
REMARKS ON THE LOG-SOBOLEV INEQUALITY
FOR THE CONTINUOUS CUBE

G. COMPRIS

Abstract. Nothing else but a short discussion about some logarithmic Sobolev inequality
on the unit continuous cube for various choices of gradients.
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Let µ be a probability measure on a domain Ω ∈ Rd, F : R → R be a smooth bounded
function and A ∈Md(R) be a constant symmetric real matrix of size d×d. We are interested
in the best (greater) positive constant τ := τ(µ, d,F , A) such that for any f ∈ C∞(Ω,R),

τ {Eµ(F(f))−F(Eµ(f))} 6 Eµ

(∇f>A∇f
)
. (1)

The cases (F(t), A) := (t2, Id) and (F(t), A) := (2t2 log t2, Id) correspond to Poincaré (or
spectral gap) and to log-Sobolev inequalities respectively, like in (2) and (3) below.

1. Lebesgue’s measure on the continuous unit cube

In this section, we denote by σ the Lebesgue measure on the continuous cube [0, 1]d ∈ Rd

of dimension d. Hence, σ is the uniform law on [0, 1]d.

1.1. Spectral gap or Poincaré inequality. We are interested in best (greater) non negative
constant λ such that for any f ∈ C∞(

[0, 1]d,R
)
,

λVarσ(f) 6 Eσ

(|∇f |2) . (2)

Constant λ is nothing else but the spectral gap of the Laplacian ∆ on [0, 1]d with Neumann
boundary conditions (i.e. with domain such that the derivative vanishes at the boundary).
The associated Markov process is the reflected Brownian motion. Inequality (2) is a purely
spectral property and it is not hard to show that λ = π2 (take f(x) = cos(πxi) for the upper
bound, and use for example Fourier transform for the equality). The dimension does not play
any role since the desired inequality in dimension d can be obtained from the one dimensional
one, with the same constant, by tensorisation (product stability property).

Notice that if we consider the best non negative constant such that inequality (2) remains
valid for any f in C∞c

(
[0, 1]d,R

)
, we are dealing with the spectral gap of the Laplacian ∆

on [0, 1]d with Dirichlet boundary conditions (i.e. with domain consisting in functions that
vanishe at the boundary). The associated Markov process is the killed Brownian motion at
the boundary and the best constant remains equal to π2 (associated with the eigenfunctions
sin(πxi)).
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1.2. Logarithmic Sobolev inequality. We are interested in best (greater) non negative
constant ρ such that for any f ∈ C∞(

[0, 1]d,R
)
,

2ρEntσ

(
f 2

)
6 Eσ

(|∇f |2) . (3)

Here again, on can consider f ∈ C∞c
(
[0, 1]d,R

)
, in which case the best constant is different (a

priori greater or equal).
Inequality (3) is not associated, as I know, to a spectral property. But one can easily show

that ρ 6 λ (just take f = 1+εg in (3) and let ε tends to 0, which gives (2) for f with constant
ρ). Actually, it is not difficult to guess that (3) holds with a non trivial ρ (i.e. > 0). More
hard is to find the optimal ρ.

Notice that we cannot use the Γ2 criterion since we are dealing with [0, 1]d, which is a
manifold with boundary. Here again, the dimension does not plays any role since the desired
inequality in dimension d can be obtained from the one dimensional one, with the same
constant, by tensorisation.

1.2.1. The Gaussian contraction method. It is well known that if γ denotes the standard one
dimensional gaussian measure, we have for any f in C∞b (R,R)

1

2
Entγ

(
f 2

)
6 Eγ

(
f ′2

)
. (4)

If Fγ denotes the density function of γ, then the image measure of γ by Fγ is simply the

Lebesgue measure σ on [0, 1]. Now, since
∣∣F ′

γ(x)
∣∣ 6 1/

√
2π, we obtain by appliying (4) to

f = g(Fγ) where g ∈ C∞([0, 1],R),

π Entσ

(
g2

)
6 Eσ

(
g′2

)
.

