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D. Chafäı & F. Malrieu

University of Toulouse

March 2002, compiled September 27, 2002

Abstract

By using a Γ2 approach like in [AL00], we establish a modified logarithmic Sobolev
inequality for the law at time t for some Lévy processes, which yields Poissonian con-
fidence intervals in a Monte-Carlo method by means of a concentration inequality for
Lipschitz functions. Actually, this result was already obtained in [Wu00] via a martingale
representation (Clark-Ocône formulae).

It is well known that the law at time t of a standard Brownian motion (Bt)t>0 on Rd satisfies
to a logarithmic Sobolev inequality with constant 2t for the usual Euclidean gradient, cf.
[Gro75]. The independent increments of the Brownian motion and the tensorisation property
of such inequalities allows to extend this result to path spaces for the Wiener measure by
replacing the gradient on Rd with the Malliavin derivative. Recently, such inequalities were
extended in a suitable modified form to some continuous time random walks on graphs in
[AL00], to the Poisson point process in [AL00] and [Wu00], and to normal martingales in
[Pri00]. It is then quite natural to ask if such inequalities hold for diffusions with jumps. In
this direction, we are interested in particular Lévy processes (Xt)t>0 on Rd with infinitesimal
generator L of the form

L := σ ∆ + b · ∇+ λ (K − I), (1)

where (σ, λ, b) ∈ R+ × R+ × Rd and K is defined for any f : Rd → R by

(Kf)(x) :=

∫
Rd

f(x + y) ν(dy),

where ν is a fixed probability measure on Rd. In other words, L acts on a smooth function
f : Rd → R as follows:

(Lf)(x) = σ (∆f)(x) + b · (∇f)(x) + λ

∫
Rd

(f(x + y)− f(x)) ν(dy).

The process (Xt)t>0 can be viewed as the independent sum Xt =
√

2σ Bt + tb + Yt, where
(Bt)t>0 is a standard Brownian motion and (Yt)t>0 is a compound Poisson process with jump
kernel K and jumping rate λ. In other words, Yt = ZNt where (Zn)n∈N∗ is a Markov chain
with i.i.d. increments of law ν and (Nt)t>0 is a simple Poisson point process of intensity λ
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independent of (Zn)n∈N∗ . As for any Markov process, one can define the associated Markov
semi-group (Pt)t>0 given by

Pt(f) (x) := E(f(Xt) |X0 = x),

and the “carré du champ” operator Γ given by

Γ(f)(x) :=
1

2

(
L(f 2)− 2 fLf

)
(x)

= σ |∇f |2(x) +
λ

2

∫
Rd

(f(x + y)− f(x))2 ν(dy).

We establish modified logarithmic Sobolev inequalities for Pt(·) (x) uniformly in x ∈ Rn with
constant 2t, as stated in the following theorem.

Theorem 1. For any t > 0, and any positive smooth function f : Rd → R,

Pt(f log f)−Pt(f) log Pt(f) 6 2tPt

(
Γf

f

)
. (2)

Notice that the constant 2t is not optimal when the jump part is not present (i.e. λ=0)
and may be then replaced in this case by t. When ν is compactly supported, we are able to use
the techniques developed in [BL98] (see also [Led99]) to deduce the following concentration
result for Lipschitz functions of Xt.

Corollary 1. Let (Xt)t>0 be the Lévy process on Rd generated by (1). Assume that ν is
compactly supported with supp(ν) ⊂ B(0, K), then, for any t > 0, any r > 0 and any 1-
Lipschitz function f ,

P(|f(Xt)− Ef(Xt)| > r) 6 2 exp

(
− r

8K
log

(
1 +

2Kr

t(σ + λK2)

))
. (3)

This inequality for the law of Xt expresses a Gaussian concentration for small values of r
and a Poissonian concentration for large values of r. It gives exact confidence intervals for a
Monte-Carlo method, as presented in Section 4.

Finally, since (Xt)t>0 has independent increments, inequality (2) can be tensorised to
cylindrical functions of the process (Xt)t>0, as stated in the following theorem. It can be
viewed as an extension of certain results of [AL00] stated to derive local inequalities on path
spaces.

