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About confined particles with singular pair repulsion

Kac about Boltzmann

Ludwig Boltzmann
1844 – 1906

Boltzmann summarized most (but not all) of his work in a two
volume treatise Vorlesungen uber Gastheorie. This is one of
the greatest books in the history of exact sciences and the
reader is strongly advised to consult it. Mark Kac (1959).
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About confined particles with singular pair repulsion

Mechanical view of nature – Order and randomness

If you ask me about my innermost conviction whether our
century will be called the century of iron or the century of
steam or electricity, I answer without hesitation: It will be
called the century of the mechanical view of Nature, the

century of Darwin. Ludwig Boltzmann (1886).
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About confined particles with singular pair repulsion

Boltzmann H-Theorem

Boltzmann entropy

� n = n1 + · · ·+ nr distinguishable particles in r micro states

� Additive degrees of freedom per particle:

1

n
log

(
n

n1, . . . ,nr

)
� Discrete entropy: ni/n→ pi as n→∞

E(p) = −
r∑

i=1

pi log(pi)

� Continuous entropy:

E(f) = −
∫
f(t) log f(t)dt = −H(f)
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About confined particles with singular pair repulsion

Boltzmann H-Theorem

Maximum entropy

� µ∗ := arg max{µ ∈M : E(µ)}

� Examples:

I Support: uniform distribution (discrete and continuous)
I Second moment: Gaussian distribution
I V-moment (mean energy): distribution e−βV

� ∇E(f) = −(1 + log(f))
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About confined particles with singular pair repulsion

Boltzmann H-Theorem

Boltzmann H-Theorem (1870±)

� Isolated gas of particles (Avogadro beats Newton)

� Statistical approach : position-velocity density ft(x, v)

� Boltzmann-(Maxwell) evolution equation

∂tft(x, v) = v∂xft(x, v) + Q(ft, ft)(x, v)

� Conservation law: ∂t

∫∫
v2 ft(x, v)dxdv = 0

� H-Theorem: growth of entropy E = −H :

∂tE(ft) > 0

� Gaussian equilibrium for velocities (Maximum Entropy!)

� History: . . . , Kac, Lanford, Cercignani, Villani, St-Raymond, . . .
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About confined particles with singular pair repulsion

Shannon and the Central Limit Theorem

Classical Central Limit Theorem

Theorem (Classical CLT)

� If X1,X2, . . . are iid with E(Xi) = 0 and E(X2
i ) = 1 then

Sn :=
X1 + · · ·+ Xn√

n
d−→

n→∞

e−
x2

2

√
2π

dx

� Conservation law: E(Sn) = 0 and E(S2
n) = 1, ∀n

� Remaining moments > 2 become universal at the limit

� Shannon conjecture ( 1940): n 7→ E(Sn) grows

I Gaussian maximum of E at fixed second moment!
I Proof ( 2004): Artstein-Ball-Barthe-Naor
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Shannon and the Central Limit Theorem

Aspects of the proof

� Fisher information of X with density f :

F(X) :=

∫
f ′2

f
dx

� de Bruijn formula (G standard Gaussian) :

E(G)− E(X) =

∫ ∞
0

(
F(
√
e−2tX +

√
1− e−2tG)− 1

)
dt.

� Decrease of Fisher information:

n 7→ F(Sn) decreases.

� Entropy concavity along Markov semigroup (→ curvature)
Stam, . . . , Bakry-Émery, . . . , Villani, Sturm, . . .

9/ 29



About confined particles with singular pair repulsion

Shannon and the Central Limit Theorem

Aspects of the proof

� Fisher information of X with density f :

F(X) :=

∫
f ′2

f
dx

� de Bruijn formula (G standard Gaussian) :

E(G)− E(X) =

∫ ∞
0

(
F(
√
e−2tX +

√
1− e−2tG)− 1

)
dt.

� Decrease of Fisher information:

n 7→ F(Sn) decreases.

� Entropy concavity along Markov semigroup (→ curvature)
Stam, . . . , Bakry-Émery, . . . , Villani, Sturm, . . .

9/ 29



About confined particles with singular pair repulsion

Shannon and the Central Limit Theorem

Aspects of the proof

� Fisher information of X with density f :

F(X) :=

∫
f ′2

f
dx

� de Bruijn formula (G standard Gaussian) :

E(G)− E(X) =

∫ ∞
0

(
F(
√
e−2tX +

√
1− e−2tG)− 1

)
dt.

� Decrease of Fisher information:

n 7→ F(Sn) decreases.

� Entropy concavity along Markov semigroup (→ curvature)
Stam, . . . , Bakry-Émery, . . . , Villani, Sturm, . . .

