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The aim

Let (Xi )i∈Z be a stationary sequence of integrable real-valued
random variables, with common marginal distribution µ.

Let µn be the empirical measure of {X1, . . . ,Xn}, that is

µn =
1

n

n

∑
k=1

δXk
.

The aim is to study the behavior of W1(µn, µ) for a large class of
stationary sequences, where

W1(µ1, µ2) = inf
π∈M(µ1,µ2)

∫
|x − y |π(dx , dy) , (1)

where M(µ1, µ2) is the set of probability measures on R2 with
marginal distributions µ1 and µ2.

W1 belongs to the general class of minimal distances, as the total
variation distance. Since the cost function c1(x , y) = |x − y | is
regular, W1 can be used to compare two singular measures (not
possible with the total variation distance, whose cost function is
given by the discrete metric c0(x , y) = 1x 6=y ).
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Different representations for W1

The well known dual representation of W1 implies that

W1(µn, µ) = sup
f ∈Λ1

∣∣∣∣∣1n n

∑
k=1

(f (Xk )− µ(f ))

∣∣∣∣∣ , (2)

where Λ1 is the set of 1-Lipschitz functions f from R to R.

Hence, W1(µn, µ) is a measure of the concentration of µn around µ
through the class Λ1.

In the one dimensional setting,

W1(µn, µ) =
∫ 1

0
|F−1

n (t)− F−1(t)|dt , (3)

We also have

W1(µn, µ) =
∫

R
|Fn(t)− F (t)|dt . (4)

If the sequence is ergodic, since µ has a finite first moment,
W1(µn, µ)→ 0 a.s. and E(W1(µn, µ))→ 0.
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About Wr , r ≥ 1

For r ≥ 1, we can define also the Wasserstein distance of order r by
taking the cost function cr (x , y) = |x − y |r , so

W r
r (µ1, µ2) = inf

π∈M(µ1,µ2)

∫
|x − y |rπ(dx , dy)

In the i.i.d. case, sharp upper bounds on E(W r
r (µn, µ)) are given in

Bobkov-Ledoux ’18.

In particular, if µ has an absolutely component with respect to the
Lebesgue measure which does not vanishes on the support of µ,
then the optimal rate n−r/2 can be reached. But in general, the
rate can be much slower!

Wr (µn, µ) is the Lr -distance between F−1
n and F−1 and one can

say (Ebralidze (1971)) that, with κr = 2r−1r ,

W r
r (µn, µ) ≤ κr

∫
R
|x |r−1|Fn(x)− F (x)|dx
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Natural dependency coefficients to deal with
‖W1(µn, µ)‖p (p ≥ 1)

Note that, for any p ≥ 1,

‖W1(µn, µ)‖p =

∥∥∥∥∫ |Fn(t)− F (t)| dt
∥∥∥∥
p

≤
∫
‖Fn(t)−F (t)‖p dt .

Let B(t) = F (t)(1− F (t)) and note that

‖Fn(t)− F (t)‖1 ≤ ‖1X0≤t − F (t)‖1 = 2B(t) .

We also have

‖Fn(t)−F (t)‖2
1 ≤ ‖Fn(t)−F (t)‖2

2 ≤
2

n

n

∑
k=0

∣∣Cov(1X0≤t , 1Xk≤t)
∣∣ .

Setting, F0 = σ(Xi , i ≤ 0) and for n ≥ 0,

α1,X(n) = sup
x∈R

‖E (1Xn≤x |F0)− F (x)‖1

we have ∣∣Cov(1X0≤t , 1Xk≤t)
∣∣ ≤ min(B(t), α1,X(n))
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Considering the tail function H(t) = P(|X | > t) and setting

Sα,n(t) =
n

∑
k=0

min {α1,X(k),H(t)} , t ≥ 0 ,

we get

E(W1(µn, µ)) ≤ 4
∫ ∞

0

√
min

{(
H(t)

)2
,
Sα,n(t)

n

}
dt

In the independent setting, Sα,n(t) = H(t) and we know (see
Bobkov-Ledoux ’18 (to appear)) that E(W1(µn, µ)) = O(1/

√
n)

iff J1(µ) =
∫ √

F (t)(1− F (t))dt < ∞ (which is equivalent to∫ ∞
0

√
H(t)dt < ∞).