Theorem 2. Let (Xt)t>0 be the Lévy process generated by (1). For any smooth function F of
(Xt1 , . . . , Xtn) where 0 = t0 < t1 < · · · < tn:

E(F log F )− E(F ) log E(F ) 6 2
n∑

i=1

(ti − ti−1)E

(
Γi···nF

F

)
, (4)

where

Γi···nF (x) := σ

∣∣∣∣ n∑
j=i

∇jF (x)

∣∣∣∣2 +
λ

2

∫
Rd

(F ◦ τi(y)(x)− F (x))2ν(dy),

and
F ◦ τi(y)(x) := F (x1, . . . , xi−1, xi + y, . . . , xn + y).
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1 Proof of Theorem 1

Towards the derivation of the local inequality (2), we introduce the Γ2 operator which is
constructed from L and Γ:

Γ2f :=
1

2
(Γ(f, g)− 2Γ(f,Lg)),

where Γ(f, g) := (L(fg) − fLg − gLf))/2 for any smooth functions f, g : Rd → R. In the
sequel, the exponent (1) (resp. (2)) always refers to the continuous part (resp. jump part) of
the generator (1). For example, Γ(f, g) is the sum of

Γ(1)(f, g)(x) := σ∇f(x) · ∇g(x)

and of

Γ(2)(f, g)(x) :=
λ

2

∫
Rd

(f(x + y)− f(x))(g(x + y)− g(x)) ν(dy).

At this stage, an easy calculus gives that,

Γ2f = Γ
(1)
2 (f) + Γ

(2)
2 (f) + σλ

∫
Rd

|∇f(x + y)−∇f(x)|2 ν(dy),

where Γ
(1)
2 f := σ2 ‖Hess(f)‖2

2 and

Γ
(2)
2 (f)(x) :=

λ2

4

∫
Rd

[f(x + y + z)− f(x + y)− f(x + z) + f(x)]2 ν(dy)ν(dz).

One can notice that Γ is always non negative, which is a general property of Markov processes.
On the other hand, the positivity of Γ2 yields local Poincaré inequalities for Pt,

Pt

(
f 2
)
−Pt(f)2 6 2tPt(Γf) . (5)

More generally, the celebrated Bakry-Émery criterion Γ2 > ρΓ implies a Poincaré inequality
with constant ρ−1 (1− exp(−2ρt)), cf. [Bak97]. In our case, since linear functions have a null
Γ2 and a positive Γ, the best constant ρ is 0. Nevertheless, we are able to prove the more
precise bound

Γ2 > Γ
(√

Γ
)
, (6)

which yields the local modified logarithmic Sobolev inequality (2), improving in this way the
local Poincaré inequality (5).

Proof of (6). The chain rule formula Γ(1)(Φ(f)) = Φ′2(f)Γ(1)f and the Cauchy-Schwarz in-
equality yield the bound

Γ
(1)
2 > Γ(1)

(√
Γ(1)

)
. (7)

Unfortunately, there is no chain rule formula for Γ(2). Nevertheless, we are able to show that
the bound (6) still holds. The quantity to estimate is given by :

Γ
(√

Γf
)
(x) = σ

∣∣∣∇√Γf(x)
∣∣∣2 +

λ

2

∫ (√
Γf(x + y)−

√
Γf(x)

)2

ν(dy).
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The triangle inequality yields for any α and β∣∣∣√Γf(α)−
√

Γf(β)
∣∣∣

6

√
σ |∇f(α)−∇f(β)|2 +

λ

2

∫
[f(α + z)− f(α)− f(β + z) + f(β)]2 ν(dz).

Hence, the second part of Γ
(√

Γf
)
(x) is bounded above by

σλ

2

∫
|∇f(x + y)−∇f(x)|2 ν(dy) + Γ

(2)
2 (f)(x).

On the other hand, the first part of Γ
(√

Γf
)
(x) is equal to

σ

4

∣∣∣∇Γ(1)f(x) + λ
∫
(∇f(x + y)−∇f(x))(f(x + y)− f(x)) ν(dy)

∣∣∣2
Γ(1)f(x) + Γ(2)f(x)

.

The Cauchy-Schwarz inequality yields that the numerator of the latter is bounded above by√Γ(1)f(x)

∣∣∣∇Γ(1)f(x)
∣∣∣√

Γ(1)f(x)
+

√
Γ(2)f(x)

√
2λ

∫
|∇f(x + y)−∇f(x)|2 ν(dy)

2

.