9/ 29



About confined particles with singular pair repulsion

Shannon and the Central Limit Theorem

Aspects of the proof

� Fisher information of X with density f :

F(X) :=

∫
f ′2

f
dx

� de Bruijn formula (G standard Gaussian) :

E(G)− E(X) =

∫ ∞
0

(
F(
√
e−2tX +

√
1− e−2tG)− 1

)
dt.

� Decrease of Fisher information:

n 7→ F(Sn) decreases.

� Entropy concavity along Markov semigroup (→ curvature)
Stam, . . . , Bakry-Émery, . . . , Villani, Sturm, . . .

9/ 29



About confined particles with singular pair repulsion

Voiculescu and the Free Central Limit Theorem

Free Probability (1990±)

� Algebra A with involution ∗ and normalized trace τ

� Ex.: A =Mn(C), a∗ = ā>, τ(a) = 1
nTr(a)

� If a ∈ A then Law(a) = mixed moments of a and a∗:

τ(aε1 · · · aεm), ε1, . . . , εm ∈ {1, ∗}, m > 1

� Free sub-algebras: if (ai)i∈I ∈ (Ai)i∈I then

τ((a1 − τ(a1)) · · · (an − τ(an))) = 0 when i1 6= · · · 6= in

� If a,b free then Law(a + b) = Law(a)� Law(b)

� (r.v., expectation, independence) ≡ (operator, trace, freeness)

� Ex.: A = L(`2C(Fn)), τ(a) = 〈aδe, δe〉, Lg±1
i

are free
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nTr(a)

� If a ∈ A then Law(a) = mixed moments of a and a∗:

τ(aε1 · · · aεm), ε1, . . . , εm ∈ {1, ∗}, m > 1

� Free sub-algebras: if (ai)i∈I ∈ (Ai)i∈I then

τ((a1 − τ(a1)) · · · (an − τ(an))) = 0 when i1 6= · · · 6= in

� If a,b free then Law(a + b) = Law(a)� Law(b)

� (r.v., expectation, independence) ≡ (operator, trace, freeness)

� Ex.: A = L(`2C(Fn)), τ(a) = 〈aδe, δe〉, Lg±1
i

are free

10/ 29



About confined particles with singular pair repulsion

Voiculescu and the Free Central Limit Theorem

Free Probability (1990±)

� Algebra A with involution ∗ and normalized trace τ

� Ex.: A =Mn(C), a∗ = ā>, τ(a) = 1
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Voiculescu and the Free Central Limit Theorem

Free Probability CLT

Theorem (Voiculescu Free Probability CLT)

� Sequence a1, a2, . . . in A, free and same law

� Real variables: ai = a∗i for all i > 1

� Zero mean and unit variance: τ(ai) = 0 and τ(a2
i ) = 1

� Conservation law: τ(sn) = 0 and τ(s2
n) = 1 ∀n

� (Gaussian distribution) ≡ (Wigner SemiCircle distribution)

� P2m
Fn

(e,e)= 1
(2n)2m

〈(
∑n

k=1(L
g+1
k

+L
g−1
k

))2mδe,δe〉∼n→∞
1

(2n)m
1

1+m(2m
m ) (n>1)

Kesten distribution (PhD thesis, 1958)!
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Voiculescu and the Free Central Limit Theorem

Free Probability CLT

Theorem (Voiculescu Free Probability CLT)
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About confined particles with singular pair repulsion

Voiculescu and the Free Central Limit Theorem

Voiculescu Free Entropy

� Law(a) = moments of µa (when a = a∗):∫
xm dµa = τ(am), m > 1

� Voiculescu Free Entropy of µ on R:

E(µ) =

∫∫
log |x− y|dµ(x)dµ(y)

� Inspired from Boltzmann micro-macro approach

sup
R>0

inf
m∈N

inf
ε>0

lim
d→∞

(d−2 log |ΓR(a;m,d, ε)|+ 1

2
log(d))

� arg max E at fixed second moment = Wigner SemiCircle!

� Shlyakhtenko: E is monotonic along Voiculescu Free CLT!
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About confined particles with singular pair repulsion

Free Entropy and Random Matrices

Free Entropy and Random Matrices

� Ginibre Ensemble G11 · · · G1n
...

...
...