Therefore, we have obtained that ρ > π. Finally, we have

π 6 ρ 6 λ = π2.

1.2.2. The torus identification method. The Gaussian contraction method gives only a lower
bound for ρ. If we imbed C∞([0, 1],R) into C∞c ([0, 2],R) by taking the symmetry with respect
to the vertical line of abscissa 1, we can join the two boundary points 0 and 2 and identify
the obtained space with the circle of perimeter 2 (i.e of radius r = 1/π). It is known that
the logarithmic Sobolev inequality holds on the unit circle for the uniform probability with
optimal constant 1 (see for example [ÉY87, Rot80, Wei80]). Thus, by translating back this
inequality on the unit cube ([0, 1], σ), we get

ρ = λ = π2.

Notice that despite the fact that the Ricci curvature of the circle is zero, one can use the
integrated form of the Γ2 criterion to obtain the optimal logarithmic Sobolev inequality on the
circle.

Remark 1.1. There are also well known methods in Riemannian geometry which tell that
for spectral gap (i.e. Poincaré inequality) and logarithmic Sobolev inequality “convex bodies
bahave like manifolds with positive Ricci curvature” . But these methods gives only bounds,
and are not relevant to obtain optimal constants. See [Led00].

Remark 1.2 (The generic cube). By a simple change of variable in (2) and (3), it is straightfor-
ward that the uniform probability measure on the unit cube [0,M ]d of lenght M > 0 satisfies
to Poincaré and log-Sobolev inequalities with constants λ/M2 and ρ/M2 respectively.
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2. From the cube to the simplex

Recall that σ denotes the uniform probability measure on the unit cube [0, 1]d. For any M
in [0, d], we consider the conditionned probability measure

σM := σ( · | x1 + · · ·+ xd = M).

Let ΣM,d be the (d − 1)-dimensional polyhedra obtained by intersecting the unit cube [0, 1]d

and the affine plane of equation x1 + · · · + xd = M . Since σ is uniform on [0, 1]d, σM can be
viewed as the probability measure with support ΣM,d on which it equals the uniform measure.
Another way to realise σM is to define the probability measure νM on Rd−1 by

dνM(x) := Z−1
νM

I[0,1](x1) · · · I[0,1](xd−1)I[0,1](M − x1 − · · · − xd−1) dx1 · · · dxd−1.

Now, for any measurable function f : [0, 1]d → R, we state

EσM
(f) := EνM

(f(xM)) ,

where xM := (x1, . . . , xd−1,M − x1 − · · · − xd−1).
For M 6 1, ΣM,d is a simplex with sides of length

√
2M , we get by an affine change of

variable

τ(σM , d,F , A) =
τ(σ1, d,F , A)

2M2
> τ(σ1, d,F , A)

2
.

This is still true for d − 1 6 M 6 d by replacing M with d − M in the above formula.
Notice that τ(σ1, d,F , A) does not depend on M and corresponds to a simplex with sides of
lenght

√
2. For 1 < M < d − 1, Σd,M is an hexagon in dimension d = 3. Similarly, for any

i ∈ {1, . . . , [d/2]} and any M ∈ [i, i + 1], on can check by a simple change of variable that

τ(σM , d,F , A) > max (τ(σi, d,F , A), τ(σi+1, d,F , A))

2
.

Figure 1. Intersections of the unit cube in dimension 3 with median planes
x + y + z = M when M equals 1, 3/2 and 2.
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Questions & problems.

• What is the behavior of τ(σi, d,F , A) for i = 1, . . . , [d/2] when d goes to infinity?
• How to compare τ(σ1, d,F , A) and τ(σ, d,F , A)?
• Behavior of τ(σ1, d,F , A) for various choices of A (especially for Id and Id − J)? In

statistical mechanics, Λ := {1, . . . , L}d ∈ Zd, RΛ ' RLd=:n, the Kawasaki gradient is
given by

1

2

∑

{i∼j}∈Λ

|∂i • −∂j •|2

and the associated matrix A is then (δ(i=j) − δ(i∼j))i,j∈Λ =: IdLd − JΛ.
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