Again by the Cauchy-Schwarz inequality, this expression is bounded above by

(
Γ(1)f(x) + Γ(2)f(x)

)
∣∣∣∇Γ(1)f(x)

∣∣∣2
Γ(1)f(x)

+ 2λ

∫
|∇f(x + y)−∇f(x)|2 ν(dy)

.

But now, observe that by virtue of (7),

σ

4

∣∣∣∇Γ(1)f(x)
∣∣∣2

Γ(1)f(x)
= Γ(1)

(√
Γ(1)

)
(x) 6 Γ

(1)
2 (f)(x),

and therefore the first term of Γ
(√

Γf
)
(x) is bounded above by

Γ
(1)
2 (f)(x) +

σλ

2

∫
Rd

|∇f(x + y)−∇f(x)|2 ν(dy).

Summarising, we get that Γ
(√

Γf
)
(x) is bounded above by

Γ
(1)
2 (f)(x) + Γ

(2)
2 (f)(x) + σλ

∫
Rd

|∇f(x + y)−∇f(x)|2 ν(dy),

which is exactly Γ2(f)(x).

For the sake of completeness, let us recall the derivation of (2) from (6), which is taken
from [AL00].

4



Proof of (6) ⇒ (2). Since Pt(f log f)−Pt(f) log Pt(f) = α(t)− α(0), where

α(s) := Ps(Pt−sf log Pt−sf)

for any s in [0, t], we just have to control α′. With the notation g = Pt−sf , we get

α′(s) = Ps(L(g log g)− (1 + log g)Lg) .

Now, L(g log g)(x)− (1 + log g(x))Lg(x) is equal to

σ
|∇g(x)|2

g(x)
+ λ

∫
{g(x + y)[log g(x + y)− log g(x)]− [g(x + y)− g(x)]} ν(dy).

Then, using the inequality log b− log a 6 (b− a)/a, which is true for a, b > 0, we get

L(g log g)− (1 + log g)Lg 6 2
Γg

g
,

(notice that the absolute constant 2 above may be removed when there is no jump part, i.e.
when λ = 0, and thus, the preceding inequality is not optimal in the continuous part.). As a
consequence,

α′(s) 6 2Ps

(
ΓPt−sf

Pt−sf

)
.

At this step, we need a commutation relation between
√

Γ and Pt. Consider the function β
defined on [0, t] by:

β(s) := Ps

(√
ΓPt−sf

)
.

Then, with the notation g = Pt−sf , its derivative is equal to:

β′(s) = Ps

(
L
(√

Γg
)
− 1√

Γg
Γ(g,Lg)

)
= Ps

(
1

2
√

Γg

[
2
√

Γg L
(√

Γg
)
− 2Γ(g,Lg)

])
= Ps

(
1√
Γg

[
Γ2g − Γ

(√
Γg
)])

> 0.

Therefore, the function β increases√
ΓPtf 6 Pt

(√
Γf
)

.

This commutation relation provides:

α′(s) 6 2Ps

((
Pt−s

(√
Γf
))2

Pt−sf

)
.

At last, the Cauchy-Schwarz inequality

(Pt−sX)2 6 Pt−s(X
2/Y )Pt−s(Y )

leads to

α′(s) 6 2Pt

(
Γf

f

)
,

which achieves the proof.
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Remark 1. Notice that it is perhaps more easy to derive the Γ2 bounds separately:

Γ
(1)
2 > Γ(1)

(√
Γ(1)

)
and Γ

(2)
2 > Γ(2)

(√
Γ(2)

)
.

This yields to the following local inequalities for any t > 0 and any smooth f : Rd → R:

Ent(f(Wt)) 6 t E
(

Γ(1)f

f
(Wt)

)
,

and

Ent(f(Yt)) 6 2t E
(

Γ(2)f

f
(Yt)

)
,

where Ent(F ) := E(F log F ) − E(F ) log E(F ). The first one, which concerns the Brownian
motion Wt :=

√
2σ Bt + tb, is well known and can be viewed as a direct consequence of

the logarithmic Sobolev inequality for the standard Gaussian measure. Since (Xt)t>0 is an
independent sum of the Brownian part (Wt)t>0 and the Poisson part (Yt)t>0, the couple of
inequalities above gives by tensorisation

Ent(f(Wt, Yt)) 6 t E
(

Γ(1)f

f
(Wt, Yt) + 2

Γ(2)f

f
(Wt, Yt)

)
.

