n = c ε2N on which the L1 and L2 norms are comparable:

∀ (ai)
N
i=1 , if x =

N∑
i=1

aiψi ∈ E, then (1− ε) r ‖x‖1 ≤ ‖x‖2 ≤ (1 + ε) r ‖x‖1

where r depends on the dimension N and can be bounded from above and below by
some numerical constants (independent of the dimension N). Observe that E is a
general subspace and the fact that x ∈ E does not say anything about the number of
non zero coordinates. Moreover the constant c which appears in the dependence of
dimE is very small hence this formulation of Dvoretzy’s theorem does not provide a
subspace of say half dimension such that the L1 norm and the L2 norm are comparable
up to constant factors. This question was solved by Kashin. He proved in fact a very
strong result which is called now a Kashin decomposition: there exists a subspace E

of dimension [N/2] such that ∀ (ai)
N
i=1,

if x =

N∑
i=1

aiψi ∈ E then ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 ,

and if y =

N∑
i=1

aiψi ∈ E⊥ then ‖y‖1 ≤ ‖y‖2 ≤ C ‖y‖1

where C is a numerical constant. Again the subspaces E and E⊥ have not any
particular structure, like being coordinate subspaces.

In the setting of Harmonic Analysis, the questions are more related with coordinate
subspaces because the requirement is to find a subset I ⊂ {1, . . . , N} such that the L1

and L2 norms are well comparable on span {ψi}i∈I . Reproving a result of Bourgain,
Talagrand showed that there exists a small constant δ0 such that for any bounded
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orthonormal system {ψ1, . . . , ψN}, there exists a subset I of cardinality greater than
δ0N such that

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

. (5.3)

This is a Dvoretzky type theorem. We will present in Section 5.5 an extension of this
result to a Kashin type setting.

An important observation relates this study with Proposition 5.1.1. Let Ψ be the
operator defined on span {ψ1, . . . , ψN} ⊂ L2(µ) by Ψ(f) = (〈f, ψi〉)i/∈I . Because of
the orthogonality condition between the ψi’s, the linear span of {ψi, i ∈ I} is nothing
else than the kernel of Ψ and inequality (5.3) is equivalent to

Rad (ker Ψ ∩B1) ≤ C
√

logN (log logN)

where Rad is the Euclidean radius with respect to the norm on L2(µ) and B1 is the
unit ball of L1(µ). The question is reduced to finding the relations among the size
of I, the dimension N and ρ1 such that Rad (ker Ψ ∩ B1) ≤ ρ1. This is analogous
to condition (5.2) in Proposition 5.1.1. Just notice that in this situation, we have a
change of normalization because we work in the probability space L2(µ) instead of
`N2 .

The strategy. — We will focus on the condition about the radius of the section of
the unit ball of `N1 (or B1) with the kernel of some matrices. As noticed in Chapter
2, the RIP condition implies a control of this radius. Moreover, condition (5.2) was
deeply studied in the so called Local Theory of Banach Spaces during the seventies
and the eighties and is connected with the study of Gelfand widths. These notions
were presented in Chapter 2 and we recall that the strategy consists in studying the
width of a truncated set Tρ = T ∩ ρSN−1. Indeed by Proposition 2.7.7, Φ satisfies
condition (5.2) if ρ is such that ker Φ∩Tρ = ∅. This observation is summarized in the
following proposition.

Proposition 5.1.2. — Let T be a star body with respect to the origin (i.e. T is a
compact subset T of RN such that for any x ∈ T , the segment [0, x] is contained in
T ). Let Φ be an n×N matrix with row vectors Y1, . . . , Yn. Then

if inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0, one has rad (ker Φ ∩ T ) < ρ.

Proof. — If z ∈ T ∩ ρSN−1 then |Φz|22 > 0 so z /∈ ker Φ. Since T is star shaped,
if y ∈ T and |y|2 ≥ ρ then z = ρy/|y|2 ∈ T ∩ ρSN−1 so z and y do not belong to
ker Φ.

Remark 5.1.3. — By a simple compactness argument, the converse of this state-
ment holds true. We can also replace the Euclidean norm |Φz|2 by any other norm
‖Φz‖ since the hypothesis is just made to ensure that ker Φ ∩ T ∩ ρSN−1 = ∅.
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The vectors Y1, . . . , Yn will be chosen at random and we will find the good con-
ditions such that, in average, the key inequality of Proposition 5.1.2 holds true. An
important case is when the Yi’s are independent copies of a standard random Gaus-
sian vector in RN . It is a way to prove Theorem 2.5.2 with Φ being this standard
random Gaussian matrix. However, in the context of Compressed Sensing or Har-
monic Analysis, we are looking for more structured matrices, like Fourier or Walsh
matrices.

5.2. A way to construct a random data compression matrix

The setting is the following. We start with a square N ×N orthogonal matrix and
we would like to select n rows of this matrix such that the n ×N matrix Φ that we
obtain is a good encoder for every m-sparse vectors. In view of Proposition 5.1.1, we
want to find conditions on n, N and m insuring that

rad (ker Φ ∩BN1 ) <
1

2
√
m
.

The main examples are the discrete Fourier matrix with

φk` =
1√
N

ωk` 1 ≤ k, ` ≤ N where ω = exp (−2iπ/N) ,

and the Walsh matrix defined by induction: W1 = 1 and for any p ≥ 2,

Wp =
1√
2

(
Wp−1 Wp−1

−Wp−1 Wp−1

)
.

The matrix Wp is an orthogonal matrix of size N = 2p with entries ±1√
N

. In each

case, the column vectors form an orthonormal basis of `N2 , with `N∞-norm bounded by

1/
√
N . We will consider more generally a system of vectors φ1, . . . , φN such that

(H)

{
(φ1, . . . , φN ) is an orthogonal system of `N2 ,

∀i ≤ N, |φi|∞ ≤ 1/
√
N and |φi|2 = K where K is a fixed number.

The empirical method. — The first definition of randomness is empirical. Let Y
be the random vector defined by Y = φi with probability 1/N , 1 ≤ i ≤ N , and let
Y1, . . . , Yn be independent copies of Y . We define the random matrix Φ by

Φ =

 Y1

...
Yn

 .

We have the following properties:

E〈Y, y〉2 =
1

N

N∑
i=1

〈φi, y〉2 =
K2

N
|y|22 and E|Φy|22 =

K2 n

N
|y|22. (5.4)
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In view of Proposition 5.1.2, we would like to find ρ such that

E inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0.

However it is difficult to study the infimum of an empirical process. We shall prefer
to study

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣
that is the supremum of the deviation of the empirical process to its mean (because
of (5.4)). We will focus on the following problem.

Problem 5.2.1. — Find the conditions on ρ such that

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
.

Indeed if this inequality is satisfied, there exists a choice of vectors (Yi)1≤i≤n such
that

∀y ∈ T ∩ ρSN−1,

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
,

from which we deduce that

∀y ∈ T ∩ ρSN−1,

n∑
i=1

〈Yi, y〉2 ≥
1

3

K2 nρ2

N
> 0.

Therefore, by Proposition 5.1.2, we conclude that rad (ker Φ ∩ T ) < ρ. Doing this
with T = BN1 , we will conclude by Proposition 5.1.1 that if

m ≤ 1

4ρ2

then the matrix Φ is a good encoder, that is for every u ∈ Σm, the solution of the
basis pursuit algorithm (5.1) is unique and equal to u.

