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INTRODUCTION

GIBBS MEASURES are (non-product) measures on the
. d
configuration space .7%", d > 2.

In this talk: . = {—1, 41} (spins) for simplicity but any finite
set .7 is ok.

ABSTRACT:

o At sufficiently high temperature, we have a Gaussian
concentration bound.
In fact, such a bound holds in Dobrushin’s uniqueness
regime.

e For some Gibbs measures at sufficiently low temperature,
we have a ‘stretched exponential’ concentration bound.

@ These bounds have many consequences.
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exp ( — BHA (W] ))
Z (1)

vf\ﬁ)(w| )= A€z w, e s

~ (DLR equation) Gibbs measures on . z depending on 7 in
general.
Parameter § > 0: inverse temperature.

SPEcCIAL cASE: 5 = 0 (infinite temperature)
~» uniform product measure (~> Gaussian concentration bound).




THE FERROMAGNETIC ISING MODEL (MARKOV RANDOM
FIELD)
Ha(w|n) = — Z Wi wj — Z wi

ijeA i€OA, j¢A
lli—jlli=1 [li—jll1=1

,Vj € Z? (“+-boundary condition”), gives rise to pt.

Fact (d > 2): there exists a unique Gibbs measure y for all 8 < [,
whereas there are several ones for all 5 > ., depending on 1), in fact, two
extremal ones: ut and p~ (i.e., ergodic under the shift action).
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Phase transition for d = 2

B increases from left to right
‘4’ & black, ‘—’ < white

Be = (1/2) sinh™'(1) ~ 0.4407



The magnetization

My(w) := > icc, So(Tiw), where sp(w) = wo, be the total
magnetization in Cp, and where (T; w); = wj_; (shift operator).

Then
My(w)

(2n+1)4
is the magnetization per spin in C,. For any shift-invariant
.1 d
probability measure v on .#%,

E, LM(”)} — E,[s]

2n+1)4

is the mean magnetization per site (magnetization, for short) wrt
v.
The following is well-known for the Ising model (d > 2):

o for B < Bc, Eufso) =05
o for > ., IE,,+ [s0] # 0.



CONCENTRATION FOR THE ISING MODEL
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LetF:YZd — R and

i(F) = sup [Fw!) —F(w)|, i€ 2,
we.FZ?

where w(? is obtained from w by flipping the spin at i.

THEOREM: Gaussian concentration bound (8 < [3)

Let p be the (unique) Gibbs measure for the Ising model. There
exists a constant D > 0 such that, for all functions F with
> ieza li(F)? < 400, one has

E,[exp(F — E,(F))] < exp ( Z 4;(F )

iczd

Remark. As shown by C. Kiilske, the Gaussian concentration
bound holds in the Dobrushin uniqueness regime with

D = 2(1 — ¢(7y)) 2 where c(7) is Dobrushin’s contraction
coefficient.



Recall that the Gaussian concentration implies that for all u > 0
one has

u(w c .72, |F(w)—E,[F]| > u) < 2exp (—4DZ':; Ei(F)2> .

Remark. All local functions satisfy Y~ ;.4 (i(F)* < +-00.



At sufficiently low temperature, we can gather all moment bounds to ob-
tain the following. We denote by ;1 the Gibbs measure for the +-phase
of the Ising model.

THEOREM: Stretched-exponential concentration bound (3 > )

There exists ¢ = () € (0,1) and ¢, > 0 such that for all functions F
with Y, .4 i(F)* < 400, for all u > 0, one has

SIS

Hwe 2 |Fw) — B [F| > u §4ex< LS )
( oz ) e |




The basic ingredients in proofs

Enumeration of Z4:

e: 7% 5 N

(<) :={j € Z: e(j) < e(i)}

F<i: o—field generated by wj,j < i

Wehave F—E[F|= Y A; A;:=E[F|F<] - E[F|F)
€72
and
Ai < (DHU(F));
where D:F" = IAPH_,_ (w}l) % w}z))
where we maximally couple

P(fwois,) and P(fwo ).



APPLICATIONS

Other models besides the standard Ising model: Potts, long-range
Ising, etc.

Ergodic sums in arbitrarily shaped volumes;
Fluctuations in the Shannon-McMillan-Breiman theorem:;

First occurrence of a pattern of a configuration in another
configuration;

Bounding d-distance by relative entropy;
Fattening patterns;
Speed of convergence of the empirical measure;

Almost-sure central limit theorems.



Application 1: “SPEED” OF CONVERGENCE OF THE
EMPIRICAL MEASURE

Take A € Z? and w € 2% and let

1
En(w) = T > o

ieA

where (T;w)j = wj—; (shift operator).

Let 1 be an ergodic measure on . z¢ 1f (Ay)n is a sequence of
cube 1 Z? (more generally, a van Hove sequence), then

n—o0

En(w
An( ) weakly
Question: If 4 is a Gibbs measure, what is the “speed” of this

convergence?



KANTOROVICH DISTANCE on the set of probability measures on
d
ST

dKanto(Ul? NZ) = sup (E;Ll (G) - EI-LZ(G))

G SR
G 1—Lipshitz

where |G(w) — G(w')| < d(w,w') = 27K, where k is the
sidelength of the largest cube in which w and w’ coincide.

Lemma. Let i be a probability measure and

F(w) = sup ( Z G(Tw) G)) .

G SR i
G 1—Lipshitz

> 6P <

iczd

Then

where c¢; > 0 depends only on d.



Ising model at high & low temperature

Gaussian concentration for the empirical measure (8 < j3)

Let p be the (unique) Gibbs measure of the Ising model. There
exists a constant C > 0 such that, for all A € Z¢ and for all
u > 0, one has
,u’{w S yZd: dKanto(gA(w)7 /’1/) — ]E/J [dKanto(gA(')7 ,LL):I ‘ 2 u}
< 2exp (— C|AlW).