Finally, the latter yields (2) by taking f(x, y) of the form f(x + y).

Remark 2. One can ask if the bound (6) holds when b is not constant, for example when
(Xt)t>0 is the Markov process generated by ∆−∇U · ∇+ λ (K − I). In this case, (Xt)t>0 is
not the independent sum of the diffusive part and the jump part. The additional term in Γ2 is

〈∇f(x), Hess(U)(x)∇f(x)〉+ λ

∫
Rd

∇f(x + y)(∇U(x + y)−∇U(x))(f(x + y)− f(x)) ν(dy).

Unfortunately, even in the case where U(x) = |x|2/2 and ν = δ1, due to the presence of the
crossing term, the associated Γ2 operator can be negative. Notice that

ε−1

∫
Rd

(f(x + εy)− f(x)) ν(dy) −→
ε→0+

∇f(x) ·
∫

Rd

y ν(dy),

and then, the jump part acts asymptotically like a constant drift in the generator. Hence, one
can see the jump part in general like a drift perturbation of the diffusive part of the generator.
The behavior of the local inequalities under bounded perturbations of a convex drift is still
an unsolved problem. On the other hand, one can ask if Γ2 remains bounded below when the
jump kernel K(x) is not of the form δx∗ν. In this case, we have by denoting νx the probability
measure associated to K(x):

L(2)f(x) = λ

∫
Rd

f(y) νx(dy)− f(x),

and

Γ(2)f(x) =
λ

2

∫
Rd

[f(y)− f(x)]2 νx(dy),
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and

Γ
(2)
2 =

λ2

4

∫∫∫
[f(z)− f(y)− f(u) + f(x)]2 νy(dz) νx(dy) νx(du)

− 2

∫∫∫
f(z)[f(y)− f(u)] νy(dz) νx(dy) νx(du).

As we can see, Γ
(2)
2 is not positive in general. Nevertheless, when νx = δα(x), the bound

Γ
(2)
2 > Γ(1)

(√
Γ(1)

)
still holds, for any function x 7→ α(x).

2 Proof of Theorem 2

For simplicity, we give the proof for n = 2 and (t1, t2) = (s, t). By denoting Φ(u) := u log u,
we have that E(Φ(F ))− Φ(E(F )) is equal to

E[E(Φ(F ) |Xs)− Φ(E(F |Xs))] + E(Φ(E(F |Xs)))− Φ(E(E(F |Xs))). (8)

In other words, Ent(X) = E(Ent(X|Y )) + Ent(E(X|Y )). If Gx(y) := F (x, x + y), we have
by virtue of (2),

E(Φ(Gx(Xt−s)))− Φ(E(Gx(Xt−s))) 6 2(t− s) E
(

(ΓGx)(Xt−s)

Gx(Xt−s)

)
.

But now,

Γ(Gx)(y) = σ |∂2F (x, x + y)|2 +
λ

2

∫
Rd

|F (x, x + y + z)− F (x, x + y)|2 ν(dz).

Therefore, since Xt = Xs + Xt − Xs where Xt − Xs has the same law than Xt−s and is
independent of Xs, the first term of (8) can be bounded above as

E[E(Φ(F ) |Xs)− Φ(E(F |Xs))] 6 2(t− s) E
(

Γ2···2F

F

)
.

On the other hand, if we define Ht−s by

Ht−s(x) := E(F (x, x + Xt−s)),

we have by virtue of (2),

E(Φ(Ht−s(Xs)))− Φ(E(Ht−s(Xs))) 6 2s E
(

(ΓHt−s)(Xs)

Ht−s(Xs)

)
.