We also have

‖W1(µn, µ)‖2 ≤
2
√

2√
n

∫ ∞

0

√
Sα,n(t) dt .

The coefficients α1,X(k) are weaker than the strong mixing
coefficients of Rosenblatt ! Conditions in terms of these coefficients
to get the CLT for W1(µn, µ) and bounds for ‖W1(µn, µ)‖p, p ≥ 1.
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On the dependency coefficients (1)

For a strictly stationary sequence (Xi ), its strong mixing coefficients
of Rosenblatt (1956) are usually defined as follows: setting
Gn = σ(Xk , k ≥ n),

α(n) = α(F0,Gn) = sup{| P(U ∩V )− P(U) P(V )| : U ∈ F0, V ∈ Gn}

Setting Xn = (Xk , k ≥ n), we can also write

α(n) =
1

4
sup
‖f ‖∞≤1

‖E(f (Xn)|F0)−E(f (Xn))‖1

and if X = (Xi )i∈Z is a stationary Markov process with Kernel
operator K and invariant measure ν, then

α(n) =
1

4
sup
‖f ‖∞≤1

ν
(
|Kn(f )− ν(f )|

)
.

These coefficients have many nice properties such that a
L1-coupling property (see the monograph by Rio’00, translated
recently in english) and can be computed for M.C. that are Harris
recurrent and irreducible.
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α(n) =
1

4
sup
‖f ‖∞≤1

‖E(f (Xn)|F0)−E(f (Xn))‖1

and if X = (Xi )i∈Z is a stationary Markov process with Kernel
operator K and invariant measure ν, then

α(n) =
1

4
sup
‖f ‖∞≤1

ν
(
|Kn(f )− ν(f )|

)
.

These coefficients have many nice properties such that a
L1-coupling property (see the monograph by Rio’00, translated
recently in english) and can be computed for M.C. that are Harris
recurrent and irreducible.
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On the dependency coefficients (2)

However, a lot of Markov chains, even very simple, are known not
to be strong mixing.

Take for instance

Xn =
∞

∑
i=0

ξn−i
2i+1

.

where (ξi ) is an iid sequence of r.v.’s ∼ B(1/2).

This is a Markov chain with invariant measure λ the Lebesgue
measure on [0, 1] and transition Markov operator given by

K (f )(x) =
1

2

(
f
(x

2

)
+ f
(x + 1

2

))
This Markov chain is not strong mixing! Indeed,
2Xk+1 = Xk + εk+1 ⇒ Xk is the fractional part of 2Xk+1. Hence
σ(Xk ) ⊂ σ(Xk+1) and, by iteration, σ(Xk ) ⊂ σ(Xj , j ≥ k + n) for
any n ≥ 0. Therefore

1

4
≥ α(n) ≥ sup

k
α(σ(Xk ), σ(Xk )) =

1

4
.
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On the dependency coefficients (3)

Recall that

α1,X(n) = sup
x∈R

‖E (1Xn≤x |F0)− F (x)‖1

Let BV1 be the class of bounded variation functions h such that
|h|v ≤ 1 (where |h|v = ‖dh‖v is the variation norm of the measure
dh). Then

α1,X(n) =
1

2
sup

f ∈BV1

‖E(f (Xn)|F0)−E(f (Xn))‖1

and in the Markovian setting

α1,X(n) =
1

2
sup

f ∈BV1

ν
(
|Kn(f )− ν(f )|

)
Hence α1,X(n) ≤ 2α(n). For the previous AR(1) example,
α1,X(n) ≤ Ce−κn. These weak dependent coefficients can be
computed in many situations (linear processes, random iterates,...).
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Another example: intermittent Maps and their associated
Markov chains

Example Let us consider a LSV map (Liverani, Saussol et Vaienti, 1999):

for 0 < γ < 1, Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

Graph of Tγ
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Some facts (1)

In our setting we want to analyze the concentration of the empirical
measure µ̃n = 1

n ∑n
k=1 δg◦T k

γ
.