Gn1 · · · Gnn



� <Gij,=Gij iid N (0,1/(2n))

� Gaussian density (unitary invariant)

∝
n∏

j,k=1

e−n|Gj,k|2 = e−
∑n

j,k=1 n|Gj,k|2 = e−nTr(GG
∗)

� Density of eigenvalues (change of variables & Jacobian)

∝ e−n
∑n

j=1 |λj|
2 ∏
j<k

|λj − λk|2
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About confined particles with singular pair repulsion

Free Entropy and Random Matrices

Free Entropy and Random Matrices

� Vandermonde inside exponential

∝ e−n
∑

j |λj|
2
+2

∑
j<k log |λj−λk|

� Rewriting in terms of configuration energy of n particles

∝ e−n
2I(µn)

� Empirical measure µn = 1
n

∑n
j=1 δλj and energy

I(µ) =

∫
|z|2 dµ(z) +

∫∫
6=

log
1

|z − z′|
dµ(z)dµ(z′).

� Quadratic confinement and Coulomb repulsion

� Penalized Voiculescu entropy!
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About confined particles with singular pair repulsion

Free Entropy and Random Matrices

Free Entropy and Random Matrices

� Large Deviations Principle (BenArous-Zeitouni):

P(µn ∈ B) ≈ exp

(
−n2 inf

B
(I− inf

M
I)

)

� Convergence to uniform distribution on unit disk:

lim
n→∞

µn = arg inf I =
1{z∈C:|z|61}

π
.

� Real and Imaginary parts are free Wigner SemiCircle

� Same story on R for random Hermitian matrices (GUE)

� Universality (iid entries): Mehta, Girko, Bai, Tao & Vu, . . .

� Universality (Coulomb gases): Deift, Saff & Totik, . . .
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About confined particles with singular pair repulsion

Beyond Random Matrices

Beyond random matrices, how about particles in Rd?
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About confined particles with singular pair repulsion

Beyond Random Matrices

Interacting Particles System

� Particles at positions x1, . . . , xN in Rd with charge 1/N

� External field localization: potential x 7→ V(x)

� Internal pair repulsion: potential (x, y) 7→ W(x, y)

� Configuration energy

EN(x1, . . . , xN) =
N∑
i=1

1

N
V(xi) +

∑
16i<j6N

1

N2
W(xi, xj)

=

∫
V(x)dµN(x) +

1

2

∫∫
6=
W(x, y)dµN(x)dµN(y).

� For d 6 2, Random Normal Matrix Ensemble

M = UDiag(x1, . . . , xN)U∗ with U Haar independent of x.
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About confined particles with singular pair repulsion

Beyond Random Matrices

Randomness

� Boltzmann measure at inverse temperature βN > 0

dPN(x1, . . . , xN)

dx1 · · ·dxN
=

e−βNEN(x1,...,xN)

ZN
=

N∏
i=1

f1(xi)
∏

16i<j6N

f2(xi, xj)

� Stochastic Differential Equations (McKean-Vlasov)

dXt,i =

√
2

βN
dBt,i −∇V(Xt,i)dt −

∑
j6=i

∇1W(Xt,i,Xt,j)dt

� Infinitesimal generator (RdN): L = β−1
N ∆−∇EN · ∇
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About confined particles with singular pair repulsion

Beyond Random Matrices

Examples

� Random Matrices: Ginibre Ensemble

d = 2, βN = N2, V(x) = |x|2, W(x, y) = 2 log
1

|x− y|

� Coulomb interaction

W(x, y) = k∆(x− y) with k∆(x) =


−|x| if d = 1

log 1
|x| if d = 2

1
|x|d−2 if d > 3

� Riesz interaction, 0 < α < d (Coulomb if d > 3 and α = 2)

d > 1, W(x, y) = k∆α(x− y), with k∆α(x) =
1

|x|d−α
.
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About confined particles with singular pair repulsion

Beyond Random Matrices

Motivation: physical control problem

� Empirical measure

µN =
1

N

N∑
i=1

δxi .

� Fix an internal interaction potential W

� Fix a target probability measure µ∗ on Rd

� How to tune external field V and cooling scheme βN s.t.

lim
N→∞

µN = µ∗ ?
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About confined particles with singular pair repulsion

Beyond Random Matrices

General idea

� Limiting energy functional (quadratic form)

µ ∈M1 7→ I(µ) =

∫
V(x)dµ(x) +

1

2

∫∫
W(x, y)dµ(x)dµ(y).

� Asymptotic energy as N� 1:

e−βNEN(µN) ≈ e−βNI(µN).

