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Particular case : a Talagrand’s cost for vo(u) = 1.0,
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used by Talagrand (1996) as a main ingredient to reach deviation inequalities
for supremum of empirical processes with Bernstein’s bounds, see also S.
(2007).
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Theorem [GRST ’15] : Examples of weak costs for which duality holds
Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

it fo([x= [y b)) auco
Sip {fae@ dp — J,a du}

with Qg (x) = ian) {f@dp +6 <x - fydp(y))} .

PEP1 (
Remark : This cost has strong connections with convex functions. Observe that

Towlw)

Qpo(x) = inf {( inf

zeRM( \p, Sy dp(y)=z

[ «pdp) +0(x - 2)} = Qup(0).

=5(2)

The function g is convex. From this observation we get

To(vlu) =  sup eradu—Jadu},
@ convex
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

it fo([x= [y b)) auco
sup {f@s@ dp — deu}

with Qg (x) = ian) {f@dp +6 <x - fydp(y))} .

PEP1 (
Remark : This cost has strong connections with convex functions. Observe that

Towlw)

Qpo(x) = inf { ( inf f(pdp) +6 (x — z)} = Qyp(x).

zeRM( \p, Sy dp(y)=z

=5(2)

The function g is convex. From this observation we get
To(v|p) = sup U Qypdy — J&du} ;
P convex

where the supremum runs over all convex Lipschitz functions @ : R — R
bounded from below,
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Theorem [GRST ’15] : Examples of weak costs for which duality holds

Example 3 : Barycentric variant of Marton’s cost function when X < R™.

o(x,p) = 6 (x - jydp(y)), pePi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

it fo([x= [y b)) auco
sup {f@s@ dp — deu}

with Qg (x) = ian) {fcpdp +6 <x - fydp(y))} .

PEP1 (
Remark : This cost has strong connections with convex functions. Observe that

Towlw)

Qpo(x) = inf { ( inf f(pdp) +6 (x — z)} = Qyp(x).

zeRM( \p, Sy dp(y)=z

=5(2)

The function g is convex. From this observation we get
To(v|p) = sup U Qypdy — J@du} ;
P convex

where the supremum runs over all convex Lipschitz functions @ : R — R
bounded from below, and Q¢ is the usual infimum-convolution operator.
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A first use of barycentric cost for a Strassen result

Totl) = sup | [Quudu— [warf,

3 convex
with
Qui(x) = inf {(2) +6(x —2)}, xeR"
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A first use of barycentric cost for a Strassen result
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To=Ti,
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A first use of barycentric cost for a Strassen result

Tol) = sup {Joew o fwdu} ,

3 convex
with
Quu(x) = inf {1(2) +6(x - 2)}, xeR"
zeRM

Particularcase : 0(x —2) = |[x—2z|, To=T1, Qpb = Qis 1-Lipschitz,
Qiyp = .

Proposition. [GRST 2015]

T = ot EIX ~ E[YIX]]
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with
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zeRM
Particularcase : 9(x —z) = [x—z|, To=T1,

Qi = 1.

Qpyp = Qy¢p is 1-Lipschitz,

Proposition. [GRST 2015]
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Application : A simple proof of a result by Strassen
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Application : A simple proof of a result by Strassen
Let p,v e P1(R™);
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Qi = 1.
Proposition. [GRST 2015]
Til) = jof BIX-EYIXII = s {[vdu= [van),
(X,Y) 3 convex, 1-Lipschitz

Application : A simple proof of a result by Strassen
Let p, v € P1(R™); one says that u is dominated by v in the convex order
sense, 1 <¢ v, if

fwdusfwdu,

for all convex ) : R™ — R.
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A first use of barycentric cost for a Strassen result

3 convex {JOW) = deu} ’

Towlw) = sup

with
Quu(x) = inf {¥(2) +0(x —2)}, xeR"
zeRM

Particularcase : 0(x —2) = |[x—2z|, To=T1, Qpb = Qis 1-Lipschitz,
Qi = 1.
Proposition. [GRST 2015]
Tolw) = inf E[X — E[Y|X]] = o {fwdu—jwdu}.
(X;Y) % convex, 1-Lipschitz

Application : A simple proof of a result by Strassen
Let p, v € P1(R™); one says that u is dominated by v in the convex order
sense, 1 <¢ v, if

f vy < f v,
for all convex ) : R™ — R.

Theorem. [Strassen 1965]
Let p, v € P(R™).
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A first use of barycentric cost for a Strassen result

3 convex {JOM) = deu} ’

Towlw) = sup

with
Quo(x) = inf {(2) +6(x—2)}, xeR"
zeRM

Particularcase : 0(x —2z) = |x—2z|, To=T1, Qob = Q1 is 1-Lipschitz,
Qi = 1.
Proposition. [GRST 2015]
Tolw) = inf E[X — E[Y|X]] = o {fwdu—jwdu}.
(X;Y) % convex, 1-Lipschitz

Application : A simple proof of a result by Strassen
Let p, v € P1(R™); one says that u is dominated by v in the convex order
sense, 1 <¢ v, if

f vy < f v,
for all convex ) : R™ — R.