If γ ≥ 1, there is no abs. continuous invariant probability.

If γ ∈]0, 1[, there is only one absolutely continuous invariant
probability ν. Its density h satisfies

0 < c ≤ xγh(x) ≤ C < ∞

We can associate a Markov chain Y = (Yi )i∈Z with invariant
probability measure ν such that the following equality in law holds:

(Tγ,T 2
γ , . . . ,T n

γ ) =
d (Yn,Yn−1, . . . ,Y1)

Let Xi = g(Yi ). Any information on the distribution of W1(µ̃n, µ)
can be derived from the distribution of W1(µn, µ).

The Markov operator of the chain is the Perron-Frobenius operator
K (the adjoint of the composition by T in L2(ν)): for any
functions f and g in L2(ν),

ν(f ◦ T · g) = ν(f ·K (g)) .
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Some facts (1)

In our setting we want to analyze the concentration of the empirical
measure µ̃n = 1

n ∑n
k=1 δg◦T k

γ
.

If γ ≥ 1, there is no abs. continuous invariant probability.

If γ ∈]0, 1[, there is only one absolutely continuous invariant
probability ν. Its density h satisfies

0 < c ≤ xγh(x) ≤ C < ∞

We can associate a Markov chain Y = (Yi )i∈Z with invariant
probability measure ν such that the following equality in law holds:

(Tγ,T 2
γ , . . . ,T n

γ ) =
d (Yn,Yn−1, . . . ,Y1)

Let Xi = g(Yi ). Any information on the distribution of W1(µ̃n, µ)
can be derived from the distribution of W1(µn, µ).

The Markov operator of the chain is the Perron-Frobenius operator
K (the adjoint of the composition by T in L2(ν)): for any
functions f and g in L2(ν),

ν(f ◦ T · g) = ν(f ·K (g)) .
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Some facts (2)

For this map, Dedecker, Gouëzel, M. ’10 have proved that

C1

n(1−γ)/γ
≤ α1,Y(n) =

1

2
sup

f ∈BV1

ν
(∣∣Kn(f )− ν(f )

∣∣) ≤ C2

n(1−γ)/γ

Other intermittent maps can be considered like the Generalized
Pomeau Manneville maps as defined in Dedecker, Gouëzel and M.
(2010). What is important is that the map T is uniformly
expanding, except in 0, where the right derivative is equal to 1.
More precisely the behaviour around 0 is T ′(0) = 1 and
T ′′(x) ∼ cxγ−1 when x → 0, with c > 0 and γ ∈]0, 1[.

Contrary to the usual mixing case, any function of a stationary
α-dependent sequence Y = (Yi )i∈Z is not necessarily α-dependent
(meaning that its dependency coefficients do no necessarily tend to
zero). Hence, we need to impose some constraints on the
observables.

If g is monotonic on some open interval and 0 elsewhere, and if
X = (g(Yi ))i∈Z, then α1,X(n) ≤ 2α1,Y(n) .
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For this map, Dedecker, Gouëzel, M. ’10 have proved that

C1

n(1−γ)/γ
≤ α1,Y(n) =

1

2
sup

f ∈BV1

ν
(∣∣Kn(f )− ν(f )

∣∣) ≤ C2

n(1−γ)/γ

Other intermittent maps can be considered like the Generalized
Pomeau Manneville maps as defined in Dedecker, Gouëzel and M.
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Application for the first and second moments of W1(µ̃n, µ)

Assume that g is positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, 1− γ),

Then H(t) = ν(|g | > t)� t−(1−γ)/b for t large enough.

Hence, for γ ∈ (0, 1/2),

E(W1(µ̃n, µ))�


n−1/2 if b < (1− 2γ)/2

n−1/2 ln(n) if b = (1− 2γ)/2

nb+γ−1 if b > (1− 2γ)/2,

and

‖W1(µ̃n, µ)‖2 �


n−1/2 if b < (1− 2γ)/2

n−1/2 ln(n) if b = (1− 2γ)/2

n(2b+γ−1)/2γ if (1− 2γ)/2 < b < (1− γ)/2.
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Application for the first and second moments of W1(µ̃n, µ)

Assume that g is positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, 1− γ),

Then H(t) = ν(|g | > t)� t−(1−γ)/b for t large enough.

