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Abstract

For a Gaussian random vector X with covariance matrix K, two distinct compo-
nents Xi and Xj are marginally independent if and only if Ki,j = 0. In these notes,
we consider the maximum likelihood estimation of the covariance matrix K under
the constraint that K has some prescribed null entries. This estimation problem
arise in many applied contexts, and is often fully addressed only when the pattern of
prescribed zeroes for K has a simple structure, e.g. K has a block diagonal structure
for instance. In these notes, we do not use any simplified structural assumptions on
the pattern of zeroes.
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The maximum likelihood (ML) for structured covariance matrices has been studied

for a long time by statisticians. What is said on these notes is already present in the lit-
erature, see for instance [CDR06] and references therein (for patterns on K) and [DRV05]
and references therein (for patterns on K−1). For patterns in K−1, the link with graphi-
cal models, chordal graphs, sparse Choleski, dual Lagrangian formulations, and max-det
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problems is addressed in [DRV05] and [VBW96] and references therein. The recent book
[BV04] by Boyd and Vandenberghe provides many interesting material to address the
questions considered in these notes.

1 Introduction

Let X1, . . . , XN be a random sample drawn from a multivariate centred Gaussian
distribution on Rn with unknown non-singular covariance matrix K. Assume that some
prescribed entries of K are known to be null, i.e. Ki,j = 0 for any (i, j) ∈ I, for some known
subset I of {(i, j); 1 6 i < j 6 n}. Consider now the maximum likelihood estimation
(MLE) of K from X1, . . . , XN . The log-likelihood L(K) is given by

L(K) = −nN

2
log(2π) +

N

2
log det(K−1)− 1

2

N∑
i=1

X>
i K−1Xi, (1)

where X1, . . . , XN must be seen as column vectors. The maximum-likelihood estimator
is thus obtained by the maximisation of L over the set K+∗

n (I) of non-singular n × n
covariance matrices K such that Ki,j = 0 for any (i, j) ∈ I.

When I = ∅, then K+∗
n (I) is the whole set of non-singular covariance matrices, and

the maximum-likelihood estimator is given by the empirical covariance matrix

X :=
1

N

N∑
i=1

XiX
>
i , (2)

and is almost-surely symmetric definite positive. In presence of additional parameters, the
Cholesky factorisation allows for instance the set up of a gradient-like approach. Similarly,
a block Cholesky factorisation allows to address the case where I is such that the elements
of K+∗

n (I) are block diagonal by tensorisation.
The goal of these notes is to explore some aspects of these sets K+∗

n (I). No closed form
is known for the maximum likelihood when I has a generic structure, see for instance
[CDR06] and references therein.

2 Some useful sets of matrices

For any n in N∗, let Mn be the vector space of square n × n matrices with real
entries. In the sequel, a vector v of Rn is by default a column vector, and v> is a
row vector. For any A and B in Mn, we denote by A ◦ B their Hadamard product,
defined by (A ◦ B)i,j = Ai,jBi,j for any 1 6 i, j 6 n. We denote by GLn the set of non-
singular elements of Mn, by Pn the set of n× n permutation matrices, by On the set of
orthogonal elements of Mn, and by Sn the set of symmetric elements of Mn. Recall that
Pn ⊂ On ⊂ GLn. We denote by Dn the set of diagonal elements of Mn. The vector space
Mn is isomorphic to Rn×n, and Sn is a sub-vector-space of Mn of dimension n(n + 1)/2.
Finally, GLn is an open and dense multiplicative sub-group of Mn, whereas Pn is a finite
sub-group of GLn isomorphic to the symmetric group Σn.

We identify Mn with the standard Hilbert space Rn×n. The scalar product is given
by the Frobenius formula A · B := Tr(AB>) =

∑n
i,j=1 Ai,jBi,j. The canonical basis

{Ei,j; 1 6 i, j 6 n} of Rn×n forms an orthonormal basis of the Hilbert space Mn. The
entries of Ei,j are all zero except the entry at line i and column j which is equal to 1. We
denote by In the identity matrix, by {e1, . . . , en} the canonical basis of Rn.
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As a sub-Hilbert-space of Mn of dimension n(n + 1)/2, the set Sn is closed with zero
Lebesgue measure and empty interior in Mn. We identify Sn with the Hilbert space
Rn(n+1)/2, equipped with the Frobenius scalar product A ·B := Tr(AB) =

∑n
i,j=1 Ai,jBi,j.

This Hilbert structure on Sn coincides with the trace of the Hilbert structure of Mn

via the natural inclusion Sn ⊂ Mn. It corresponds to see Sn an a sub-vector space of
Rn(n+1)/n, with the trace metric and induced topology. Notice that the scalar product
on Sn is not the standard Euclidean scalar product of Rn(n+1)/2 since the off-diagonal
elements have weight 2, namely A · B =

∑n
i=1 Ai,iBi,i + 2

∑
16i<j6n Ai,jBi,j. The family

{1
2
(Ei,j + Ej,i); 1 6 i 6 j 6 n} forms an orthonormal basis of the Hilbert space Sn. The

set Sn ∩ GLn is an open dense subset of the Hilbert space Sn. We denote by S+
n the set

of elements of Sn with non-negative spectrum, and by S+∗
n the set of elements of Sn with

positive spectrum. We also define D+
n := Dn ∩ S+

n ' [0, +∞)n and D+∗
n := Dn ∩ S+∗

n '
(0, +∞)n.

Let In be the set of subsets of {(i, j); 1 6 i < j 6 n}. For any I ∈ In, let us define
the sub-Hilbert-space Kn(I) of Sn by

Kn(I) := {A ∈ Sn;∀(i, j) ∈ I, Ai,j = 0}.
Notice that Dn ⊂ Kn(I), that Kn(∅) = Sn, and that Kn(Imax) = Dn where Imax :=
{(i, j); 1 6 i < j 6 n}. The set Kn(I) is a Hilbert space equipped with the Frobenius
scalar product inherited from the Hilbert space Sn. It is the vector span of the orthonormal
family {1

2
(Ei,j + Ej,i); (i, j) 6∈ I}. The orthogonal (Kn(I))⊥ of Kn(I) in the Hilbert space

Sn is the vector span of the orthonormal family {1
2
(Ei,j + Ej,i); (i, j) ∈ I}.

We also define K+
n (I) = Kn(I)∩S+

n and K+∗
n (I) = Kn(I)∩S+∗

n , which are both convex
cones of the Hilbert spaces Kn(I) or Sn. Notice that K+

n (∅) = S+
n , and K+∗

n (∅) = S+∗
n .

Moreover, I ⊂ J implies Kn(J) ⊂ Kn(I), and ∩I∈InKn(I) = Kn(Imax) = Dn. Similar
properties hold for K+

n and K+∗
n by replacing Dn with D+

n and D+∗
n respectively.