Remark 5.2.2. — The number 2/3 can be replaced by any real r ∈ (0, 1).

The method of selectors. — The second definition of randomness uses the notion
of selectors. Let δ ∈ (0, 1) and let δi be i.i.d. random variables taking the values 1
with probability δ and 0 with probability 1− δ.

We start from an orthogonal matrix with rows φ1, . . . , φN and we select randomly
some rows to construct a matrix Φ with row vectors φi if δi = 1. The random variables
δ1, . . . , δN are called selectors and the number of rows of Φ, equal to |{i : δi = 1}|,
will be highly concentrated around δN . Problem 5.2.1 can be stated in the following
way:
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Problem 5.2.3. — Find the conditions on ρ such that

E sup
y∈T∩ρSN−1

∣∣∣∣∣
N∑
i=1

δi〈φi, y〉2 − δK2ρ2

∣∣∣∣∣ ≤ 2

3
δK2ρ2.

The same argument as before shows that if this inequality holds for T = BN1 , there
exists a choice of selectors such that rad (ker Φ ∩ BN1 ) < ρ and we can conclude as
before that the matrix Φ is a good encoder.

These two definitions of randomness are not very different. The empirical method
refers to sampling with replacement while the method of selectors refers to sampling
without replacement.

Before stating the main results, we need some tools from the theory of empirical
processes to solve Problems 5.2.1 and 5.2.3. Another question is to prove that the
random matrix Φ is a good decoder with high probability. We will also present some
concentration inequalities of the supremum of empirical processes around their mean,
that will enable us to get better deviation inequality than the Markov bound.

5.3. Empirical processes

Classical tools. — A lot is known about the supremum of empirical processes and
the connection with Rademacher averages. We refer to chapter 4 of [LT91] for a
detailed description. We recall the important comparison theorem for Rademacher
average.

Theorem 5.3.1. — Let F : R+ → R+ be an increasing convex function, let hi : R→
R be functions such that |hi(s)− hi(t)| ≤ |s− t| and hi(0) = 0, 1 ≤ i ≤ n. Then for
any separable bounded set T ⊂ Rn,

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

εihi(ti)

∣∣∣∣∣
)
≤ EF

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣
)
.

The proof of this theorem is however beyond the scope of this chapter. We concen-
trate now on the study of the average of the supremum of some empirical processes.
Consider n independent random vectors Y1, . . . , Yn taking values in a measurable
space Ω and F be a class of measurable functions on Ω. Define

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)− Ef(Yi)

)∣∣∣∣∣ .
The situation will be different from Chapter 1 because the control on the ψα norm
of f(Yi) is not relevant in our situation. In this case, a classical strategy consists to
“symmetrize” the variable and to introduce Rademacher averages.

Theorem 5.3.2. — Consider n independent random vectors Y1, . . . , Yn taking val-
ues in a measurable space Ω, F be a class of measurable functions and ε1, . . . , εn be
independent Rademacher random variables, independent of the Yi’s. Denote by Eε the
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expectation with respect to these Rademacher random variables. Then the following
inequalities hold:

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ 2EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ , (5.5)

E sup
f∈F

n∑
i=1

|f(Yi)| ≤ sup
f∈F

n∑
i=1

E|f(Yi)|+ 4EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ . (5.6)

Moreover

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ . (5.7)

Proof. — Let Y ′1 , . . . , Y
′
n be independent copies of Y1, . . . , Yn. We replace Ef(Yi)

by E′f(Y ′i ) where E′ denotes the expectation with respect to the random vectors
Y ′1 , . . . , Y

′
n then by Jensen inequality,

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′ sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
The random variables (f(Yi)−f(Y ′i ))1≤i≤n are independent and now symmetric, hence
(f(Yi) − f(Y ′i ))1≤i≤n has the same law as (εi(f(Yi) − f(Y ′i )))1≤i≤n where ε1, . . . , εn
are independent Rademacher random variables. We deduce that

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
We conclude the proof of (5.5) by using the triangle inequality.
Inequality (5.6) is a consequence of (5.5) when applying it to |f | instead of f , using
the triangle inequality and Theorem 5.3.1 (in the case F (x) = x and hi(x) = |x|) to
deduce that

Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi|f(Yi)|

∣∣∣∣∣ ≤ 2Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ .
For the proof of (5.7), we can assume without loss of generality that Ef(Yi) = 0.
We compute the expectation conditionally with respect to the Rademacher random
variables. Let I = I(ε) = {i, εi = 1} then

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ ≤ EεE sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)−
∑
i/∈I

f(Yi)

∣∣∣∣∣
≤ EεE sup

f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣+ EεE sup
f∈F

∣∣∣∣∣∑
i/∈I

f(Yi)

∣∣∣∣∣ .
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However, since for every i ≤ n, Ef(Yi) = 0 we deduce from Jensen inequality that for
any I ⊂ {1, . . . , n}

E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi) +
∑
i/∈I

Ef(Yi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)

∣∣∣∣∣
which ends the proof of (5.7).

Another simple fact is the following comparison between the supremum of
Rademacher processes and the supremum of the same Gaussian processes.

Proposition 5.3.3. — Let ε1, . . . , εn be independent Rademacher random variables
and g1, . . . , gn be independent Gaussian N (0, 1) random variables Then for any set
T ⊂ Rn

E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ ≤
√

2

π
E sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣ .
Proof. — Indeed, (g1, . . . , gn) has the same law as (ε1|g1|, . . . , εn|gn|) and by Jensen
inequality,

EεEg sup
t∈T

∣∣∣∣∣
n∑
i=1

εi|gi|ti

∣∣∣∣∣ ≥ Eε sup
t∈T

∣∣∣∣∣Eg
n∑
i=1

εi|gi|ti

∣∣∣∣∣ =

√
π

2
E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .
To conclude, we state without proof an important result about the concentration

of the supremum of empirical processes around its mean. This is why we will focus
on the estimation of the expectation of the supremum of such empirical process.

Theorem 5.3.4. — Consider n independent random vectors Y1, . . . , Yn and G a class
of measurable functions. Let

Z = sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ , M = sup
g∈G
‖g‖∞, V = E sup

g∈G

n∑
i=1

g(Yi)
2.

Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

M
log

(
1 +

tM

V

))
.

Sometimes, we need a more simple quantity than V in this concentration inequality.

Proposition 5.3.5. — Consider n independent random vectors Y1, . . . , Yn and F a
class of measurable functions. Let

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ , u = sup
f∈F
‖f‖∞, and

v = sup
f∈F

n∑
i=1

Varf(Yi) + 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ .
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Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

u
log

(
1 +

tu

v

))
.

Proof. — It is a typical use of the symmetrization principle. Let G be the set of
functions defined by g(Y ) = f(Y ) − Ef(Y ) where f ∈ F . Using Theorem 5.3.4, the
conclusion will follow when estimating

M = sup
g∈G
‖g‖∞ and V = E sup

g∈G

n∑
i=1

g(Yi)
2.

It is clear that M ≤ 2u and by the triangle inequality we get

E sup
g∈G

n∑
i=1

g(Yi)
2 ≤ E sup

g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣+ sup
g∈G

n∑
i=1

Eg(Yi)
2.