Hence, for γ ∈ (0, 1/2),

E(W1(µ̃n, µ))�


n−1/2 if b < (1− 2γ)/2

n−1/2 ln(n) if b = (1− 2γ)/2

nb+γ−1 if b > (1− 2γ)/2,

and

‖W1(µ̃n, µ)‖2 �


n−1/2 if b < (1− 2γ)/2

n−1/2 ln(n) if b = (1− 2γ)/2

n(2b+γ−1)/2γ if (1− 2γ)/2 < b < (1− γ)/2.
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About the CLT for W1(µn, µ)

Recall that, with the notation Sα,n(t) = ∑n
k=0 min {α1,X(k),H(t)},

√
n‖W1(µn, µ)‖2 ≤ 2

√
2
∫ ∞

0

√
Sα,n(t) dt .

Let Sα(t) = ∑∞
k=0 min {α1,X(k),H(t)}. Does the condition∫ ∞

0

√
Sα(t) dt < ∞ (∗)

is sufficient for the convergence in distribution of
√
nW1(µn, µ) ?

Theorem (Dedecker-M. ’17)

Assume that the sequence (Xi )Z is ergodic and that (∗) holds. Hence√
nW1(µn, µ)→D

∫
|G (t)|dt where G is a Gaussian r.v. in L1(dt)

whose covariance function is defined as follows: for any f , g in L∞(µ),

Cov
(∫

f (t)G (t)dt,
∫

g(t)G (t)dt

)
= ∑

k∈Z

E

(∫∫
f (t)g(s)(1X0≤t − F (t))(1Xk≤s − F (s)) dtds

)
.
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√
2
∫ ∞

0

√
Sα,n(t) dt .

Let Sα(t) = ∑∞
k=0 min {α1,X(k),H(t)}. Does the condition∫ ∞

0

√
Sα(t) dt < ∞ (∗)

is sufficient for the convergence in distribution of
√
nW1(µn, µ) ?

Theorem (Dedecker-M. ’17)

Assume that the sequence (Xi )Z is ergodic and that (∗) holds.

Hence√
nW1(µn, µ)→D

∫
|G (t)|dt where G is a Gaussian r.v. in L1(dt)

whose covariance function is defined as follows: for any f , g in L∞(µ),

Cov
(∫

f (t)G (t)dt,
∫

g(t)G (t)dt

)
= ∑

k∈Z

E

(∫∫
f (t)g(s)(1X0≤t − F (t))(1Xk≤s − F (s)) dtds

)
.
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Comments on the condition (∗) :
∫ ∞

0

√
Sα(t) dt < ∞

In the independent setting (or the m-dependent case), (∗) reads as∫ ∞

0

√
H(t) dt < ∞ .

This is exactly the condition given by del Barrio, Giné and Matrán
(1999) in the i.i.d. case. They also proved that it is a CNS for the
stochastic boundedness of

√
nW1(µn, µ).

Under ergodicity and (∗), one gets

√
n sup
f ∈Λ1

|µn(f )− µ(f )| →D
∫
|G (t)|dt

Note that if f is a fixed element of Λ1, then we have√
n|µn(f )− µ(f )| →D Wf under the condition∫ 1

0
α−1

1,X(u)Q
2(u)du < ∞ ⇐⇒

∫ ∞

0
t Sα(t) dt < ∞ (∗∗)

which comes from an application of the projective critera of
Dedecker-Rio ’00 (see Dedecker, Gouëzel, M. ’10).
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Application to the intermittent map

Recall that α1,Y(n) ∼ n−(1−γ)/γ and that µ have a density h such
that xγh(x) is bounded from below and above.