The convex cone K+∗
n (I) is not empty nor closed in the Hilbert space Sn, since it is

the intersection of the closed set Kn(I) with the open set S∗+n . However, K+∗
n (I) is open

in the Hilbert space Kn(I), as the trace of the open set S+∗
n onto Kn(I). The closure of

K+∗
n (I) is given by the closed convex cone K+

n (I) (both in the Hilbert space Kn(I) and in
the Hilbert space Sn).

For any I ∈ In, we denote by CI the symmetric n × n matrix defined by CI :=∑
(i,j) 6∈I(E

i,j + Ej,i). For any A ∈ Sn, the matrix A ◦ CI is the orthogonal projection

pKn(I)(A) of A onto Kn(I).
We define also the set R+∗

n (I) := {A; A−1 ∈ K+∗
n (I)}, which is suitable for patterns of

zeroes on the inverse of non-singular covariance matrices.

3 Marginal versus mutual independence for Gaussian vectors

For any vector X and any unordered sequence I of components indexes, we denote
by XI the corresponding components of X taken in the natural order. Similarly, for a
matrix K, we denote by KI,J the sub-matrix of K corresponding to the entries of K
with indexes in I × J , taken in the natural order. The components of XI are said to
be conditionally independent given XJ when the conditional law L(XI |XJ) is a product
distribution. The conditional independence of the components of XI given XJ means that
the marginal components of the multivariate law L(XI |XJ) are mutually independent.
The conditional independence of the components of XI given XJ corresponds also to the
fact that the conditional law L(XI1 |XJ∪I2) does not depend on XI2 , for any partition
I1 ∪ I2 = I.
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Recall that the components of a Gaussian random vector X of covariance matrix K
are mutually independent if and only if they are two by two independent, and if and only
if K is diagonal. Let X be now a centred Gaussian random vector with non-singular
covariance matrix K. Let I and J be two disjoint sequences of indexes. It is a classical
result of probability Theory that the conditional law L(XI |XJ) is a multivariate centred
Gaussian distribution with covariance matrix1

KI,I −KI,J(KJ,J)−1KJ,I = ((K−1)I,I)
−1.

Consequently, the components of XI are conditionally independent given XJ if and only if
((K−1)I,I)

−1 is diagonal. This holds if and only if (K−1)I,I is diagonal. In particular, let us
take I = {i, j} with i 6= j and J = {k; k 6∈ I}. We have that Xi and Xj are conditionally
independent given the rest of the components of X if and only if (K−1)i,j = 0. The reader
may find more details on these classical results in [Dem72] and [Lau96] and references
therein.

Let X be a Gaussian random vector with non-singular covariance matrix K, and let
i 6= j be two components indexes. Then, (Ki,j)

−1 = 0 if and only if Xi and Xj are mutually
independent given the other components of X. Prescribing zeroes in the inverse covariance
matrix K−1 corresponds to impose conditional independence on the components. Patterns
of zeroes in K−1 arise in Gaussian graphical models, see for instance [Lau96] and references
therein. In contrast, Ki,j = 0 if and only if Xi and Xj are independent, i.e. Xi and Xj are
marginally independent. Patterns of zeroes in K arise for instance in linear models for
longitudinal data. Therefore, we should not confuse patterns of zeroes for the covariance
matrix K with patterns of zeroes for the inverse covariance matrix K−1. Of course, K−1

is itself a covariance matrix, but the random vector X is drawn from K and not from
K−1, and thus, the estimation problem is not the same.

We emphasise that most of patterns of zeroes are not stable by matrix inversion, even
for symmetric positive definite matrices. There are however notable exceptions. Namely, a
non-singular matrix K is block diagonal if and only if K−1 is block diagonal. A covariance
matrix of a Gaussian random vector is block diagonal if and only if the corresponding
blocks of components of the vector are two by two marginally independent. Two by two
marginal independence is equivalent to mutual independence for blocks of components of
Gaussian vectors. It implies conditional independence of any couple of blocks given the
other blocks. Notice that the blocks can be shuffled by permutations of the coordinates,
which corresponds to consider PKP> where P is the suitable permutation matrix. In
particular, if Ki,j = 0 for any i 6= j, then (K−1)i,j = 0 for any j 6= i. This corresponds to
the fact that Xi and Xj are marginally independent for any j 6= i if and only if Xi and
Xj are mutually independent (given the others components) for any i 6= j.

Finally, it follows from the discussion above that for any Gaussian random vector X
with non-singular covariance matrix K, and for any i 6= j, the marginal independence of
Xi and Xj where X ∼ N (0, K−1) is equivalent to conditional independence of Yi and Yj

where Y ∼ N (0, K). Furthermore, since K = (K−1)−1, the two notions of independence
can be swapped in the latter sentence.

Remark 3.1. The joint estimation of the mean can be done quite easily and separately,
since the estimator of the mean µ is the empirical mean µ̂. The empirical covariance
matrix (2) must be replaced by N−1

∑N
i=1(Xi − µ̂)(Xi − µ̂)>.

1It is customary to attribute this matrix identity to Issai Schur (1875-1941). The term KI,I −
((K−1)I,I)−1 = KI,J(KJ,J)−1KJ,I is known as the Schur complement.
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Proposition 3.2. Let I ∈ In, and let X1, . . . , XN be a random sample of a centred Gaus-
sian distribution of Rn with covariance matrix K ∈ K+∗

n (I). If X is the empirical covari-
ance matrix of the sample defined by (2), then a.-s., we have X ◦ CI ∈ K+∗

n (I) for large
enough sample size N . Moreover, as an element of Kn(I), the matrix N−1X ◦ CI is a
strongly consistent and unbiased estimator of K.

Proof. We have E(X ◦CI) = E(X) ◦CI = K ◦CI = K. The law of large numbers ensures
that limN→∞ X = K a.-s and thus that limN→∞ X ◦ CI = K ◦ CI = K a.-s. This gives
the consistency and the zero bias. Notice that X ◦ CI ∈ Kn(I). Now, Since K ∈ K+∗

n (I)
and since K+∗

n (I) is an open subset of the Hilbert space Kn(I), we get X ◦ CI ∈ K+∗
n (I)

for large enough N , a.-s.

Proposition 3.3. Let I ∈ In and let X1, . . . , XN be a random sample of a centred Gaussian
distribution of Rn with covariance matrix K ∈ R+∗

n (I). If X is the empirical covariance
matrix of the sample defined by (2), then, a.-s., and for large enough N , we have X ∈ S+∗

n

and X−1 ◦ CI ∈ R+∗
n (I). Moreover, a.-s. limN→∞(X−1 ◦ CI)

−1 = K.