Using inequality (5.5), we deduce that

E sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣ ≤ 2EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ = 2EEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣
where T is the random set {t = (t1, . . . , tn) = (g(Y1), . . . , g(Yn)) : g ∈ G}. Since
T ⊂ [−2u, 2u]n, the function h(x) = x2 is 4u-Lipschitz on T . By Theorem 5.3.1, we
get

Eε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣ ≤ 8uEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .
Since for 1 ≤ i ≤ n, Eg(Yi) = 0, we deduce from (5.7) that

EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ ≤ 16uE sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ .
This allows to conclude that

V ≤ 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣+ sup
f∈F

n∑
i=1

Varf(Yi).

This ends the proof of the proposition.

The expectation of the supremum of some empirical processes. — We go
back to Problem 5.2.1 with a definition of randomness given by the empirical method.
The situation is similar if we had worked with the method of selectors. For a star
body T ⊂ RN , we define the class F of functions in the following way:

F =
{
fy : RN → R, defiined by fy(Y ) = 〈Y, y〉 : y ∈ T ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f2(Yi)− Ef2(Yi))

∣∣∣∣∣ = sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
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Applying the symmetrization procedure to Z (cf (5.5)) and comparing Rademacher
and Gaussian processes, we conclude that

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 2EEε sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣

≤
√

2πEEg sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .

We will first get a bound for the Rademacher average (or the Gaussian one) and
then we will take the expectation with respect to the Yi’s. Before working with these
difficult processes, we present a result of Rudelson where the supremum is taken on
the unit sphere SN−1.

Theorem 5.3.6. — For any fixed vectors x1, . . . , xn in RN ,

Eε sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈xi, y〉2
∣∣∣∣∣ ≤ C

√
log n max

1≤i≤n
|xi|2 sup

y∈SN−1

(
n∑
i=1

〈xi, y〉2
)1/2

.

Proof. — Let S : RN → RN be a self-adjoint operator and (λi)1≤i≤N be its eigenval-
ues written in decreasing order. By definition of the SNq norms for q ≥ 1,

‖S‖2→2 = ‖S‖SN∞ = max
1≤i≤n

|λi| and ‖S‖SNq =

(
N∑
i=1

|λi|q
)1/q

.

Assume that the operator S has rank less than n then for i ≥ n + 1, λi = 0 and we
deduce by Hölder inequality that

‖S‖SN∞ ≤ ‖S‖SNq ≤ n
1/q‖S‖SN∞ ≤ e‖S‖SN∞ for q ≥ log n.

By the non-commutative Khinchine inequality of Lust-Piquard and Pisier, we know
that for any operator T1, . . . , Tn,

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SNq

≤ C
√
q max


∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

,

∥∥∥∥∥∥
(

n∑
i=1

TiT
∗
i

)1/2
∥∥∥∥∥∥
SNq

 .

For the proof of the Proposition, we define for every i = 1, . . . , n the self-adjoint rank
1 operators

Ti = xi ⊗ xi :

{
RN → RN
y 7→ 〈xi, y〉xi

in such a way that

sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈xi, y〉2
∣∣∣∣∣ = sup

y∈SN−1

∣∣∣∣∣〈
n∑
i=1

εiTiy, y〉

∣∣∣∣∣ =

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
2→2

.
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Therefore, T ∗i Ti = TiT
∗
i = |xi|22Ti and S = (

∑n
i=1 T

∗
i Ti)

1/2
has rank less than n,

hence for q = log n,∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

≤ e

∥∥∥∥∥∥
(

n∑
i=1

|xi|22Ti

)1/2
∥∥∥∥∥∥
SN∞

≤ e max
1≤i≤n

|xi|2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1/2

SN∞

.

Combining these estimates with the non-commutative Khinchine inequality, we con-
clude that for q = log n

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SN∞

≤ C
√

log n

∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNlogn

≤ C e
√

log n max
1≤i≤n

|xi|2 sup
y∈SN−1

(
n∑
i=1

〈xi, y〉2
)1/2

.

Remark 5.3.7. — Since the non-commutative Khinchine inequality holds true for
independent Gaussian standard random variables, this result is also valid for Gaussian
random variables.

The proof that we presented here is based on an expression related to some operator
norms and our original question can not be expressed with these tools. The original
proof of Rudelson used the majorizing measure theory. The forthcoming Theorem
5.3.12 is an improvement of this result and it is necessary to give some definitions
from the theory of Banach spaces.

Definition 5.3.8. — A Banach space B is of type 2 if there exists a constant c > 0
such that for every n and every x1, . . . , xn ∈ B,Eε

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

≤ c

(
n∑
i=1

‖xi‖2
)1/2

.

The smallest constant c > 0 satisfying this statement is called the type 2 constant of
B and is denoted by T2(B).

Classical examples of infinite dimensional Banach spaces of type 2 are Hilbert
spaces and Lq space for 2 ≤ q < +∞. Be aware that Theorem 1.2.1 in Chapter 1
does not mean that Lψ2 has type 2. In fact, it is not the case.

Definition 5.3.9. — A Banach space B has modulus of convexity of power type 2
with constant λ if

∀x, y ∈ B,
∥∥∥∥x+ y

2

∥∥∥∥2

+ λ−2

∥∥∥∥x− y2

∥∥∥∥2

≤ 1

2

(
‖x‖2 + ‖y‖2

)
.
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The modulus of convexity of a Banach space B is defined for ε ∈ (0, 2] by

δB(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≤ ε
}
.

It is obvious that if B has modulus of convexity of power type 2 with constant λ
then δB(ε) ≥ ε2/2λ2 and it is well known that the reverse holds true (with a constant
different from 2). Moreover, for 1 < p ≤ 2, Clarkson inequality tells that for any
f, g ∈ Lp, ∥∥∥∥f + g

2

∥∥∥∥2

p

+
p(p− 1)

8

∥∥∥∥f − g2

∥∥∥∥2

p

≤ 1

2
(‖f‖2p + ‖g‖2p).

This proves that for any p ∈ (1, 2], Lp has modulus of convexity of power type 2 with
λ = c

√
p− 1.

Definition 5.3.10. — A Banach space B has modulus of smoothness of power type
2 with constant µ if

∀x, y ∈ B,
∥∥∥∥x+ y

2

∥∥∥∥2

+ µ2

∥∥∥∥x− y2

∥∥∥∥2

≥ 1

2

(
‖x‖2 + ‖y‖2

)
.

The modulus of smoothness of a Banach space B is defined for every τ > 0 by

ρB(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

It is clear that if B has modulus of smoothness of power type 2 with constant µ
then for every τ ∈ (0, 1), ρB(τ) ≤ 2τ2µ2 and it is well known that the reverse holds
true (with a constant different from 2).
More generally, a Banach space B is said to be uniformly convex if for every ε > 0,
δB(ε) > 0 and uniformly smooth if limτ→0 ρB(τ)/τ = 0. We have the following simple
relation between these notions.

Proposition 5.3.11. — For every Banach space B, B? being its dual, we have
(i) For every τ > 0, ρB?(τ) = sup{τε/2− δB(ε), 0 < ε ≤ 2}.
(ii) B is uniformly convex if and only if B? is uniformly smooth.
(iii) For any Banach space B, if B has modulus of convexity of power type 2 with
constant λ then B? has modulus of smoothness of power type 2 with constant cλ and
T2(B?) ≤ cλ.