Now, the Cauchy-Schwarz inequality E(Z)2 6 E(Z2/Y ) E(Y ) gives,

(ΓHt−s)(x) = σ [E(∂1F (x, x + Xt−s) + ∂2F (x, x + Xt−s))]
2

+
λ

2

∫
Rd

[E(F (x + z, x + z + Xt−s)− F (x, x + Xt−s))]
2 ν(dz)

6 σ E
(
|∂1F (x, x + Xt−s) + ∂2F (x, x + Xt−s)|2

F (x, x + Xt−s)

)
Ht−s(x)

+
λ

2

∫
Rd

E
(
|F (x + z, x + z + Xt−s)− F (x, x + Xt−s)|2

F (x, x + Xt−s)

)
Ht−s(x) ν(dz).

Therefore, the last term of (8) is bounded as

E(Φ(E(F |Xs)))− Φ(E(E(F |Xs))) 6 2s E
(

Γ1···2F

F

)
.

This achieves the proof.
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3 Proof of Corollary 1

For any smooth function f : Rd → R, one have by the definition of Γ:

Γ(ef )(x) = σ e2f(x)|∇f |2(x) +
λ

2
e2f(x)

∫
Rd

(
ef(x+y)−f(x) − 1

)2
ν(dy).

Hence, if ‖f‖Lip 6 α, we get(
Γ(ef )

ef

)
(x) 6 σα2 ef(x) +

λ

2
ef(x)

∫
Rd

(
ef(x+y)−f(x) − 1

)2
ν(dy).

Now, the inequality (eu − 1)2 6 u2e2|u| yields,(
Γ(ef )

ef

)
(x) 6

[
σα2 +

λ

2
K2α2e2αK

]
ef(x) 6

(
σ +

λK2

2

)
α2e2Kαef(x).

Therefore, by virtue of (2), we have obtained that for any smooth Lipschitz function f such
that ‖f‖Lip 6 α,

E
(
f(Xt)e

f(Xt)
)
− E(f(Xt))E

(
ef(Xt)

)
6 B(α) E

(
ef(Xt)

)
,

where

B(α) := 2t

(
σ +

λK2

2

)
α2e2Kα =: Aα2eBα.

This inequality is known to give the desired concentration bound by the classical Herbst’s
argument, cf. [Led99, Cor. 2.12]. Namely, for any 1-Lipschitz function g, let

H(β) := β−1 E(eβg(Xt)).

Now, the previous inequality can be simply rewritten as H ′(β) 6 B(β)/β2. Since H(0) =
E(g(Xt)), we get

E(eβg) 6 exp

(
β E(g(Xt)) + β

∫ β

0

B(u)

u2
du

)
= exp

(
β E(g(Xt)) + βAB−1(eBβ − 1)

)
.

This yields by Chebychev’s inequality,

P(g(Xt)− E(g(Xt)) > r) 6 exp
(
−βr + βAB−1(eBβ − 1)

)
.

The desired result follows by choosing β = r(4A)−1 when r 6 4AB−1, which gives

exp
(
−βr + βAB−1(eBβ − 1)

)
6 exp

(
−βr + 2Aβ2

)
6 exp

(
− r2

8A

)
,

and β = B−1 log(Br/(2A)) when r > 4AB−1, for which

exp
(
−βr + βAB−1(eBβ − 1)

)
6 exp

(
− r

2B
log

Br

2A

)
.

Remark 3. Actually, the compact support hypothesis for ν can be relaxed, but the concentra-
tion inequality is then different. More precisely, one can take

B(u) := 2t u2

(
σ +

λ

2

∫
Rd

|y|2e2u|y| ν(dy)

)
.

This gives various concentration inequalities [Led99], depending on the behavior of ν at infinity.
Notice that ∫ α

0

B(s)

s2
ds = 2σαt +

λt

2

∫
Rd

|y|
(
e2α|y| − 1

)
ν(dy).
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4 Application to the Monte-Carlo method

As we said, the process (Xt)t>0 can be viewed as the independent sum

Xt =
√

2σ Bt + tb + Yt,

where (Bt)t>0 is a standard Brownian motion and (Yt)t>0 is a compound Poisson process with
jump kernel K and jumping rate λ. This gives a way to simulate Xt for any time t, but in
general, the law of Xt is not known explicitly. Therefore, by virtue of the law of large numbers,
E(f(Xt)) can be approximated by the empirical mean

1

n

(
f(X

(1)
t )(ω) + · · ·+ f(X

(n)
t )(ω)

)
,

where X
(1)
t , . . . , X

(n)
t are n i.i.d. copies of Xt. The problem is then to control the error

in terms of all the parameters λ, σ, ν, t and n. The usual methods used in practice are
asymptotic (CLT or LDP) or badly depend on n and on the variance of f (Chebychev’s or
Berry-Essen’s bounds). In contrast, when f is Lipschitz, (2) gives exact confidence intervals
for this approximation method, as stated in the following theorem. Moreover, n can be clearly
chosen in a sharp way.