Proof. Notice that X ∈ Sn. By the law of large numbers, a.-s. limN→∞ X = K. Now,
K ∈ S+∗

n and S+∗
n is an open subset of the Hilbert space Sn. Therefore, a.-s., for large

enough N , X ∈ S+∗
n . Also, a.-s. limN→∞ X−1 = K−1, and thus, limN→∞ NX−1 ◦ CI =

K−1 ◦ CI = K−1. Notice that a.-s. X−1 ◦ CI ∈ Kn(I) for large enough N . Since
K−1 ∈ K+∗

n (I) where K+∗
n (I) is an open subset of the Hilbert space Kn(I), we get that

a.-s. X−1 ◦ CI ∈ K+∗
n (I) for large enough N .

4 The log-likelihood on K+∗
n (I)

Let I ∈ In, and let X1, . . . , XN be a random sample drawn from a centred Gaussian
law on Rn with covariance matrix K ∈ K+∗

n (I). Here K+∗
n (I) is viewed as a convex open

cone of the Hilbert space Kn(I). Let us consider the estimation of K by the arg-maximum
of the log-likelihood L defined by (1). For the moment, we do not know actually if the
log-likelihood has a maximum on K+∗

n (I). For any A ∈ K+∗
n (I) and B ∈ Kn(I), we have

2N−1D(L)(A)(B) = −A−1 ·B + N−1

N∑
i=1

(A−1Xi)
>B(A−1Xi)

= −A−1 ·B + N−1

(
N∑

i=1

(A−1Xi)(A
−1Xi)

>

)
·B

= (−A−1 + (A−1XA−1)) ·B,

where X is the empirical covariance matrix of the sample defined by (2). Since B ∈ Kn(I),
the gradient ∇L(A) in the Hilbert space Kn(I) is given by

2N−1∇L(A) = CI ◦ (−A−1 + A−1XA−1).

If the likelihood has an arg-maximum A over K+∗
n (I), then necessarily ∇L(A) = 0, which

can be written as follows.

CI ◦ A−1 = CI ◦ (A−1XA−1).

In other words, A−1 and A−1XA−1 must have the same entries on the complement of I.
Moreover, A must have null entries on I. The reader may find in [CDR06] a review on
several algorithm for the computation of the MLE.
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On K+∗
n (∅) = S+∗

n , the matrix X belongs almost-surely to S+∗
n for N > n. Thus,

almost-surely, for N > n, the maximiser of L on K+∗
n (I) exists, is unique, and is given by

X. When I 6= ∅, this shows that on K+∗
n (I), the function L is bounded above by its value

at point X.
The maximisation of L on K+∗

n (I) is equivalent (up to matrix inversion of the max-
imisers) to the maximisation of H : A 7→ L(A−1) on R+∗

n (I). The function H is strictly
concave on S+∗

n . Suppose that H has a maximiser of on R+∗
n (I), then we can deduce that

it is unique if R+∗
n (I) is connected (for example if it is convex).

Let us consider the case where I is such that Kn(I) is the set of block diagonal
matrices, with blocks of indexes I1, . . . , Ir. We have in particular that KIi,Ii

∈ S+∗
|Ii| for

any 1 6 i 6 r. By the law of large numbers, almost-surely, for large enough sample size
N , we have XIi,Ii

∈ S+∗
|Ii| for any 1 6 i 6 r. Let B ∈ Kn(I) be defined by BIi,Ii

:= (XIi,Ii
)−1

for any 1 6 i 6 r. Then B ∈ K+∗
n (I) ∩ R+∗

n (I) and B = CI ◦ B = CI ◦ (BXB) (matrix
multiplication by blocks). We have thus constructed a stationary point A = B−1 of the
likelihood.

5 The log-likelihood on R+∗
n (I)

Let I ∈ In, and let X1, . . . , XN be a random sample drawn from a centred Gaussian
law on Rn with covariance matrix K ∈ R+∗

n (I). Here K+∗
n (I) is viewed as a convex open

cone of the Hilbert space Kn(I). Let us consider the estimation of K by the arg-maximum
of the log-likelihood L defined by (1). For the moment, we do not know actually if the
log-likelihood has a maximum on R+∗

n (I). We replace the maximisation problem of L on
R+∗

n (I) by the maximisation problem of H on K+∗
n (I), where H(K) := L(K−1) for any

K ∈ R+∗
n (I). The functional H is defined on the open convex cone K+∗

n (I) of the Hilbert
space Kn(I). For any A ∈ K+∗

n (I) and B ∈ Kn(I), we have

2N−1D(H)(A)(B) = A−1 ·B −N−1

N∑
i=1

X>
i BXi

= (A−1 − X) ·B,

where X is the empirical covariance matrix of the sample defined by (2). Since B ∈ Kn(I),
the gradient ∇H(A) in the Hilbert space Kn(I) is given by

2∇H(A) = CI ◦ (A−1 − X).

If the likelihood has an arg-maximum A−1 over R+∗
n (I), then necessarily ∇H(A) = 0,

which can be written as follows.

CI ◦ A−1 = CI ◦ X.

In other words, A−1 and X must have the same entries outside I. Moreover, A must
have null entries on I. The reader may find a dual Lagrangian expression of the ML in
[DRV05], which sees the MLE as the max-det (maximum of Shannon entropy!) under
the above constraints. The article [DRV05] gives also links with graphical models, with
chordal graphs, with sparse Choleski factorisation, and numerical algorithms. There is an
explicit expression of the MLE in terms of sparse Choleski factorisation when I is related
to a chordal graph, cf. [DRV05].

On K+∗
n (∅) = S+∗

n , the matrix X belongs almost-surely to S+∗
n for N > n. Thus,

almost-surely, for N > n, the maximiser of H on S+∗
n exists, is unique, and is given by
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X. When I 6= ∅, we have K+∗
n (I) ⊂ S+∗

n , and thus H is bounded above on K+∗
n (I) by its

value at point X. Since H is strictly concave on S+∗
n , a maximiser of H on the convex

set K+∗
n (I) (and thus the MLE) is necessarily unique if it exists (we used that convexity

implies connectivity). It remains to find necessary and/or sufficient conditions on N , I,
X, and K in order to ensure that the maximiser of H (and thus the MLE) on K+∗

n (I)
exists.

6 Chordal graphs and the example of block diagonal patterns

7 Variance-Correlation representation of S+
n

Definition 7.1 (Correlation matrices). An element A of Sn is a correlation matrix of size
n if and only if A belongs to S+

n and has unit diagonal entries. We denote by Cn the set
of correlation matrices of size n. We also denote by C∗n the set Cn ∩ S+∗

n of non-singular
correlation matrices of size n.