Proof. — The proof of (i) is straightforward, using the definition of duality. We have
for τ > 0,

2ρB?(τ) = sup{‖x? + τy?‖+ ‖x? − τy?‖ − 2 : ‖x?‖ = ‖y?‖ = 1}
= sup{x?(x) + τy?(x) + x?(y)− τy?(y)− 2 : ‖x?‖ = ‖y?‖ = ‖x‖ = ‖y‖ = 1}
= sup{x?(x+ y) + τy?(x− y)− 2 : ‖x?‖ = ‖y?‖ = ‖x‖ = ‖y‖ = 1}
= sup{‖x+ y‖+ τ‖x− y‖ − 2 : ‖x‖ = ‖y‖ = 1}
= sup{‖x+ y‖+ τε− 2 : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≤ ε, ε ∈ (0, 2]}
= sup{τε− 2δB(ε) : ε ∈ (0, 2]}.
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The proof of (ii) follows directly from (i). We will just prove (iii). If B has modulus
of convexity of power type 2 with constant λ then δB(ε) ≥ ε2/2λ2. By (i) we deduce
that ρB?(τ) ≥ τ2λ2/4. It implies that for any x?, y? ∈ B?,∥∥∥∥x? + y?

2

∥∥∥∥2

?

+ (cλ)2

∥∥∥∥x? − y?2

∥∥∥∥2

?

≥ 1

2

(
‖x?‖2? + ‖y?‖2?

)
where c > 0. We deduce that for u?, v? ∈ B?,

Eε‖εu? + v?‖2? =
1

2

(
‖u? + v?‖2? + ‖ − u? + v?‖2?

)
≤ ‖v?‖2? + (cλ)2‖u?‖2?.

We conclude by induction that for any integer n and any vectors x?1, . . . , x
?
n ∈ B?,

Eε

∥∥∥∥∥
n∑
i=1

εix
?
i

∥∥∥∥∥
2

?

≤ (cλ)2

(
n∑
i=1

‖x?i ‖2?

)
which proves that T2(B?) ≤ cλ.

It is now possible to state without proof one main estimate of the average of the
supremum of empirical processes.

Theorem 5.3.12. — If B is a Banach space with modulus of convexity of power type
2 with constant λ then for any integer n and x∗1, . . . x

∗
n ∈ B?,

Eg sup
‖x‖≤1

∣∣∣∣∣
n∑
i=1

gi〈x∗i , x〉2
∣∣∣∣∣ ≤ C λ5

√
log n max

1≤i≤n
‖x∗i ‖? sup

‖x‖≤1

(
n∑
i=1

〈x∗i , x〉2
)1/2

where g1, . . . , gn are independent N (0, 1) Gaussian random variables and C is a nu-
merical constant.

The proof of Theorem 5.3.12 is slightly complicated. It involves a specific construc-
tion of majorizing measures and deep results about the duality of covering numbers
(it is where the notion of type is used). We will not present it.

Corollary 5.3.13. — Let B be a Banach space with modulus of convexity of power
type 2 with constant λ. Let Y1, . . . , Yn taking values in B? be independent random
vectors and denote

K(n, Y ) = 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2

and σ2 = sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2

where C is the numerical constant of Theorem 5.3.12. Then we have

E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ K(n, Y )2 + K(n, Y )σ.

Proof. — Let

V2 = E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣ .
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We start with a symmetrization argument. By (5.5) and Proposition 5.3.3 we have

V2 ≤ 2 EEε sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ ≤ 2

√
2

π
EEg sup

‖y‖≤1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .

In view of Theorem 5.3.12, observe that the crucial quantity in the estimate is

sup‖x‖≤1

(∑n
i=1〈Yi, x〉2

)1/2
. Indeed, by the triangle inequality,

E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2 ≤ E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣+ sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2 = V2+σ2.

Therefore, applying Theorem 5.3.12 and Cauchy Schwarz inequality, we get

V2 ≤ 2

√
2

π
Cλ5

√
log nE

 max
1≤i≤n

‖Yi‖? sup
‖x‖≤1

(
n∑
i=1

〈Yi, x〉2
)1/2


≤ 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2
(
E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2
)1/2

≤ K(n, Y )
(
V2 + σ2

)1/2
.

We get

V 2
2 −K(n, Y )2V2 −K(n, Y )2σ2 ≤ 0

from which it is easy to conclude that

V2 ≤ K(n, Y ) (K(n, Y ) + σ) .

Using simpler ideas than for the proof of Theorem 5.3.12, we can present a general
result where the assumption that B has a good modulus of convexity is not needed.

Theorem 5.3.14. — Let B be a Banach space and Y1, . . . , Yn be independent ran-
dom vectors taking values in B?. Let F be a set of functionals on B? with 0 ∈ F .
Denote by d∞,n the random pseudo-metric on F defined for every f, f in F by

d∞,n(f, f) = max
1≤i≤n

∣∣f(Yi)− f(Yi)
∣∣ .

We have

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ ≤ max(σFUn, U

2
n)

where for a numerical constant C,

Un = C
(
Eγ2

2(F , d∞,n)
)1/2

and σF =

(
sup
f∈F

n∑
i=1

Ef(Yi)
2

)1/2

.

We refer to Chapter 3 for the definition of γ2(F , d∞,n) (see Definition 3.1.3) and
to the same Chapter to learn how to bound the γ2 functional. A simple example will
be given in the proof of Theorem 5.4.1.
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Proof. — As in the proof of Corollary 5.3.13, we need first to get a bound of

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ .
Let (Xf )f∈F be the Gaussian process defined conditionally with respect to the Yi’s,
Xf =

∑n
i=1 gif(Yi)

2 and indexed by f ∈ F . The pseudo-metric d associated to this

process is given for f, f ∈ F by

d(f, f)2 = Eg|Xf −Xf |
2 =

n∑
i=1

(
f(Yi)

2 − f(Yi)
2
)2

=

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi) + f(Yi)

)2
≤ 2

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi)

2 + f(Yi)
2
)

≤ 4 sup
f∈F

(
n∑
i=1

f(Yi)
2

)
max

1≤i≤n
(f(Yi)− f(Yi))

2.

Thus we have

d(f, f) ≤ 2 sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

d∞,n(f, f).

By definition of the γ2 functionals, it follows that for every vectors Y1, . . . , Yn ∈ B?,

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

γ2(F , d∞,n)

where C is a universal constant. We repeat the proof of Corollary 5.3.13. Let

V2 = E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ .

By a symmetrization argument and Cauchy-Schwarz inequality,

V2 ≤ 2

√
2

π
EEg sup

f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C (Eγ2(F , d∞,n)2
)1/2(E sup

f∈F

n∑
i=1

f(Yi)
2

)1/2

≤ C
(
Eγ2(F , d∞,n)2

)1/2 (
V2 + σ2

F
)1/2

,

where the last inequality follows from the triangle inequality:

E sup
f∈F

n∑
i=1

f(Yi)
2 ≤ V2 + σ2

F .