Theorem 3. Let f : Rd → R be an α-Lipschitz function and (Xt)t>0 be the Lévy process
generated by (1), where ν is compactly supported with supp(ν) ⊂ B(0, K). Then, for every
t > 0, r > 0, n ∈ N∗,

P
(∣∣∣∣ 1n

n∑
i=1

f(X
(i)
t )− E(f(Xt))

∣∣∣∣ > r

)
6 2 exp

(
− r

√
n

8Kα
log

(
1 +

2Kr
√

n

αt(σ + λK2)

))
.

where X
(1)
t , . . . , X

(n)
t are n i.i.d. copies of Xt.

Proof. The proof is based on the tensorisation of (2), which yields an inequality of the same
type of (2) with the same constant for the probability measure L(Xt)

⊗n on (Rd)⊗n with the
sums of the Γ operators on the n coordinates. The desired result follows with an argument
similar to the proof of Corollary 1.

5 Simpler and stronger

Let Pt(f) (x) := E(f(Xt) |X0 = x) where (Xt)t>0 is the Markov process with infinitesimal
generator L given by

(Lf)(x) := λ

∫
Rd

Dyf(x) ν(dy),

where Dyg(x) := f(x+ y)− f(x) and ν is a Lévy measure (i.e.
∫

Rd(|y|2∧ 1) ν(dy) < +∞). We
have for any t > 0 and any f : Rd → R with f > 0:

Pt(f log f)−Pt(f) log Pt(f) = α(t)− α(0) =

∫ t

0

α′(s) ds,

where α(s) := Ps(Pt−s(f) log Pt−s(f)). But now α′(s) = Ps(L(g log g)− (1 + log g)Lg) where
g := Pt−s(f). At this stage, we notice that

L(g log g)− (1 + log g)Lg = λ

∫
Rd

[DyΦ(g)− Φ′(g)Dyg] ν(dy),
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where Φ(u) := u log u. But DyΦ(g)− Φ′(g)Dyg = Ψ(g, Dyg), where

Ψ(u, v) : = Φ(u + v)− Φ(u)− Φ′(u)v

= (u + v) log(u + v)− u log u− (1 + log u)v,

for any (u, v) ∈ R2 with u > 0 and u + v > 0. Hence, by the Fubini Theorem,

α′(s) = λ

∫
Rd

Ps(Ψ(g, Dyg)) ν(dy).

Now, since g = Pt−s(f) and since the process have independent increments, we have Dyg =
DyPt−s(f) = Pt−s(Dyf). Then, by the Jensen inequality for the bivariate convex function Ψ
and the probability measure Pt−s(·)(x) = L(Xt−s |X0 = x):

Ψ(g, Dyg) = Ψ(Pt−s(f) ,Pt−s(Dyf)) 6 Pt−s(Ψ(f, Dyf)) ,

Hence, we have:

α′(s) 6 λ

∫
Rd

Ps(Pt−s(Ψ(f, Dyf))) ν(dy) = λ

∫
Rd

Pt(Ψ(f, Dyf)) ν(dy).

Therefore, again by the Fubini Theorem:

α′(s) 6 λPt

(∫
Rd

Ψ(f, Dyf) ν(dy)

)
.

Finally, we have:

Pt(f log f)−Pt(f) log Pt(f) 6 λtPt

(∫
Rd

Ψ(f, Dyf) ν(dy)

)
.

This inequality gives two bounds in terms of (Dyf)2/f and Dyf Dy log f since we have

Ψ(u, v) 6
v2

u
and Ψ(u, v) 6 v(log(u + v)− log u).

In other words:

Pt(f log f)−Pt(f) log Pt(f) 6 λtPt

(∫
Rd

min

(
(Dyf)2

f
, Dyf Dy log f

)
ν(dy)

)
.

Notice that Γf = λ
2

∫
Rd(Dyf)2 ν(dy).
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