The set Cn is thus a subset of the closed convex cone S+
n , obtained as the intersection

of S+
n with the affine sub-space (of the Hilbert space Sn) constituted by the elements of

Sn with unit diagonal entries.

Theorem 7.2 (Random vectors). The set Cn is equal to the set of covariance matrices of all
random vectors of Rn with unit variances (i.e. the variance of each of the n components
is 1). Moreover, the random vectors can be assumed centred and Gaussian.

Proof. Follows from the fact that the set of covariance matrices of size n is precisely
S+

n . The random vectors can be taken centred Gaussian since every element of S+
n is the

covariance matrix of a centred Gaussian vector of Rn.

Theorem 7.3 (Convex & compact). The off-diagonal entries of the elements of Cn belong
to [−1, +1], whereas the diagonal entries are all equal to 1. The set Cn is a non-empty
convex compact subset of the Hilbert space Sn, included in S+

n , and stable by the Hadamard
product.

Proof. The fact that Cn is closed follows from its definition as the intersection of an
affine sub-vector space of Sn (which is closed) with the closed convex cone S+

n . We
have In ∈ Cn and thus Cn is non empty. Another simple example of element of Cn is
given by the matrix with all entries equal to 1. Any C ∈ Cn can by viewed as the
correlation matrix of a centred random vector V of Rn. Now, by the Cauchy-Schwarz
inequality, |E(ViVj)|2 6 E(V 2

i )E(V 2
j ). Thus the absolute value of the off-diagonal entries

of C are bounded by 1 since the diagonal entries are equal to 1. Thus C is bounded, as
expected. For the convexity, let C and C ′ be in Cn and let t ∈ [0, 1]. Let X and Y be two
independent and centred Gaussian vectors of Rn with respective covariance matrices C
and C ′. Then Z :=

√
tX +

√
1− tY is a centred Gaussian vector with covariance matrix

tC+(1−t)C ′. Moreover, the variances of the components of Z are all equal to 1. Therefore,
tC + (1− t)C ′ ∈ Cn. It remains to show that Cn is stable by the Hadamard product. The
covariance matrix of the centred random vector X ◦ Y (i.e. with ith component XiYi) is
C ◦C ′. Moreover, the variances of the components of X ◦Y are all equal to 1. Notice that
X ◦ Y is not Gaussian. Notice finally that it is possible to give a proof of this Theorem
by using an inductive construction of Cn, but it is slightly longer.

It is tempting to ask if the upper off-diagonal entries of the elements of Cn cover
completely the cube [−1, +1]n(n−1)/2 (which is the centred `∞ ball of Rn(n−1)/2 of unit
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radius). The answer in negative. Apart from the low dimensional cases n = 1 and
n = 2, the upper off-diagonal entries of the elements of Cn form a strict non-empty convex
compact subset of [−1, +1]n(n−1)/2. Let us give counter examples for n = 3. The following
two elements of Sn do not belong to S+

n , even if they look like elements of Cn. 1 1 0
1 1 1
0 1 1

 and
1

3

 3 2 2
2 3 −2
2 −2 3

 .

Hence, the Cauchy-Schwarz inequality between diagonal and off-diagonal entries does not
gather all the constraints defining Cn as a subset of S+

n .

Theorem 7.4 (Variance-Correlation representation of S+
n ). We have the following represen-

tation of the convex closed cone S+
n .

S+
n = {DCD;where (D, C) ∈ D+

n × Cn}.

Moreover, D = Diag(
√

A1,1, . . . ,
√

An,n) where A := DCD, and C is uniquely determined
by A on the set of indexes {(i, j) ∈ {1, . . . , n}2; Ai,iAj,j > 0} via Ci,j = Ai,i/DiDj. Finally,
DCD belongs to S+∗

n if and only if (D, C) ∈ D+∗
n × C∗n, and the couple (D, C) is uniquely

determined by DCD in that case.

Proof. Let D ∈ D+
n and C ∈ Cn. Let X be a (column) random centred Gaussian vector

of Rn with covariance matrix C. Then DX is a centred Gaussian random vector of Rn

with covariance DCD. Therefore, DCD ∈ S+
n . Conversely, for any A ∈ S+

n , let X be a
centred Gaussian random vector of Rn with covariance matrix A. Let D ∈ D+

n be defined
for any 1 6 i 6 n by Di =

√
E(X2

i ). Notice that by the Cauchy-Schwarz inequality,
|Ai,j| 6 DiDj for any 1 6 i, j 6 n. Thus, Ai,j = 0 for any 1 6 i, j 6 n such that
DiDj = 0. Let Y be a centred random vector of Rn with unit variances. Let Z be the
centred random vector given for any 1 6 i 6 n by Zi := Xi/Di if Di > 0 and Zi = Yi

if not. Then the n components of Z have unit variance, and thus its covariance matrix
C belongs to Cn. Moreover

√
DiDjCi,j = Ai,j for any 1 6 i, j 6 n. Therefore, we get

A = DCD as expected.
From A = DCD we get Ai,j = DiCi,jDj for any 1 6 i, j 6 n. In particular, Ai,i = D2

i

for any 1 6 i 6 n, since Ci,i = 1. Thus, Ci,j = Ai,j/DiDj for any 1 6 i, j 6 n such that
Ai,iAj,j = D2

i D
2
j > 0. Finally, let (A, C,D) ∈ S+

n ×D+
n × Cn such that A = DCD. Since

det(A) = det(D)2 det(C), we get that A ∈ S+∗
n if and only if D ∈ D+∗

n and C ∈ C∗n. The
uniqueness of (D, C) comes from the fact that the diagonal of A is strictly positive in that
case.

Let us define an equivalence relation on S+∗
n by A ∼ B if and only if they have the

same correlation matrix. Then the quotient set S+∗
n / ∼ is by definition the set C∗n of

non-singular correlation matrices of size n.
Notice that (DMD′)i,j = DiMi,jD

′
j, for any M ∈ Mn, any D, D′ ∈ Dn, and any

1 6 i, j 6 n. The matrix product and the Hadamard product coincide on Dn. Moreover,
if M1, M2 ∈Mn and D1, D2, D

′
1, D

′
2 ∈ Dn, then

(D1M1D
′
1) ◦ (D2M2D

′
2) = (D1D2)(M1 ◦M2)(D

′
1D

′
2).

Combined with the variance-correlation representation of S+
n and with the stability of

Cn by the Hadamard product, the identity above contains the stability of S+
n by the

Hadamard product (the Schur Theorem).
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Theorem 7.5 (Inductive construction of Cn). We have C1 = {1}, and for any n > 1,

Cn+1 = {C ∨ c where C ∈ Cn and c ∈ E(C)},

where E(C) is the image by C of the ellipsoid {α ∈ Rn; such that α>Cα 6 1}; and where
C ′ := C ∨ c is the element of Sn+1 defined by C ′

i,j := C ′ for any 1 6 i, j 6 n and
C ′

n+1,n+1 := 1 and C ′
i,n+1 := C ′

n+1,i := ci for any 1 6 i 6 n.