It follows that
√
nW1(µ̃n, µ) converges in distribution to

∫
|G (t)|dt

if ∫ ∞

0

√
Sα(t) dt < ∞ ⇐⇒

∫ ∞

0
(H(t))

1−2γ
2(1−γ) dt < ∞

This holds if g is positive and non increasing on (0, 1), with

g(x) ≤ C

x (1−2γ)/2| ln(x)|b
near 0, for some C > 0 and b > 1,

or, if g is positive and non decreasing on (0, 1), with

g(x) ≤ C

(1− x)(1−2γ)/(2−2γ)| ln(1− x)|b
near 1, C > 0 and b > 1,
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A few words about the proof of the CLT

Applying the continuous mapping theorem, it comes from a CLT in
L1(m) with m the Lebesgue measure on R.

More precisely:

Let (S ,S ,m) be a σ-finite measure space such that
L1(m) := L1(S ,S ,m) is separable.

Let Y = (Yk )k∈Z where Yk = {Yk (t), t ∈ S}, be a stationary
sequence of r.v.’s with values in L1(m) such that∫

‖Y0(t)‖1 m(dt) < ∞ and
∫

Y0(t) m(dt) = 0 .

Let Sn = ∑n
k=1 Yk . In the iid setting, Jain ’77 proved that n−1/2Sn

converges in distribution to an L1(m)-valued Gaussian random
variable) if and only if∫

‖Y0(t)‖2 m(dt) < ∞. (5)

Cuny ’17 proved (among many other results) that if Y is an ergodic
sequence of martingale differences, under (5), we have both the
CLT but also the FCLT.
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A general FCLT in L1(m)

Assume ergodicity and that the random variable Y0 is F0-measurable.

Theorem (Dedecker-M. ’17)

Assume that, for m-almost every t, the series U(t) = ∑∞
k=1 E0(Yk (t))

converges in probability.

Assume also that, for m-almost every t, the
series

n

∑
k=0

Y0(t)E0(Yk (t))

converge in L1, and let L(t) = supn≥0 ‖∑n
k=0 Y0(t)E0(Yk (t))‖1. If

moreover
∫
‖U(t)‖1 m(dt) < ∞ and∫ √

L(t) m(dt) < ∞ ,

then {n−1/2S[nt], t ∈ [0, 1]} converges in distribution in the space

DL1(m)([0, 1]) to an L1(m)-valued Wiener process W , whose covariance
operator can be described.
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series

n

∑
k=0

Y0(t)E0(Yk (t))

converge in L1, and let L(t) = supn≥0 ‖∑n
k=0 Y0(t)E0(Yk (t))‖1. If

moreover
∫
‖U(t)‖1 m(dt) < ∞ and∫ √

L(t) m(dt) < ∞ ,

then {n−1/2S[nt], t ∈ [0, 1]} converges in distribution in the space

DL1(m)([0, 1]) to an L1(m)-valued Wiener process W , whose covariance
operator can be described.
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Application: FCLT in L1(m) for the empirical distribution

Let Yk (t) = 1Xk≤t − F (t) where (Xk )k is an ergodic stationary

sequence in L1 adapted to a stationary filtration (Fk )k . Let

Sn =
n

∑
k=1

Yk = n(Fn − F )

and let FXk |F0
be the conditional distribution function of Xk given F0.

Corollary (Dedecker-M. ’17)

Assume that ∫ √ ∞

∑
k=0

‖FXk |F0
(t)− F (t)‖1 m(dt) < ∞ . (6)

Then {n−1/2S[ns ], s ∈ [0, 1]} converges in distribution in the space

DL1(m)([0, 1]) to an L1(m)-valued Wiener process W .

We have
∫ √

∑∞
k=0 min{α1,X(k),B(t)} m(dt) < ∞⇒ (6).
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Coming back to the moments of W1(µn, µ) or Wr (µn, µ)

Recall that, with the notation Sα,n(t) = ∑n
k=0 min {α1,X(k),H(t)},

‖W1(µn, µ)‖1 ≤ 4
∫ ∞

0

√
min

{(
H(t)

)2
,
Sα,n(t)

n

}
dt

and √
n‖W1(µn, µ)‖2 ≤ 2

√
2
∫ ∞

0

√
Sα,n(t) dt .

For p ∈ (1, 2) we can get a von Bahr-Esseen type inequality.