We denote by u" the Gibbs measure for the +-phase of the Ising
model.

Stretched-exponential concentration for the empirical measure

(8 > B)

There exist o = o(/3) € (0,1) and a constant ¢, > 0 such that, for
all A € Z4 and for all u > 0, one has

u+{w e 72,

eano(EN @), 1) = B[ (E (), 1] | = )

< 4 exp (—CQ]Aﬁug) .




Can we estimate [, [dKa,,m(SA(-), ,u)} ?

Let
L = {G ST LSRG 1—Lipschitz}
and
z4 = ZGOT (G)), A ez
‘A’ i€\
Then

B [deane (A (), 1)] = B, ( zé) |

Notice that we have functions defined on a Cantor space, which
is really different from the case of, say, [0, 1]¥ C R¥.



THEOREM

Let 1 be a probability measure on . z satisfying the Gaussian
concentration bound. Then

|A‘—é(1+log|y|)71 if d=1
]E [d anto (gA()’ /’1’)] j l/d .
o exp <—% (wst54) ) it dz2.

For (ay) and (by) indexed by finite subsets of Z? we denote
ap = by if, for every sequence (A,) such that |A,| — 400 as

log aa, <1

n — +00, we have lim sup,, by =
n

It is possible to get bounds but they are really messy.



Application 2: ALMOST-SURE CENTRAL LIMIT THEOREMS
(only part of the story)

This application shows that one can also get limit theorems out of
concentration inequalities.

INFORMAL STATEMENT:

If you know that the central limit theorem holds for some
function f : . Z® _y R wrt to a shift-invariant probability
measure, and if you can prove that this measure satisfies a
moment concentration bound of order 2, then the almost-sure
central limit theorem holds in the sense of Kantorovich distance.



Given f : .7 Z* _ R and v a shift-invariant probability measure
on yzd, the usual form of the CLT is: forall u € R

. Ti
lim v{we . #%" . M < up = Gy ((—00,u])
n—o00 (2’1 + 1)% of
where

o = Z/f—foTidl/e(O,—i—oo)

i€z
and where Go,af is the Gaussian measure with mean 0 and
variance of.



The CLT can be re-written as

lim E,

e {Zlecn (T)/(2n41) % < } :GO»Uf((_OO,u]).

The ASCLT consists in replacing £, by a
and get an almost-sure version of the CLT: for all u € R

lim

N {Ztecn Ty)/(2n+1)% < }:GO,of((—OO,u])

for



ASCLT FOR THE MAGNETIZATION IN THE ISING MODEL

We will only formulate two results for f = s, (magnetization).

To state the theorems, define

dKanto(V17 VZ) = Sup (Eul (g) - E, (g))

where the sup is taken over all functions g : R — R that are
1-Lipschitz.

Metrizes the weak topology on the set of probability measures on
R with a first moment.



High-temperature Ising model

THEOREM

Let 8 < 3. Then, for p-a.e. w € yZd, we have

N
. 1
A]ll_r)réo dKan[o ]()g Z ; (w /(2n+1)2 GO,O'Z = 0

where

ol = Z/so-sooTid,uE (0,00).

iczd




Low-temperature Ising model

THEOREM

Let 8 > (. Then, for pt-ae. w € 2 we have

lim dKanto 2 =0

, G
N—o0 InN Z -E +[SO])/(2"+1) I

where

0'2 = Z/SO'SOOTidM+ & (0,00)

icZd




Some open questions

O ‘Close the gap’ between 3 and 3.

@ Write the proof in the low temperature regime in the setting
of Pirogov-Sinai theory.

© Get the optimal p in

o ((ziezd () ) |

SIS
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DLR equation

1 is a Gibbs measure for a given potential @ if, for all A € Z¢
and for all A € B(.%")

p(A) = [ dn) Y 0) Latein)
w'eA

where @ is a real-valued function having two arguments: a finite
. d
subset of Z? and a configuration w € .% Z% and where

Halwln) = 3 @, wr )

AN NAAD

where A’ runs through the set of finite subsets of Z¢.



Dobrushin contraction coefficient

Let

Cij(v) = sup [y (lw) = i (1w') o
w,w’efzd
de\i:w/Zd\j

Then in our context C; j only depends on i — j and we define
()= Coi(7)-
iez4

Dobrushin’s uniqueness regime: ¢(y) < 1.



van Hove sequence

A sequence (A,), of nonempty finite subsets of Z¢ is said to tend
to infinity in the sense of van Hove if, for each i € 74, one has

An+ i)\A,
lim |A;] =+o00 and lim w:

n—-+o0o n—-+o00 |An’

0.



Proof of the Lemma

Letw,w' € 2 and G: .92 — Rbea 1-Lipschitz function.
Without loss of generality, we can assume that £, (G) = 0. We
have

Y G(Tiw) <> G(Tiw') + > d(Tiw, Tiw').

icA icA icA

Taking the supremum over 1-Lipschitz functions thus gives

F(w) = F(w) < d(Tiw, Tw').
icA

We can interchange w and w’ in this inequality, whence

IF(w) = F(w')] <> d(Tiw, Tiw').
icA



Now we assume that there exists k € Z¢ such that wj = wj’. for

all j # k. This means that d(T;w, T;w') < 2~ IIk=ll for all
i € 74 whence

(1(F) < szl\k*illm'
icA
Therefore, using Young’s inequality,

SaEr< 3 Y napz kil

iczd keczd \ iczd

< Z 1A (i) x Z P IL|ES

iczd kczd

We thus obtain the desired estimate with

2
ey = (Zkezdzf\\kﬂoo) _ -
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