Proof. Let us assume that the construction is valid for some n > 1. Let C ′ ∈ Cn+1, and
let X be a centred Gaussian random vector of Rn+1, with covariance matrix C ′. The
component Xn+1 can be written Xn+1 = α1X1 + · · · + αnXn + Z where α ∈ Rn and
where Z is a centred univariate Gaussian random variable, independent of X1, . . . , Xn.
Let C ∈ Cn be the covariance matrix of the first n components of X. We have C ′ = C ∨ c
where c := Cα. Since X has unit variances, we get also 1 = τ + α>Cα, where τ is the
variance of Z. Thus, we get α>Cα = 1− τ 6 1, and the vector c = Cα belongs to E(C).

Conversely, let C ∈ Cn and c ∈ E(C). By definition of E(C), there exists α ∈ Rn

such that α>Cα 6 1 and c = Cα. Let X be a centred Gaussian random vector of Rn

with covariance matrix C. Let Z be a univariate centred Gaussian random variable,
independent of X, and of variance 1 − α>Cα > 0. Then (X, α1X1 + · · · + αnXn + Z) is
a centred Gaussian random vector of Rn+1, with covariance matrix C ∨ c. Consequently,
C ∨ c ∈ Cn+1.

Similarly, the same line of reasoning gives that S+
1 = [0, +∞) and for any n > 0,

S+
n+1 = {A ∨τ c where A ∈ S+

n , and c ∈ Im(A), and τ > 0},

where this time (A∨τ c)i,j := Ai,j for any 1 6 i, j 6 n, and (A∨τ c)n+1,i := (A∨τ c)i,n+1 = ci

for any 1 6 i 6 n, and (A ∨τ c)n+1,n+1 := τ + α>Aα with α such that Aα = c. Actually,
this method allows more generally to inductively construct the subsets of S+

n defined by
prescribing a constant diagonal. The inductive definition of Cn given above is in a way
dimensionally oriented. It can be symmetrised by considering the action of the symmetric
group Σn (conjugacy by permutation matrices). Namely,

Cn+1 = {P (C ∨ c)P>; (C, P ) ∈ Cn × Pn, c ∈ E(C)}.

Notice that In belongs to Cn and that E(In) is the centred unit Euclidean ball of radius
1 of Rn. The elements of Cn+1 which can be written In ∨ c are characterised by ‖c‖2 6 1,
which is much stronger than ‖c‖∞ 6 1 in high dimension n.

Theorem 7.6. For any 1 6 i < j 6 n, the map ϕi,j : C ∈ Cn 7→ Ci,j ∈ [−1, +1] has range
[−1, +1]. Moreover, for any C ∈ Cn, the eigenvalues of C sum to n and belong to [0, n].

Proof. For the first statement, consider P (In∨c)P> with a suitable P ∈ Pn and a suitable
c ∈ Rn−1 with ‖c‖2 6 1. For the second statement, use Gershgorin-Hadamard Theorem
and notice that C ∈ S+

n . The eigenvalue n is obtained with C = (1, . . . , 1)>(1, . . . , 1).

More generally, let C be in Cn, and let w1, . . . , wn be the orthonormal eigenvectors of C
associated to the eigenvalues λ1 > . . . > λn given by the spectral Theorem. Then E(C) is
the image of the ellipsoid {β ∈ Rn;

∑n
i=1 λiβ

2
i 6 1} by the endomorphism β 7→

∑n
i=1 λiβiwi

of Rn. This gives E(C) = {c ∈ Rn; where ci = 0 if λi = 0 and
∑

λi>0 λ−1
i (w>

i c)2 6 1}. It
is an ellipsoid of Rn when C is not singular, and an imbedded lower dimensional ellipsoid
when C is singular. Notice that E(C) contains the collection of n vectorial segments
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{twi; t ∈
√

λ[−1, +1]} of Rn. Let us consider for instance the example where C ∈ Cn is
the matrix with all entries equal to 1. In that case, C = (1, . . . , 1)>(1, . . . , 1) is of rank 1
with eigenvalues 0 (multiplicity n− 1) and n (multiplicity 1). Then E(C) is in that case
the vectorial segment {(t, . . . , t)>; t ∈ [−1, +1]} of Rn, which is a diagonal of the cube
[−1, +1]n of Rn.

8 Special sub-space Kn(I) of Sn and sub-cone K+
n (I) of S+

n

Theorem 8.1 (Invariances of K+
n (I)). For any I ∈ In, the set K+

n (I) is a closed convex
cone of Kn(I) or Sn, stable by the Hadamard product. Moreover, for any P ∈ Pn, there
exists IP ∈ In with card(IP ) = card(I) such that PAP> ∈ K+

n (IP ) for any A ∈ K+
n (I).

The last statement of the Theorem above corresponds to the action by conjugacy of
the symmetric group Σn on the finite set {K+

n (I); I ∈ In} of cardinal 2n(n−1)/2. It basically
expresses that the number of null entries is preserved by the permutations of lines and
columns.

The orthogonal projection pKn(I) in Sn onto Kn(I) can be expressed as a Hadamard
product with a special matrix constructed from I. Namely, for any I ∈ In and any
A ∈ Sn, we have pKn(I)(A) = A ◦ CI , where

CI :=
∑

(i,j) 6∈I

(Ei,j + Ej,i).

The projection onto Kn(I) corresponds to put zeroes in the entries of A prescribed by I.

Definition 8.2 (Admissible elements of In). We say that an element In of In is admissible
if and only if CI ∈ S+

n . We denote by Jn the subset of admissible element of In.

Notice that ∅ is admissible, and that C∅ = (1, . . . , 1)>(1, . . . , 1). Moreover, for any I ∈
In, we have CI = pKn(I)(C∅), and that C∅ is the neutral element of the Hadamard product.
Notice also that the set Imax is admissible, and that CImax = In. Recall that Kn(Imax) =
Dn. More generally, are admissible the elements I of In which corresponds to the case
where Kn(I) is the sub-vector-space of Sn constituted with block diagonal symmetric
matrices with prescribed blocks positions. However, a singleton I is not admissible in
general in dimension n > 2. Namely, here is a counter example in dimension n = 3, which
corresponds to the singleton I = {(1, 3)}.

A :=

 1 1 −1
1 1 −1

−1 −1 1

 ∈ S+
n but pKn(I)(A) =

 1 0 −1
0 1 −1

−1 −1 1

 6∈ S+
n .