Proposition (Dedecker-M. ’17)

For p ∈ (1, 2) and r ≥ 1, the following inequality holds

‖W r
r (µn, µ)‖pp �

1

np−1

∫ 1

0
(α−1

1,X(u) ∧ n)p−1Qpr (u)du . (7)

In the m dependent case, this becomes ‖W r
r (µn, µ)‖pp � 1

np−1 ‖X0‖rprp.
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Coming back to the moments of W1(µn, µ) or Wr (µn, µ)

Recall that, with the notation Sα,n(t) = ∑n
k=0 min {α1,X(k),H(t)},

‖W1(µn, µ)‖1 ≤ 4
∫ ∞

0

√
min

{(
H(t)

)2
,
Sα,n(t)

n

}
dt

and √
n‖W1(µn, µ)‖2 ≤ 2

√
2
∫ ∞

0

√
Sα,n(t) dt .

For p ∈ (1, 2) we can get a von Bahr-Esseen type inequality.

Proposition (Dedecker-M. ’17)

For p ∈ (1, 2) and r ≥ 1, the following inequality holds

‖W r
r (µn, µ)‖pp �

1

np−1

∫ 1

0
(α−1

1,X(u) ∧ n)p−1Qpr (u)du . (7)

In the m dependent case, this becomes ‖W r
r (µn, µ)‖pp � 1

np−1 ‖X0‖rprp.
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For u ∈ (0, 1), we have

α−1
1,X(u) =

∞

∑
k=0

1u<α1,X(k)

so the bound writes also

‖W r
r (µn, µ)‖pp �

1

np−1

n

∑
k=0

1

(k + 1)2−p

∫ α1,X(k)

0
Qpr (u)du .

or, setting Sα,p,n(t) = ∑n
k=0(k + 1)p−2 min {α1,X(k),H(t)}

‖W r
r (µn, µ)‖pp �

1

np−1

∫ ∞

0
Sα,p,n(t

1/(rp))dt .
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A deviation inequality

For any n ∈N, let us introduce the following notations:

Rn(u) = (min{q ∈N∗ : α1,X(q) ≤ u} ∧ n)Q(u)

and [
R−1
n (x) = inf{u ∈ [0, 1] : Rn(u) ≤ x} .

The moment bound comes from

Proposition (Dedecker-M. ’17)

For any positive integer n, any x > 0, and any η ∈ [1, 2[, the following
inequality holds:

P (nW1(µn, µ) ≥ 6x) ≤ c1
n

x

∫ R−1
n (x)

0
Q(u)du

+ c2
n

xη

∫ 1

R−1
n (x)

R
η−1
n (u)Q(u)du ,
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Application to the LSV map

Let p ∈ (1, 2) and consider the LSV map defined before with
γ ∈ (0, 1/p). let g be positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, (1− γ)/p).

Hence

‖W1(µ̃n, µ))‖p �


n(1−p)/p if b < (1− pγ)/p
(n(1−p) ln(n))1/p if b = (1− pγ)/p
n(pb+γ−1)/pγ if b > (1− pγ)/p.

Moreover, if b = (1− pγ)/p,

P (W1(µn, µ) ≥ x)� 1

np−1xp

Note that Gouëzel ’04 proved that, if g(x) = x−(1−pγ)/p then

lim
n→∞

ν

(
1

n1/p

∣∣∣∣∣ n

∑
k=1

(
g ◦ T k

γ − ν(g)
)∣∣∣∣∣ > x

)
= P(|Zp | > x) ,

where Zp is a p-stable r.v’s s.t. limx→∞ xpP(|Zp | > x) = c > 0.
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Moment bounds when p > 2: a Rosenthal-type inequality

If (Xi ) is a sequence of independent random variables in Lp with
p ≥ 2, the Rosenthal inequality says that

‖
n

∑
i=1

Xi‖pp � ‖
n

∑
i=1

Xi‖p2 +
n

∑
i=1

‖Xi‖pp .

Our aim is to get a moment inequality implying in the m-dependent
setting that

‖W r
r (µn, µ)‖pp �

1

np/2

(∫ ∞

0
tr−1

√
H(t)dt

)p

+
1

np−1
‖X0‖prpr .