This shows that V2 satisfies an inequality of degree 2. It is easy to conclude that

V2 ≤ max(σFUn, U
2
n), where Un = C

(
Eγ2(F , d∞,n)2

)1/2
.
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5.4. Reconstruction property

We are now able to state one main theorem concerning the reconstruction prop-
erty of a random matrix obtained by taking empirical copies of the rows of a fixed
orthogonal matrix (or by selecting randomly its rows).

Theorem 5.4.1. — Let φ1, . . . , φN be an orthogonal system in `N2 such that for some
real number K

∀i ≤ N, |φi|2 = K and |φi|∞ ≤
1√
N
.

Let Y be the random vector defined by Y = φi with probability 1/N and Y1, . . . , Yn be
independent copies of Y . If

m ≤ C1K
2 n

logN(log n)3

then with probability greater than

1− C2 exp(−C3K
2n/m)

the matrix Φ =

 Y1

...
Yn

 is a good reconstruction matrix for sparse signals of size m,

that is for every u ∈ Σm, the basis pursuit algorithm (5.1), min
t∈RN

{|t|1 : Φu = Φt}, has

a unique solution equal to u.

Remark 5.4.2. — (i) By definition of m, the probability of this event is always
greater than 1− C2 exp

(
−C3 logN(log n)3

)
.

(ii) The same result holds when using the method of selectors.
(iii) As we already mentioned, this theorem covers the case of a lot of classical systems
like the Fourier system and the Walsh system.
(iv) The result is also valid if the orthogonal system φ1, . . . , φN satisfies the weaker
condition that for all i ≤ N , K1 ≤ |φi|2 ≤ K2. In this new statement, K is replaced
by K2

2/K1.

Proof. — Observe that E〈Y, y〉2 = K2 |y|22/N . We define the class of functions F in
the following way:

F =
{
fy : RN → R, defiined by fy(Y ) = 〈Y, y〉 : y ∈ BN1 ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)
2 − Ef(Yi)

2)

∣∣∣∣∣ = sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ .
With the notation of Theorem 5.3.14, we have

σ2
F = sup

y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉2 =
K2nρ2

N
. (5.8)
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Moreover, since BN1 ∩ ρSN−1 ⊂ BN1 ,

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n).

It is well known that the γ2 functional is bounded by the Dudley integral (see (3.7)
in Chapter 3):

γ2(BN1 , d∞,n) ≤ C
∫ +∞

0

√
logN(BN1 , ε, d∞,n) dε.

Moreover, for 1 ≤ i ≤ n, |Yi|∞ ≤ 1/
√
N and

sup
y,y∈BN1

d∞,n(y, y) = sup
y,y∈BN1

max
1≤i≤n

|〈Yi, y − y〉| ≤ 2 max
1≤i≤n

|Yi|∞ ≤
2√
N
.

Hence, the integral is only computed from 0 to 2/
√
N and by the change of variable

t = ε
√
N , we deduce that∫ +∞

0

√
logN(BN1 , ε, d∞,n)dε =

1√
N

∫ 2

0

√
logN

(
BN1 ,

t√
N
, d∞,n

)
dt.

From Theorem 1.4.3, since for every i ≤ n, |Yi|∞ ≤ 1/
√
N , we have√

logN

(
BN1 ,

t√
N
, d∞,n

)
≤


C

t

√
log n

√
logN ,

C

√
n log

(
1 +

3

t

) .

We split the integral into two parts. We have∫ 1/
√
n

0

√
n log

(
1 +

3

t

)
dt =

∫ 1

0

√
log

(
1 +

3
√
n

u

)
du

≤
∫ 1

0

√
log n+ log

(
3

u

)
du ≤ C

√
log n

and since ∫ 2

1/
√
n

1

t
dt ≤ C log n,

we conclude that

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n) ≤ C
√

(log n)3 logN

N
. (5.9)

Combining this estimate and (5.8) with Theorem 5.3.14, we get that for some C ≥ 1,

EZ ≤ C max

(
(log n)3 logN

N
, ρK

√
n

N

√
(log n)3 logN

N

)
.

We choose ρ such that

(log n)3 logN ≤ ρK
√
n (log n)3 logN ≤ 1

3C
K2 ρ2 n
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which means that ρ satisfies

K ρ ≥ 3C

√
(log n)3 logN

n
. (5.10)

For this choice of ρ, we conclude that

EZ = E sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 1

3

K2nρ2

N
.

We use Proposition 5.3.5 to get a deviation inequality for the random variable Z.
With the notations of Proposition 5.3.5, we have

u = sup
y∈BN1 ∩ρSN−1

max
1≤i≤N

〈φi, y〉2 ≤ max
1≤i≤N

|φi|2∞ ≤
1

N

and

v = sup
y∈BN1 ∩ρSN−1

n∑
i=1

E
(
〈Yi, y〉2 − E〈Yi, y〉2

)2
+ 32uEZ

≤ sup
y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉4 +
CK2nρ2

N2
≤ CK2nρ2

N2

since for every y ∈ BN1 , E〈Y, y〉4 ≤ E〈Y, y〉2/N . We conclude using Proposition 5.3.5

and taking t = 1
3
K2nρ2

N , that

P
(
Z ≥ 2

3

K2nρ2

N

)
≤ C exp(−cK2 nρ2).

With probability greater than 1− C exp(−cK2 nρ2), we get

sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 2

3

K2nρ2

N

from which it is easy to deduce by Proposition 5.1.2 that

rad
(
ker Φ ∩BN1

)
< ρ.

We choose m = 1/4ρ2 and conclude by Proposition 5.1.1 that with probability greater
than 1− C exp(−cK2n/m), the matrix Φ is a good reconstruction matrix for sparse
signals of size m, that is for every u ∈ Σm, the basis pursuit algorithm (5.1) has
a unique solution equal to u. The condition on m in Theorem 5.4.1 comes from
(5.10).

Remark 5.4.3. — By Proposition 2.7.3, it is clear that the matrix Φ shares also the
property of approximate reconstruction. It is enough to set m = 1/16ρ2. Therefore,
if u is any unknown signal and x a solution of

min
t∈RN
{|t|1,Φu = Φt},
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then for any subset I of cardinality less than m,

|x− u|2 ≤
|x− u|1

4
√
m
≤ |uI

c |1√
m

.

5.5. Random selection of characters within a coordinate subspace

In this part, we consider the problem presented in section 5.1. We briefly recall
the notations. Let (Ω, µ) be a probability space and (ψ1, . . . , ψN ) be an orthogonal
system of L2(µ) bounded in L∞ i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1 and
‖ψi‖2 = K for a fixed number K. A typical example is a system of characters in
L2(µ) like the Fourier or the Walsh system. For a measurable function f and for
p > 0, we denote its Lp norm and its L∞ norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

As before, sup |f | means the essential supremum of |f |. In RN or CN , we may define µ
as the counting probability measure so that the Lp-norm of a vector x = (x1, . . . , xN )
is defined by

‖x‖p =

(
1

N

N∑
i=1

|xi|p
)1/p

.

In this case, `N∞ and LN∞ coincide and we observe that if (ψ1, . . . , ψN ) is a bounded

orthogonal system in LN2 then (ψ1/
√
N, . . . , ψN/

√
N) is an orthogonal system of `N2

such that for every i ≤ N , |ψi/
√
N |∞ ≤ 1/

√
N . Therefore the setting is exactly the

same as in the previous part up to a normalization factor of
√
N .