The matrix CI associated to this counter example is given by

CI =

 1 0 1
0 1 1
1 1 1

 6∈ S+
n .

Theorem 8.3 (Admissibility and projection onto Kn(I)). The set {CI ; I ∈ Jn} is a finite
subset of Cn, containing C∅ and In. It is exactly the subset of Cn constituted with the
correlation matrices of size n with all entries in {0, 1}. In particular, for any I ∈ In,
we have that I ∈ Jn if and only if CI ∈ Cn. Last but not least, for any I ∈ In, we have
I ∈ Jn if and only if pKn(I)(A) ∈ S+

n for any A ∈ S+
n .
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Proof. The first parts are immediate. Let us establish the last equivalence. If I ∈ Jn,
then CI :=

∑
(i,j) 6∈I(E

i,j + Ej,i) ∈ S+
n . By the stability of S+

n by the Hadamard product,

pKn(I)(A) = A ◦ CI ∈ S+
n provided that A ∈ S+

n . Conversely, assume that pKn(I)(A) ∈ S+
n

for any A ∈ S+
n . Then, pKn(I)(C∅) = C∅ ◦ CI = CI since C∅ is the neutral element of the

Hadamard product. Therefore, CI ∈ S+
n and thus I ∈ Jn.

Theorem 8.4 (Inductive construction of admissible elements of In). We use here the nota-
tions used for the inductive construction of Cn. We have J1 = {∅} and for any n > 0,

Jn+1 = {I ′ ∈ In+1 such that CI′ = CI ∨ c with I ∈ Jn and c ∈ E(CI) ∩ {0, 1}n}.

For any I ∈ Jn, the element I ′ ∈ In+1 defined by CI′ := CI ∨ 0 belongs to Jn+1.

Proof. The inductive construction of Jn follows from the inductive construction of Cn,
and the fact that {CI ; I ∈ Jn} is exactly the subset of Cn constituted with the correlation
matrices of size n with all entries in {0, 1}. For the last statement, we notice that the null
vector of Rn has entries in {0, 1} and belongs to the centred ellipsoid E(CI). Thus, the
element I ′ of In+1 defined by CI′ = CI ∨0 belongs to Jn+1. Notice that we can then move
the zeroes (of the last column and line of CI′) elsewhere by a permutation matrix.

In particular, if I ∈ Jn is such that CI is not singular, then CI has full range and thus,
for any J ⊂ {(i, n + 1); 1 6 i 6 n}, we have I ∪ J ∈ Jn+1. Notice that the matrix CI in
the counter example above is singular!

Theorem 8.5 (Just put zeroes where they must be!). Let I ∈ Jn be some fixed admissible
element of In. Then, we have pK+

n (I) = pKn(I) on S+
n . In other words, provided that

A ∈ S+
n , the orthogonal projection of A onto the closed convex cone K+

n (I) is equal to its
orthogonal projection onto the sub-vector space Kn(I) of Sn. In other words, the orthogonal
projection of an element A of S+

n onto K+
n (I) is obtained by putting zeroes at the entries

given by I.

Proof. Since I ∈ Jn, we have pKn(I)(A) ∈ S+
n for any A ∈ S+

n . Then the Lemma below
with (H,A,B) = (Sn,Kn(I),S+

n ) gives that pK+
n (I) = pKn(I) on S+

n .

Lemma 8.6 (Nested projections). Let A and B be two non-empty closed convex subsets of
a Hilbert space H. Let x ∈ H such that pA(x) ∈ B, then pA∩B(x) = pA(x). In other
words, if pA(x) ∈ B for any x in some subset G of H, then pA = pA∩B on G.

Proof. We have pA(x) = arg infy∈A ‖x− y‖ and pA∩B(x) = arg infy∈A∩B ‖x− y‖ for any
x ∈ H. First, we have arg infy∈A ‖x− y‖ 6 arg infy∈A∩B ‖x− y‖. If pA(x) ∈ B, then
pA(x) ∈ A ∩ B and thus infy∈A∩B ‖x− y‖ = infy∈A ‖x− y‖ = ‖x− pA(x)‖. Therefore,
pA∩B(x) = pA(x).

A Some basic facts

Theorem A.1 (Spectral Theorem). An element A of Mn belongs to Sn if and only if
there exists O in On such that OAO> ∈ Dn. In particular, every element A of Sn is
diagonalisable and has a real spectrum. The column of O are the normalised eigenvectors
of A, and the diagonal entries of OAO> are the eigenvalues of A.

3rd November 2006 – 15:53 – pdfLATEX. Page 11.



For any A ∈ S+
n with spectrum {λ1, . . . , λn} ∈ [0, +∞)n, the spectral Theorem pro-

vides in particular a sort of square root matrix B := O>Diag(
√

λ1, . . . ,
√

λn)O, in the
sense that BB = A. The following Theorem provides another type of matrix square root,
in relation with the quadratic form associated to the element of S+

n . It is related to the
Gram-Schmidt orthonormalisation algorithm.

Theorem A.2 (Cholesky2 factorisation). An element A of Mn belongs to S+
n if and only

if there exists a lower triangular element L of Mn such that A = LL>. Moreover,
det(A) =

∏n
i=1 L2

i,i, and A belongs to S+∗
n if and only if L has non-null diagonal en-

tries. Additionally, for any A ∈ S+
n , there is a unique such L with non-negative diagonal

entries, which can be computed recursively from the entries of A via the formulas

Li,j = Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
and Li,i =

√√√√Ai,i −
i−1∑
k=1

L2
i,k.

Theorem A.3 (Probability folklore). There is a one to one correspondence between S+
n and

the set of covariance matrices of random vectors of dimension n. Moreover, the random
vectors can be assumed Gaussian, and S+∗

n corresponds exactly to the covariance matrices
of Gaussian vectors with absolute continuous law with respect to the Lebesgue measure.

Proof. Follows from the usage of the Fourier transform of probability measures on Rn.
The reduction to Gaussian random vectors makes use of the spectral Theorem or of the
Choleski factorisation.

Recall that if X is a centred Gaussian random vector of Rn with covariance matrix K,
then for any M in Mn, the random vector MX is a centred Gaussian random vector with
covariance matrix MKM>. The particular case K = In is very useful. This mechanism is
reversible, as expressed by the Choleski factorisation. The Cholesky factorisation allows
to compute efficiently the determinant and the inverse of A, and to simulate multivariate
Gaussian random variables with prescribed covariance matrix A from simulations of the
univariate standard Gauss distribution. The Cholesky factorisation in Sn is a particular
case of the LU factorisation3 in Mn.

Theorem A.4 (Schur). The convex cone S+
n is stable by the Hadamard product.