Indeed 1
n1/2

∫ ∞
0 tr−1

√
H(t)dt is a bound of ‖W r

r (µn, µ)‖2.
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The strategy (1)

Our strategy will be to derive a suitable deviation bound for
W1(µn, µ), i.e. for P(nW1(µn, µ) ≥ x) by truncating the r.v. at a
level M,

making blocks of size q such that qM ≤ x and
approximating the odd (and even) blocks by differences of
martingales.

Hence we shall make use of the following Rosenthal-type inequality
for stationary m.d.s. (Di )i adapted to a stationary filtration (Fi )i .

Theorem (M. & Peligrad (2013))

Let p > 2. Then for any n ≥ 1,

‖ max
1≤j≤n

|Mj |‖p � n1/p
(
‖D1‖p +

( n

∑
k=1

1

k1+2δ/p ‖E0(M
2
k )‖δ

p/2

)1/(2δ))
,

where δ = min(1, 1/(p − 2)) and E0(D) = E(D |F0).
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The strategy (2)

We are lead to take care of the following quantities : setting
fx (u) = 1x≤u and Z (0) = Z −E(Z ),

α2,X(n) = sup
x,y∈R

sup
m≥0

∥∥∥E
(
f
(0)
x (Xn)f

(0)
y (Xn+m)|F0

)
−E

(
f
(0)
x (Xn)f

(0)
y (Xn+m)

)∥∥∥
1

For the intermittent map, in addition to

H1 : sup
f ∈BV1

ν
(∣∣Kn(f )− ν(f )

∣∣) ≤ C1

n(1−γ)/γ

we also have, for any function f in BV ,

H2 : |Kn(f )|v ≤ C2|f |v .

(See Dedecker-Gouëzel-M. ’10).

And then α2,Y(n)� n−(1−γ)/γ
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A deviation inequality inequality

Proposition (Dedecker-M. ’17)

There exists a positive universal constant c such that, for any positive
integer n, any x > 0, any η > 2 and any β ∈ (η − 2, η), the following
inequality holds:

P (nW1(µn, µ) ≥ x) ≤ c
nη/2

xη s
η
α,n +

n

x1+β/2

∫ R−1
n (x)

0
R

β/2
n (u)Q(u)du

+ c
n

x1+η/2

∫ 1

R−1
n (x)

R
η/2
n (u)Q(u)du ,

where sα,n =
∫ ∞

0

√
Sα,n(t)dt =

∫ ∞
0 ∑n

k=0 min {α1,X(k),H(t)} dt and

Rn(u) = (α−1
2,X(u) ∧ n)Q(u).
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Rosenthal-type inequality

Integrating the previous inequality, we derive

Theorem (Dedecker-M. ’17)

For p > 2, the following inequality holds:

‖W1(µn, µ)‖pp �
spα,n

np/2
+

1

np−1

∫ 1

0

(
α−1

2,X(u) ∧ n
)p−1

Qp(u)du ,
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Application to the LSV map

Let p > 2, and let g be positive and non increasing on (0, 1), with

g(x) ≤ C

xb
near 0, for some C > 0 and b ∈ [0, (1− γ)/p).

The following upper bounds hold.

For γ ∈ (0, 1/2)

‖W1(µ̃n, µ))‖p �
{
n−1/2 if b ≤ (2− γ(p + 2))/2p

n(pb+γ−1)/pγ if b > (2− γ(p + 2))/2p.

For γ ∈ [1/2, 1), ‖W1(µ̃n, µ))‖p � n(pb+γ−1)/pγ.

If b = 0, the bounds are optimal (see Chazottes-Gouëzel ’12 and
Gouëzel-Melbourne ’14 where concentration inequalities have been
established for intermittent maps).
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Gouëzel-Melbourne ’14 where concentration inequalities have been
established for intermittent maps).
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On Moderate deviations

Starting from the deviation bound and assuming that for p > 2,

sup
x>0

xp−1
∫ 1

0
Q(u)1R(u)>xdu < ∞ (∗)

where R(u) = α−1
2,Y(u)Q(u), it follows that for any α ∈]1/2, 1] and

such that α > 1− 1/p,

lim sup
n→∞

nαp−1P (nW1(µn, µ) ≥ nαx) ≤ κx−p

In the independent setting (and more generally in the m-dependent
setting),

(∗) ⇐⇒ sup
x>0

xp−1E(|X0|1|X0|>x ) < ∞ ⇐⇒ sup
x>0

xpP(|X0| > x) < ∞ .