� First order global asymptotics as N� 1:

µN ≈ arg inf I
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About confined particles with singular pair repulsion

Beyond Random Matrices

Large Deviations Principle on (M1,d)

Theorem (Large Deviations Principle, C.-Gozlan-Zitt 2013)

� I is lower semi-continuous with compact level sets

� LDP lower and upper bound:

lim inf
N→∞

log PN(µN ∈ A)

βN
> − inf

µ∈int(A)
(I− inf I)(µ)

lim sup
N→∞

log PN(µN ∈ A)

βN
6 − inf

µ∈clo(A)
(I− inf I)(µ)

� a.s. d(µN, arg inf I)→ 0 as N→∞

→ BenArous-Guionnet, BenArous-Zeitouni, Hiai-Petz, Hardy.
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About confined particles with singular pair repulsion

Beyond Random Matrices

General assumptions (beyond Coulomb and Riesz)

� Localization and repulsion.

I V : Rd → R continuous, V(x) −→
|x|→∞

+∞, e−V ∈ L1(dx)

I W : Rd × Rd → R ∪ {+∞} continuous, finite outside
diagonal, and symmetric W(x, y) = W(y, x)

� Near infinity. For some constants c ∈ R and εo ∈ (0,1),

∀x, y ∈ Rd, W(x, y) > c− εo(V(x) + V(y))

� Near diagonal. for every compact K ⊂ Rd,

z 7→ sup
x,y∈K,|x−y|>|z|

W(x, y) ∈ L1(dz).

� Regularity. ∀ν ∈M1(Rd), if I(ν) <∞ then

∃(νn) ∈M1(Rd), νn � dx, νn → ν, I(νn)→ I(ν).

� Cooling scheme. βN � N log(N) (RMT: βN = N2)
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About confined particles with singular pair repulsion

Beyond Random Matrices

About W singular

� Laplace-Varadhan lemma: case W ∈ Cb from case W ≡ 0

� If W ≡ 0 then

I PN = η⊗NN with ηN ∝ e−
βN
N V

I I∗(µ) =
∫
V dµ− infV

I arg infM1 I =MV = {µ ∈M1 : supp(µ) ⊂ arg infV}.
I limN→∞ dist(µN,MV) = 0 (thanks to βN � N log(N)� N)

� How about βN = N?
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About confined particles with singular pair repulsion

Beyond Random Matrices

About βN � N log(N)

� If βN = N then

Particles PN Rate I∗ Equilibrium µ∗
W ≡ 0 (µ∗)

⊗N K(µ) e−V

W ∈ Cb R(µ)

� Sanov rate (Kullback-Leibler relative entropy)

K(µ) =

∫
dµ

dµ∗
log

dµ

dµ∗
dµ∗ =

∫
V dµ−H(µ),

� Laplace-Varadhan rate (obtained from Sanov rate)

R(µ) = K(µ|η) +
1

2

∫∫
W(x, y)dµ(x)dµ(y) = −H(µ) + I(µ)

� → Messer & Spohn (1982), Kiessling (1993)

� → Caglioti & Lions & Marchioro & Pulvirenti (1992)

� → Bodineau & Guionnet (1999), Kiessling & Spohn (1999)
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About confined particles with singular pair repulsion

Beyond Random Matrices

Rate function analysis

� I is convex iff W is weakly positive

tI(µ) + (1− t)I(ν)− I(tµ+ (1− t)ν)

t(1− t)
=

∫∫
Wd(µ− ν)2

� Quadratic form

I(µ) =

∫
V dµ+

1

2

∫
Uµ dµ

� Potential

Uµ(x) =

∫
W(x, y)dµ(y).

� Lagrange variational analysis: gradient of I at point µ
� If W(x, y) = kD(x− y) and DkD = −δ0 with D local op. then

DUµ = −µ and µ∗ ≈ DV
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About confined particles with singular pair repulsion

Beyond Random Matrices

Rate function in the Riesz case

Theorem (Rate function in the Riesz case – CGZ 2013)

� I is strictly convex

� arg inf I = {µ∗} and µ∗ is compactly supported

� Convergence to the equilibrium measure

a.s. µN → µ∗ as N→∞

� Characterization of µ∗:

Uµ∗ + V = C∗ on supp(µ∗) and > C∗ outside

� One can construct V from µ∗ if µ∗ smooth enough.
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Equilibrium measure

� Riesz kernel + radial V.
µ∗ is supported in a ring

� Coulomb kernel d > 3 + quadratic radial V.
µ∗ is uniform on a ball

� Some related problems:

I Simulation problem (better than Euler-Langevin MCMC?)
I McKean-Vlasov dynamics N and t with singular interaction
I Second order analysis (Serfaty and co-authors)
I Hartree model for Bose-Einstein (Lewin and Rougerie)
I Weakly confining V and heavy tailed µ∗ (Hardy)
I Computation of µ∗ (Saff & Dragnev, López & Kuijlaar)
I Complex geometry and Monge-Ampère equation (Berman)
I Behavior at the edge (Rider, C.-Péché)
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Thank you for your attention!
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