Proof. We extract the proof from [HJ94, Chap. 5] (see also [HJ90, Section 7.5]). Let A
and B be two elements of S+

n . Let X and Y be two centred random vectors of Rn with
respective covariance matrices A and B. We can construct them explicitly from A and B
as Gaussian random vectors by using the spectral Theorem of the Choleski factorisation.
Now, the vector X ◦Y (i.e its ith entry is XiYi) is a centred random vector with covariance
matrix A ◦B. Thus, A ◦B ∈ S+

n . Beware that X ◦ Y is not a Gaussian vector, even if X
and Y are.

B The det and log det functions on GLn

For any A ∈ Mn, we denote by cofA the cofactors matrix4 of A. Recall that
A(cofA)> = det(A)In, in such a way that det(A)A−1 = (cofA)> when A ∈ GLn.

2André-Louis Cholesky, 1875-1918.
3Do not confuse the LU factorisation with the polar decomposition or the QR decomposition in Mn.
4The cofactors matrix cofA of A is defined for any i and j in {1, . . . , n} by (cofA)i,j :=

(−1)i+j det(Ãi,j), where Ãi,j is the (n − 1) × (n − 1) sub-matrix of A obtained by removing the ith

line and the jth column. By definition, det(Ãi,j) is a minor of A.
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Theorem B.1 (Determinant). The function A ∈ GLn 7→ det(A) is C∞. Moreover, for any
A ∈ GLn and B ∈Mn, we have the so called Jacobi formulas

(D det)(A)(B) = B · cofA and ∇ det(A) = cofA = det(A)A−T ,

where A−> := (A>)−1 = (A−1)>.

Proof. The determinant of an n×n matrix is an alternate n-multi-linear form. This gives
the smoothness. The first formula follows from det(A) =

∑n
i,j=1 Ai,i(cofA)i,j.

Theorem B.2 (Inverse). The map inv : A ∈ GLn 7→ A−1 ∈ GLn is differentiable and its
differential is given by D(inv)(A)(B) = −A−1BA−1 for any A ∈ GLn and B ∈Mn.

Proof. We have5 (A + B)−1 = (In + A−1B)−1A−1 =
∑∞

i=0(−1)i(A−1B)iA−1 for any A ∈
GLn and small enough B ∈ Mn (in norm). Thus, for any A ∈ GLn and any B ∈ Mn,
(A + B)−1 = A−1 − A−1BA−1 + o(‖B‖).

Theorem B.3 (log det). The function A ∈ GLn 7→ log det(A) is C∞ on GLn. Moreover,
for any A ∈ GLn and any U, V ∈Mn,

D(log det)(A)(U) = U · A−> and ∇(log det)(A) = A−>,

and
D2(log det)(A)(U, V ) = −U · (A−T V >A−T ) = −Tr(A−1UA−1V ).

Proof. The smoothness and the first derivative come by composition (chain rule). The
second derivative comes from the expression of the derivative of A 7→ A−1.

The open set GLn is not convex, but is locally convex. We can ask if the func-
tion log det is concave. Unfortunately, for any A ∈ GLn and any B ∈ Mn, we have
D2(log det)(A)(U,U) = −Tr((UA−1)2) which is not necessarily in (−∞, 0]. Of course, if
UA−1 is diagonalisable, then Tr((UA−1)2) > 0 as the sum of squares of the eigenvalues of
UA−1.

C Spectral functions on Sn

By the spectral Theorem, an element A of Sn is in S+
n (resp. S+∗

n ) if and only if
x>Ax > 0 (resp. > 0) for any non null vector x of Rn. Namely, we just need to write
x>Ax = x>ODOx = (Ox)>D(Ox) where D is diagonal and O ∈ On. As a consequence,
for any A and B in S+ (resp. S+∗

n ), the sum A + B belongs to S+
n (resp. S+∗

n ). Namely,
x>Ax + x>Bx = (Ox)>D(Ox) + (O′x)>D′(O′x). The sets S+

n and S+∗
n are thus stable by

vector additions and positive dilations, in other words, they are convex cones. The cone
S+

n is anti-polar, cf. [Mal01].
In the sequel, we denote by λ : Sn → Rn the non-increasing spectrum functional. This

function is given by λ(A) = (λ1(A), . . . , λn(A)) where spec(A) = {λ1(A), . . . , λn(A)} with
λ1(A) > · · · > λn(A). The following Theorem gives the orthogonal projection on S+

n in
Sn.

5Sometimes referred as the “von Neumann formula”. If M ∈ Mn is such that ‖M‖# < 1 for some
matrix norm ‖·‖#, then In −M ∈ GLn and (In −M)−1 =

∑∞
i=0 Mk. See [HJ90, Corollary 5.6.16].
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Theorem C.1 (Eckart-Young-Higham). The orthogonal projection pS+
n
(A) of an element A

of Sn onto S+
n is obtained by replacing the negative eigenvalues of A with zero. In other

words, pS+
n
(A) = ODiag(max(0, λ1), . . . , max(0, λn))O> where A = ODiag(λ1, . . . , λn)O>

with O ∈ On.

Let f : D ⊂ Rn → R be a smooth function defined on an open convex subset D of Rn.
Let S(D) be an open subset of Sn such that λ(S(D)) ⊂ D. The composed function f ◦λ :
S(D) ⊂ Sn → R induces a function S(D) → Sn which maps A = ODiag(λ1, . . . , λn)O>

onto ODiag(f(λ1), . . . , f(λn))O>. Beware that the cone Sn is not an open subset of Mn.
The derivative and the gradient are thus defined in the Hilbert space Sn.

Theorem C.2 (Lewis, 1996). If f : D ⊂ Rn → R is symmetric convex, then the matrix
function f ◦λ : S(D) ⊂ Sn → R is also convex. Let A ∈ Sn such that λ(A) ∈ S(D). Then
f is differentiable at the point λ(A) if and only if f ◦λ is differentiable at the point A. In
that case, we have the following formula

∇(f ◦ λ)(A) = ODiag(∇f(λ(A)))O>

where O ∈ On is such that A = ODiag(λ(A))O>.

A striking example is given by the function F : A ∈ S+∗
n → log det(A) ∈ R. Since

F (A) =
∑n

i=1 λi(A), one can write F as F = f ◦ λ where f : Rn → R is the symmetric
concave function defined by f(x) = log(x1) + · · · + log(xn). Here D = (0, +∞)n and
S(D) = S+∗

n . We get in particular from Lewis Theorem that ∇F (A) = A−1 = A−>. We
thus recovered on S+∗

n the result already established on GLn (Jacobi formula).

Theorem C.3. The function A ∈ S+∗
n 7→ log det(A) is strictly concave.