If we replace the weak dependence coefficient α2,Y(k) by the strong
mixing ones, then it suffices to take α ∈]1/2, 1].

This is also true
for the maximum of partial sums associated with Hölder observables
of the LSV map (Dedecker-Gouëzel-M. ’18).
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On Moderate deviations

Starting from the deviation bound and assuming that for p > 2,

sup
x>0

xp−1
∫ 1

0
Q(u)1R(u)>xdu < ∞ (∗)

where R(u) = α−1
2,Y(u)Q(u), it follows that for any α ∈]1/2, 1] and

such that α > 1− 1/p,

lim sup
n→∞

nαp−1P (nW1(µn, µ) ≥ nαx) ≤ κx−p

In the independent setting (and more generally in the m-dependent
setting),

(∗) ⇐⇒ sup
x>0

xp−1E(|X0|1|X0|>x ) < ∞ ⇐⇒ sup
x>0

xpP(|X0| > x) < ∞ .

If we replace the weak dependence coefficient α2,Y(k) by the strong
mixing ones, then it suffices to take α ∈]1/2, 1]. This is also true
for the maximum of partial sums associated with Hölder observables
of the LSV map (Dedecker-Gouëzel-M. ’18).
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What about the moments of W r
r (µn, µ) in higher

dimensions ?

In our proofs, the Ebralidze’s inequality plays a crucial role :

W r
r (µn, µ) ≤ κr

∫
R
|x |r−1|Fn(x)− F (x)|dx

By Lemmas 5 and 6 in Fournier-Guillin ’15, there exists a constant
C depending only on r and d such that

W r
r (µn, µ) ≤ CDr (µn, µ) .

where

Dr (µn, µ) = ∑
m≥0

2rm ∑
`≥0

2−r` ∑
F∈P`

|µn(2
mF ∩Bm)−µ(2mF ∩Bm)| ,

P` being the natural partition of (−1, 1]d into 2d` translations of
(−2−`, 2−`]d

B0 = (−1, 1]d and Bm = (−2m, 2m]d\(−2m−1, 2m−1]d , for m ≥ 1.
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Fournier-Guillin’s upper bound is a modified version of the result by
Dereich-Scheutzow-Schottstedt ’13. With the help of this bound,
they give sharp bounds for E(W r

r (µn, µ)) for iid random vectors
with values in Rd .

Starting from their upper bound, in the iid case and if ‖X‖rp < ∞
for some p > 2 , one can for instance prove the following Rosenthal
inequalities :

If r > d(p − 1)/p,

‖W r
r (µn, µ)‖pp �

1

np/2

(∫ ∞

0
tr−1

√
H(t) dt

)p

+
‖X‖prpr
np−1

If r ∈ [1, d/2),

‖W r
r (µn, µ)‖pp �

‖X‖prpr
npr/d

(Work in progress with J. Dedecker)
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Fournier-Guillin’s upper bound is a modified version of the result by
Dereich-Scheutzow-Schottstedt ’13. With the help of this bound,
they give sharp bounds for E(W r

r (µn, µ)) for iid random vectors
with values in Rd .

Starting from their upper bound, in the iid case and if ‖X‖rp < ∞
for some p > 2 , one can for instance prove the following Rosenthal
inequalities :

If r > d(p − 1)/p,

‖W r
r (µn, µ)‖pp �

1

np/2

(∫ ∞

0
tr−1

√
H(t) dt

)p

+
‖X‖prpr
np−1

If r ∈ [1, d/2),

‖W r
r (µn, µ)‖pp �

‖X‖prpr
npr/d

(Work in progress with J. Dedecker)
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Thank you for your attention!
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