Of course the notation of the radius of a set T is now adapted to the L2(µ) Euclidean
structure. The radius of a set T is defined by

RadT = sup
t∈T
‖t‖2.

For any q > 0, we denote by Bq the unit ball of Lq(µ) and by Sq its unit sphere. Our
problem is to find a very large subset I of {1, . . . , N} such that

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

with the smallest possible ρ. As we already said, Talagrand showed that there exists a
small constant δ0 such that for any bounded orthonormal system {ψ1, . . . , ψN}, there

exists a subset I of cardinality greater than δ0N such that ρ ≤ C
√

logN (log logN).
The proof involves the construction of specific majorizing measures. Moreover, it was
known from Bourgain that the

√
logN is necessary in the estimate. We will now

explain why the strategy that we developed in the previous part is adapted to this
type of question. We will extend the result of Talagrand to a Kashin type setting,
that is for example to find I of cardinality greater than N/2.
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We start with a simple Proposition concerning some properties of a matrix that
we will later define randomly as in Theorem 5.4.1.

Proposition 5.5.1. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an or-
thogonal system of L2(µ) such that for every i ≤ N , ‖ψi‖2 = K for a fixed number K.
Let Y1, . . . , Yn be a family of vectors taking values in the set of vectors {ψ1, . . . , ψN}.

Let Ψ be the matrix Ψ =

 Y1

...
Yn

 . Then

(i) ker Ψ = span {{ψ1, . . . , ψN} \ {Yi}ni=1} = span {ψi}i∈I where I ⊂ {1, . . . , N} has
cardinality greater than N − n.
(ii) (ker Ψ)⊥ = span {ψi}i/∈I .
(iii) For a star body T , if

sup
y∈T∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nK2ρ2

N

∣∣∣∣∣ ≤ 1

3

nK2ρ2

N
(5.11)

then Rad (ker Ψ ∩ T ) < ρ.
(iv) If n < 3N/4 and if (5.11) is satisfied then we also have

Rad ((ker Ψ)⊥ ∩ T ) < ρ.

Proof. — Since {ψ1, . . . , ψN} is an orthogonal system, parts (i) and (ii) are obvious.
For the proof of (iii), we first remark that if (5.11) holds, we get from the lower bound
that for all y ∈ T ∩ ρS2,

n∑
i=1

〈Yi, y〉2 ≥
2

3

nK2ρ2

N

and we deduce as in Proposition 5.1.2 that Rad (ker Ψ ∩ T ) < ρ.
For the proof of (iv), we deduce from the upper bound of (5.11) that for all y ∈ T∩ρS2,

∑
i∈I
〈ψi, y〉2 =

N∑
i=1

〈ψi, y〉2 −
n∑
i=1

〈Yi, y〉2 = K2‖y‖22 −
n∑
i=1

〈Yi, y〉2

≥ K2ρ2 − 4

3

nK2ρ2

N
= K2ρ2

(
1− 4n

3N

)
> 0 since n < 3N/4.

This inequality means that for the matrix Ψ̃ defined by with raws {ψi, i ∈ I}, for
every y ∈ T ∩ ρS2, we have

inf
y∈T∩ρS2

‖Ψ̃y‖22 > 0.

We conclude as in Proposition 5.1.2 that Rad (ker Ψ̃ ∩ T ) < ρ and it is obvious that

ker Ψ̃ = (ker Ψ)⊥.
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The case of LN2 . — We now present a result concerning the problem of selection
of characters in LN2 . It is not the most general one but we would like to emphasize
the similarity between its proof and the proof of Theorem 5.4.1.

Theorem 5.5.2. — Let (ψ1, . . . , ψN ) be an orthogonal system of LN2 bounded in LN∞
i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1 and ‖ψi‖2 = K for a fixed number K.
For any 2 ≤ n ≤ N−1, there exists a subset I ⊂ [N ] of cardinality greater than N−n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

K

√
N

n

√
logN(log n)3/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N and
let Y1, . . . , Yn be independent copies of Y . Observe that E〈Y, y〉2 = K2‖y‖22/N and
define

Z = sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nK2ρ2

N

∣∣∣∣∣ .
Following the proof of Theorem 5.4.1 (the normalization is different from a factor√
N), we obtain that if ρ satisfies

K ρ ≥ C
√
N (log n)3 logN

n
,

then

P
(
Z ≥ 1

3

nK2ρ2

N

)
≤ C exp

(
−c nK

2ρ2

N

)
.

Therefore there exists a choice of Y1, . . . , Yn (in fact it is with probability greater than

1− C exp(−c nK
2ρ2

N )) such that

sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nK2ρ2

N

∣∣∣∣∣ ≤ 1

3

nK2ρ2

N

and if I is defined by {ψi}i∈I = {ψ1, . . . , ψN}\{Y1, . . . , Yn} then by Proposition 5.5.1
(iii) and (i), we conclude that Rad (span {ψi}i∈I ∩ B1) ≤ ρ and |I| ≥ N − n. This
means that for every (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Remark 5.5.3. — Theorem 5.4.1 follows easily from Theorem 5.5.2. Indeed, if we
write the inequality with the classical `N1 and `N2 norms, we get that∣∣∣∣∣∑

i∈I
aiψi

∣∣∣∣∣
2

≤ C

K

√
logN

n
(log n)3/2

∣∣∣∣∣∑
i∈I

aiψi

∣∣∣∣∣
1
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which means that rad (ker Ψ ∩ BN1 ) ≤ C
K

√
logN
n (log n)3/2. To conclude, use Proposi-

tion 5.1.1.

The general case of L2(µ). — We can now state a general result about the selection
of characters. It is an extension of (5.3) to the existence of a subset of arbitrary size,
with a slightly worse dependence in log logN .

Theorem 5.5.4. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an or-
thonormal system of L2(µ) bounded in L∞(µ) i.e. such that for every i ≤ N ,
‖ψi‖∞ ≤ 1.
For any n ≤ N − 1, there exists a subset I ⊂ [N ] of cardinality greater than N − n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C γ (log γ)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

where γ =
√

N
n

√
log n.

Remark 5.5.5. — (i) If n is proportional to N then γ (log γ)5/2 is of the order of√
logN (log logN)5/2. However, if n is chosen to be a power of N then γ (log γ)5/2

is of the order
√

N
n

√
log n(logN)5/2 which is a worse dependence than in Theorem

5.5.2.
(ii) Exactly as in Theorem 5.4.1 we could assume that (ψ1, . . . , ψN ) is an orthogonal
system of L2 such that for every i ≤ N , ‖ψi‖2 = K and ‖ψi‖∞ ≤ 1 for a fixed real
number K.

The second main result is an extension of (5.3) to a Kashin type decomposition.
Since the method of proof is probabilistic, we are able to find a subset of cardinality
close to N/2 such that on both I and {1, . . . , N} \ I, the L1 and L2 norms are well
comparable.

Theorem 5.5.6. — With the assumptions of Theorem 5.5.4, if N is an even natural
integer, there exists a subset I ⊂ [N ] with N

2 − c
√
N ≤ |I| ≤ N

2 + c
√
N such that for

all (ai)
N
i=1 ∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

and ∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
1

.