The strictness comes from the fact that the gradient never vanishes. In other words,
det(tA+(1−t)B) > det(A)t det(B)1−t, for any t ∈ [0, 1] and any A, B ∈ S+

n , with equality
if and only if λ ∈ {0, 1} or if A = B.

D Surface representation of S+
n

The spectral Theorem has the following interesting immediate Corollary.

Corollary D.1. Every element A of S+
n of rank k can be written as a sum of k elements

of S+
n of rank 1. In other words, there exists k column vectors v1, . . . , vk of Rn such that

A = v1v
>
1 + · · ·+ vkvk

>.

The vectors vi appearing above are just the column of O, scaled by the square root of
the associated eigenvalue of A. More generally, the spectral Theorem yields the following
structural result.

Corollary D.2. If Bn is the set of orthonormal bases of Rn, then

Sn =

{
n∑

i=1

λiviv
>
i ; {v1, . . . , vn} ∈ Bn, λ ∈ Rn

}
.

Moreover, the components of λ and the vectors {v1, . . . , vn} are respectively the spectrum
and the eigenvectors of the symmetric matrix

∑n
i=1 λiviv

>
i . The elements of rank k of

Sn correspond to
∑n

i=1 I{λi 6=0} = k. Additionally, the elements of S+
n correspond to λ ∈

[0, +∞)n whereas the elements of S+∗
n correspond to λ ∈ (0, +∞)n. For any element A of

Sn (resp. S+
n ) of rank r and any n1 + · · ·+ nl = r, there exists elements A1, . . . , Al of Sn

(resp. S+
n ) of respective ranks n1, . . . , nl such that A = A1 + · · ·+Al. Finally, the interior

of the closed convex cone S+
n in the Hilbert space Sn is given by S+∗

n = S+
n ∩GLn. In other
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words, the surface of S+
n is the set of symmetric matrices with non-negative spectrum and

rank strictly less that n.

Proof. For any column vector v ∈ Rn, the symmetric matrix vv> has columns v1v, . . . , vnv.
Consequently, when v 6= 0, the matrix vv> is of rank 1 with spectrum {0, v>v}, and
vv>v = (v>v)v. Every element A ∈ Sn of rank 1 can be written in the form vv> where v
is an eigenvector associated to the unique non null eigenvalue of A.

The statement A =
∑n

i=1 λiviv
>
i with {v1, . . . , vn} ∈ Bn and λ ∈ Rn is equivalent

to O := v1 ⊗ · · · ⊗ vn ∈ On and A = ODiag(λ1, . . . , λn)O>. In particular, {λ1, . . . , λn}
is the spectrum of A. Additionally, if i1, . . . , ir are r different indexes in {1, . . . , n},
then λi1vi1v

>
i1

+ · · · + λirvirv
>
ir is of rank Iλi1

6=0 + · · · + Iλir 6=0 6 r, since vi1 , . . . , vir are
orthonormal. Namely, let O ∈ On such that Ovi = ei for any i ∈ {1, . . . , n}. Then
O(λi1vi1v

>
i1

+· · ·+λirvirv
>
ir)O

> = λi1ei1e
>
i1

+· · ·+λireire
>
ir = Diag(λi1 , . . . , λir , 0, . . . , 0).

These decompositions are unique up to some permutations of the vi and λi. Notice that
Bn is roughly On/Σn where the symmetric group Σn acts by permutation of the columns.
The matrices viv

>
i are of rank 1 and thus belong to S+

n \S+∗
n , the surface of S+

n . Actually,
the surface of S+

n corresponds exactly to the constraint Iλ1>0 + · · · + Iλn>0 < n, which
are the elements of Sn with rank strictly less that n. We thus have a parametrisation
of S+

n and its interior S+∗
n in Sn by the surface of S+

n . Notice that one can randomly
generates elements of Bn by recursively using the uniform measures on the unit spheres
of Rn, Rn−1, . . . , R2, which produces recursively the vectors v1, . . . , vn−1. One can move
in S+

n by moving slightly the scalars λi and by rotating the vectors vi by an element of
On close to In.

Notice that when A ∈ S+
n , we have A = D(

∑n
i=1 viv

>
i )D where D ∈ D+

n is given by
D := Diag(

√
λ1, . . . ,

√
λn). We will see in the sequel a similar decomposition where the

diagonal matrix is constituted by the diagonal of A rather that the spectrum of A.
It follows any extremal element of the convex closed cone S+

n is of rank 1.

E Projections onto convex closed cones

Assume that I 6∈ Jn. We already gave counter examples of elements M of S+
n such

that M ◦ CI 6∈ S+
n . A numerical simulation shows that under K ∈ K+∗

n (I), it is false
in general that X ◦ CI ∈ S+

n for any sample size N . A possible drawback to the fact
that X ◦ CI does not belong to K+

n (I) for small N is to consider the biased estimator
pK+

n (I)(X). This corresponds to a matrix least square problem. The reader may find
various algorithms for such matrix least squares problems in [MS05, Mal05, Mal01] and
in [BX05] and references therein. Notice that pK+

n (I)(X) + p(K+
n (I))◦(X) = X. In average,

E(pK+
n (I)(X)) + E(pK+

n (I)◦(X)) = K. Therefore, the bias of the estimator pK+
n (I)(X) of K

is −E(pK+
n (I)◦(X)). Recall the following classical Theorem due to Moreau, see [HUL01,

Chap. III]. Let x, x1 and x2 be three points in the Hilbert space Rn, and let K be a convex
closed cone and K◦ its polar cone. Then the following two statements are equivalent.

• x = x1 + x2 with x1 ⊥ x2 and (x1, x1) ∈ K ×K◦ ;

• x1 = pK(x) and x2 = pK◦(x).

A consequence of the Moreau-Yoshida regularisation – see [Mal01, Section 2.2] and refer-
ences therein – permits to show that the function x ∈ Rn 7→ dK(x) := 1

2
‖x− pK(x)‖2 =

1
2
‖pK◦(x)‖2 is convex with gradient given by ∇dK(x) = pK◦(x). Furthermore, this gradi-

ent function is Lipschitz continuous with a Lipschitz constant equal to 1. A regularity
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Theorem by Rademacher shows then that pK is twice differentiable almost everywhere
in Rn. In [Mal01, MS05, Mal05], the reader may find nice results on a dual algorithm
to solve orthogonal projections in the Hilbert space Sn onto closed convex sub-cones of
S+

n (e.g. intersections of S+
n with an affine sub-vector spaces of Sn). It corresponds to

least-squares in the Hilbert space Sn with semi-definite positiveness constraint and lin-
ear constraint. It includes the case of the projection on K+

n (I). The addition of linear
inequalities constraints is addressed for instance in [BX05]. We hope that for the special
case of K+

n (I), things are simpler and explicit.
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