For the proof of both theorems, in order to use Theorem 5.3.12 and its Corollary
5.3.13, we replace the unit ball B1 by a ball which has a good modulus of convexity
that is for example Bp for 1 < p ≤ 2. We start recalling a classical trick which is
often used to compare Lr norms of a measurable function (for example in the theory
of thin sets in Harmonic Analysis).
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Lemma 5.5.7. — Let f be a measurable function on a probability space (Ω, µ). For
1 < p < 2,

if ‖f‖2 ≤ A‖f‖p then ‖f‖2 ≤ A
p

2−p ‖f‖1.

Proof. — This is just an application of Hölder inequality. Let θ ∈ (0, 1) such that
1/p = (1− θ) + θ/2 that is θ = 2(1− 1/p). By Hölder,

‖f‖p ≤ ‖f‖1−θ1 ‖f‖θ2.

Therefore if ‖f‖2 ≤ A‖f‖p we deduce that ‖f‖2 ≤ A
1

1−θ ‖f‖1.

Proposition 5.5.8. — Under the assumptions of Theorem 5.5.4, the following
holds.

1) For any p ∈ (1, 2) and any 2 ≤ n ≤ N − 1 there exists a subset I ⊂ {1, . . . , N}
with |I| ≥ N − n such that for every (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

.

2) Moreover, if N is an even natural integer, there exists a subset I ⊂ {1, . . . , N}
with N/2− c

√
N ≤ |I| ≤ N/2 + c

√
N such that for every a = (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

and ∥∥∥∥∥∑
i/∈I

aiϕi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
p

.

Proof of Theorem 5.5.4 and Theorem 5.5.6. — We combine the first part of Proposi-
tion 5.5.8 with Lemma 5.5.7. Indeed, let γ =

√
N/n

√
log n and choose p = 1+1/ log γ.

Using Proposition 5.5.8, there is a subset I of cardinality greater than N−n for which

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ Cp γ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

where Cp = C/(p− 1)5/2. By the choice of p and Lemma 5.5.7,∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ γ Cp/(2−p)p γ2(p−1)/(2−p)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤ C γ (log γ)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

The same argument works for the Theorem 5.5.6 using the second part of Propo-
sition 5.5.8.

It remains to prove Proposition 5.5.8.
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Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N
and let Y1, . . . , Yn be independent copies of Y . Observe that for any y ∈ L2(µ),
E〈Y, y〉2 = ‖y‖22/N . Let E = span {ψ1, . . . , ψN} and for ρ > 0 let Ep be the vector
space E endowed with the norm defined by

‖y‖ =

(
‖y‖2p + ρ−2‖y‖22

2

)1/2

.

We restrict our study to the vector space E and it is clear that

(Bp ∩ ρB2) ⊂ BEp ⊂
√

2(Bp ∩ ρB2) (5.12)

where BEp is the unit ball of Ep. Moreover, by Clarkson inequality, for any f, g ∈ Lp,∥∥∥∥f + g

2

∥∥∥∥2

p

+
p(p− 1)

8

∥∥∥∥f − g2

∥∥∥∥2

p

≤ 1

2
(‖f‖2p + ‖g‖2p).

It is easy to deduce that Ep has modulus of convexity of power type 2 with constant
λ such that λ−2 = p(p− 1)/8.

Define the random variable

Z = sup
y∈Bp∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
We deduce from (5.12) that

EZ ≤ E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ .

From (5.12), we have

σ2 = sup
y∈BEp

n‖y‖22/N ≤ 2nρ2/N

and for every i ≤ N , ‖ψi‖E?p ≤
√

2‖ψi‖∞ ≤
√

2. By Corollary 5.3.13, we get

E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ C max

(
λ10 log n, ρλ5

√
n log n

N

)
.

We conclude that

if ρ ≥ Cλ5

√
N log n

n
, then EZ ≤ 1

3

nρ2

N

and using Proposition 5.1.2 we get

Rad (ker Ψ ∩Bp) < ρ



5.6. NOTES AND COMMENTS 147

where Ψ =

 Y1

...
Yn

. We choose ρ = Cλ5
√

N logn
n and deduce from Proposition 5.5.1

(iii) and (i) that for I defined by {ψi}i∈I = {ψ1, . . . , ψN} \ {Y1, . . . , Yn}, we have

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

.

This ends the proof of the first part.
For the second part, we add the following observation. By a combinatorial argu-

ment, it is not difficult to prove that if n = [δN ] with δ = log 2 < 3/4, then with
probability greater than 3/4,

N/2− c
√
N ≤ |I| = N − |{Y1, . . . , Yn}| ≤ N/2 + c

√
N,

for some absolute constant c > 0. Hence n < 3N/4 and we can also use part (iv) of
Proposition 5.5.1 which proves that

Rad (ker Ψ ∩Bp) ≤ ρ and Rad ((ker Ψ)⊥ ∩Bp) ≤ ρ.

Since ker Ψ = span {ψi}i∈I and (ker Ψ)⊥ = span {ψi}i/∈I , this ends the proof of the
Proposition.

5.6. Notes and comments

For the study of the supremum of an empirical process and the connection with
Rademacher averages, we already referred to chapter 4 of [LT91]. Theorem 5.3.1 is
due to Talagrand and can be found in theorem 4.12 in [LT91]. Theorem 5.3.2 is often
called a “symmetrization principle”. This strategy was already used by Kahane in
[Kah68] for studying random series on Banach spaces. It was pushed forward by
Giné and Zinn in [GZ84] for studying limit theorem for empirical processes. The
concentration inequality, Theorem 5.3.4, is due to Talagrand [Tal96b]. Several im-
provements and simplifications are known, in particular in the case of independent
identically distributed random variables. We refer to [Rio02, Bou03, Kle02, KR05]
for more precise results. Proposition 5.3.5 is taken from [Mas00].

Theorem 5.3.6 is due to Rudelson [Rud99]. The proof that we presented was sug-
gested by Pisier to Rudelson. It used a refined version of non-commutative Khinchine
inequality that can be found in [LP86, LPP91, Pis98]. Explicit constants for the
non-commutative Khinchine inequality are derived in [Buc01]. There is presently a
more modern way of proving Theorem 5.3.6, using non-commutative Bernstein in-
equalities [Tro12]. However, all the known proofs are based on an expression related
to operator norms and we have seen that in other situations, we need an estimate of
the supremum of some empirical processes which can not be expressed in terms of
operator norms. The original proof of Rudelson [Rud96] uses the majorizing measure
theory. Some improvements of this result are proved in [GR07] and in [GMPTJ08].
The proof of Theorem 5.3.12 can be found in [GMPTJ08] and it is based on the
same type of construction of majorizing measures as in [GR07] and on deep results
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about the duality of covering numbers [BPSTJ89]. The notions of type and cotype
of a Banach space are important in this study and we refer the interested reader to
[Mau03]. The notions of modulus of convexity and smoothness of a Banach space
are classical and we refer the interested reader to [LT79, Pis75].

Theorem 5.3.14 comes from [GMPTJ07]. It was used to study the problem of
selection of characters like Theorem 5.5.2. As we have seen, the proof is very similar to
the proof of Theorem 5.4.1 and this result is due to Rudelson and Vershynin [RV08b].
They improved a result due to Candès and Tao [CT05] and their strategy was to
study the RIP condition instead of the size of the radius of sections of BN1 . Moreover,
the probabilistic estimate is slightly better than in [RV08b] and was shown to us
by Holger Rauhut [Rau10]. We refer to [Rau10, FR10] for a deeper presentation
of the problem of compressed sensing and for some other points of view. We refer
also to [KT07] where connections between the Compressed Sensing problem and the
problem of estimating the Kolmogorov widhts are discussed and to [CDD09, KT07]
for the study of approximate reconstruction.

For the classical study of local theory of Banach spaces, see [MS86] and [Pis89].
Euclidean sections or projections of a convex body are studied in detail in [FLM77]
and the Kashin decomposition can be found in [Kas77]. About the question of
selection of characters, see the paper of Bourgain [Bou89] where it is proved for
p > 2 the existence of Λ(p) sets which are not Λ(r) for r > p. This problem was
related to the theory of majorizing measure in [Tal95]. The existence of a subset
of a bounded orthonormal system satisfying inequality (5.3) is proved by Talagrand
in [Tal98]. Theorems 5.5.4 and 5.5.6 are taken from [GMPTJ08] where it is also
shown that the factor

√
logN is necessary in the estimate.
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– The sets of numbers are Q, R, C
– For all x ∈ RN and p > 0,

|x|p = (|x1|p + · · ·+ |xN |p)1/p and |x|∞ = max
16i6N

|xi|

– BNp = {x ∈ RN : |x|p ≤ 1}
– Scalar product 〈x, y〉 and x ⊥ y means 〈x, y〉 = 0
– A∗ = Ā> is the conjugate transpose of the matrix A
– s1(A) > · · · > sn(A) are the singular values of the n×N matrix A where n 6 N
– ‖A‖2→2 is the operator norm of A (`2 → `2)
– ‖A‖HS is the Hilbert-Schmidt norm of A
– e1, . . . , en is the canonical basis of Rn

–
d
= stands for the equality in distribution

–
d→ stands for the convergence in distribution

–
w→ stands for weak convergence of measures

– Mm,n(K) are the m× n matrices with entries in K, and Mn(K) =Mn,n(K)
– I is the identity matrix
– x ∧ y = min(x, y) and x ∨ y = max(x, y)
– [N ] = {1, . . . , N}
– Ec is the complement of a subset E
– |S| cardinal of the set S
– dist2(x,E) = infy∈E |x− y|2
– suppx is the subset of non-zero coordinates of x
– The vector x is said to be m-sparse if |suppx| ≤ m.
– Σm = Σm(RN ) is the subset of m-sparse vectors of RN
– Sp(Σm) = {x ∈ RN : |x|p = 1, |suppx| ≤ m}
– Bp(Σm) = {x ∈ RN : |x|p ≤ 1, |suppx| ≤ m}
– BNp,∞ =

{
x ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
– conv(E) is the convex hull of E
– Aff(E) is the affine hull of E
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– rad(F, ‖·‖) = sup{‖x‖ : x ∈ F}
– For a random variable Z and any α > 1, ‖Z‖ψα = inf {s > 0 : E exp (|Z|/s)α 6 e}
– `∗(T ) = E supt∈T

∑N
i=1 giti
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preparation.

[Fre03] I. Fredholm – “Sur une classe d’équations fonctionnelles”, Acta Math. 27
(1903), no. 1, p. 365–390.

[Gel41] I. Gelfand – “Normierte Ringe”, Rec. Math. [Mat. Sbornik] N. S. 9 (51)
(1941), p. 3–24.

[GG84] A. Y. Garnaev & E. D. Gluskin – “The widths of a Euclidean ball”,
Dokl. Akad. Nauk SSSR 277 (1984), no. 5, p. 1048–1052.

[Gir75] V. L. Girko – Sluchainye matritsy, Izdat. Ob. ed. “Visca Skola” pri Kiev.
Gosudarstv. Univ., Kiev, 1975.
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spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff
Ltd., Groningen, 1961.

[KR05] T. Klein & E. Rio – “Concentration around the mean for maxima of em-
pirical processes”, Ann. Probab. 33 (2005), no. 3, p. 1060–1077.



156 BIBLIOGRAPHY

[KT07] B. S. Kashin & V. N. Temlyakov – “A remark on the problem of com-
pressed sensing”, Mat. Zametki 82 (2007), no. 6, p. 829–837.

[Led01] M. Ledoux – The concentration of measure phenomenon, Mathematical
Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI,
2001.

[Led04] M. Ledoux – “Differential operators and spectral distributions of invariant
ensembles from the classical orthogonal polynomials. The continuous case”, Electron.
J. Probab. 9 (2004), p. no. 7, 177–208 (electronic).

[LN06] N. Linial & I. Novik – “How neighborly can a centrally symmetric polytope
be?”, Discrete Comput. Geom. 36 (2006), no. 2, p. 273–281.
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unitary invariant, 95
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Orlicz functions, 17

Orlicz spaces, 17
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Polar body, 32

Pseudo-spectrum, 98
Psi-alpha norms, 17

concentration, 19

Hölder inequality, 18, 21
Laplace transform, 19, 22, 28

maximal inequality, 18, 35

moments, 19, 21
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Quasi-convex, 66
Radius, 53–56, 63, 122, 125, 141

Reconstruction property, 138

Restricted isometry property, 51, 85, 125
RIP, 51, 85

Rudelson’s inequality, 132

Schur
norm, 94

unitary decomposition, 96

Selection of characters, 121, 124, 141, 143, 144
Selectors, 121, 127

Singular value

extremal, 39
Singular values

Courant–Fischer minimax, 92
density for Gaussian matrices, 101

extremal, 92, 117

finite rank perturbation, 93
Horn inverse problem, 97

interlacing by deletion, 94

interlacing by perturbation, 93
left and right eigenvectors, 91

majorization, 97

moments, 109
pseudo-spectrum, 98

relation with rows, 97–99

Singular Values Decomposition, 90
SVD, 90

unitary invariant norms, 95

Weyl inequality, 96
Slepian-Fernique comparison lemma, 36

Sparse vector, 44, 122, 140

Spectrum
density for Gaussian matrices, 101

edge and bulk, 118
eigenvalues, 89

Horn inverse problem, 97

pseudo-spectrum, 98
spectral radius, 97

Weyl inequality, 96, 97

Star-shaped subset, 64
Stieltjes transform, 116

Subgaussian Ensemble, 57

Sudakov inequality, 36, 39
Supremum of empirical processes

concentration, 130

expected value, 128, 131, 135, 136
Symmetrization

argument, 34, 131, 136, 137

principle, 128
Theorem

Bai-Yin, 117
Majorizing measure, 78, 85

Marchenko–Pastur, 104, 106

Tightness, 106
Total variation of a function, 111

Tracy–Widom distribution, 118

Truncated set, 125
Unitary

bidiagonalization, 91

invariant norms, 95
Universality, 104

Vandermonde

convolution formula, 116
determinant, 101

Volumetric estimate, 33, 35, 38, 39
Wasserstein distance, 95

Weak convergence, 95, 105, 114

Weyl inequality, 96, 97
Width, 55

Wishart matrix and distribution, 100
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