Theorem. [Strassen 1965]

Let p,v € P(R™).Then p <¢ v if and only if there exists a martingale (X, Y)
(E[Y|X] = X), where X follows the law p and Y the law v.
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Examples of weak optimal transport costs for which duality holds
Example 4 :
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Example 4 : The martingale transport problem on the line.
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Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .
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nmant(, vy = {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

T = inf [ wxy) dnce)
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Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

TOM () = inf )jf w(X,y) dr(x,).

wenmart (v

How to express this martingale cost as a weak cost ?
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Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,
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Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

TOM () = inf )jf w(X,y) dr(x,).

wenmart (v
How to express this martingale cost as a weak cost ?
Forx e R, pe Pi(R), let i(x,p) = 0, n‘fydp(y):x,

+o0, otherwise.
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Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {Tr e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

TOM () = inf )jf w(X,y) dr(x,).
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with c(x, p) := jw(x,y)dp(y) + i(x, p). The cost cis convex in p.

The dual Kantorovich Theorem for weak cost applies and we recover the
duality result by Beighbdck-Henry-Labordére-Penker (2013).
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Duality for martingale costs
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w: R x R — R be a upper semi-continuous function, bounded from above.
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where the infimum runs over all measurable bounded functions f, g, h such that
forall x,y e R, w(x,y) < f(x)+9g(y)+ h(x)(y — x).
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Applications of duality to transport-entropy inequalities and concentration
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Applications of duality to transport-entropy inequalities and concentration
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Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where
ex.p) = as ([ Lwyb)),  xe2peP()

and as : RT — Rt U {+00} is an (optimal) convex function (as(h) = h?/2).

Theorem [S. 2007] : Another universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies To(1/(1 — s), 1/5), where
lo/
e.p) = [ s ([Leaygotn) duty),  xeXip<<i

and Bs : Rt — Rt U {+o0} is an (optimal) convex function.

As for Marton’s transport inequality, weak transport inequalities tensorize with

Cn(x7p) = Z C(Xivpi)v X = (X17"'7Xf7)'
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Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where
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and as : RT — R* U {+0o0} is an (optimal) convex function (as(h) = H?/2).
Theorem [S. 2007] : Another universal weak transport entropy inequality
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Examples of weak transport inequality in product spaces
Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where

ex.p) = as ([ Lwyb)),  xe2peP()

and as : RT — R* U {+0o0} is an (optimal) convex function (as(h) = H?/2).

Theorem [S. 2007] : Another universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies To(1/(1 — s), 1/5), where
lo/
e.p) = [ s ([Leaygotn) duty),  xeXip<<i
and Bs : Rt — Rt U {+o0} is an (optimal) convex function.

As for Marton’s transport inequality, weak transport inequalities tensorize with
c"(x,p) = D, c(xi,pi), X = (X1, Xn)-
o Any product probability nfiesure 1" satisfies 'T'cn(1/(1 —s),1/s) and
Ten(1/(1 —8),1/s).
e Any product probability measure p" a Dim-Free Concentration property

— Improves some Talagrand’s results (1996) for product measures
(convex hull method).
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Theorem [Dembo 1996] : A universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where

ex.p) = as ([ Lwyb)),  xe2peP()

and as : RT — R* U {+0o0} is an (optimal) convex function (as(h) = H?/2).

Theorem [S. 2007] : Another universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies ?0(1/(1 —s),1/s), where
lo/
etx.p) = [ 8 ([ 1w L)) duty),  xexip<<
and Bs : Rt — Rt U {+o0} is an (optimal) convex function.

As for Marton’s transport inequality, weak transport inequalities tensorize with
c"(x,p) = D, c(xi,pi), X = (X1, Xn)-
o Any product probability nfiesure 1" satisfies 'T'cn(1/(1 —s),1/s) and
Ten(1/(1 —8),1/s).
e Any product probability measure p" a Dim-Free Concentration property

— Improves some Talagrand’s results (1996) for product measures
(convex hull method).

— Gives Bernstein deviation’s bounds for suprema of empirical processes (S. 07)
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Examples of weak transport inequality in product spaces
Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where

ex.p) = as ([ Lwyb)),  xe2peP()

and as : RT — R* U {+0o0} is an (optimal) convex function (as(h) = H?/2).

Theorem [S. 2007] : Another universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies ?0(1/(1 —s),1/s), where

c(x,p) = fﬁs <fﬂx¢y%(Y)> du(y),

XeX,p<<u,
and Bs : Rt — Rt U {+o0} is an (optimal) convex function.

As for Marton’s transport inequality, weak transport inequalities tensorize with
c"(x,p) = D, c(xi,pi), X = (X1, Xn)-
o Any product probability nfiesure 1" satisfies -T-cn(1/(1 —s),1/s) and
Ten(1/(1 —8),1/s).
e Any product probability measure p" a Dim-Free Concentration property

— Improves some Talagrand’s results (1996) for product measures
(convex hull method).

— Gives Bernstein deviation’s bounds for suprema of empirical processes (S. 07)

— an alternative method to the Ledoux entropy method (Herbst argument).
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Examples of weak transport inequality in product spaces
Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies Tc(1/(1 — s), 1/s), where

ex.p) = as ([ Lwyb)),  xe2peP()

and as : RT — R* U {+0o0} is an (optimal) convex function (as(h) = H?/2).
Theorem [S. 2007] : Another universal weak transport entropy inequality
Let s € (0,1). Any measure p € P(X) satisfies ?0(1/(1 —s),1/s), where
aj
c(x,p) = fﬁs <f1x¢y?z(Y)> du(y),

XeX,p<<u,

and Bs : Rt — Rt U {+o0} is an (optimal) convex function.

As for Marton’s transport inequality, weak transport inequalities tensorize with

c"(x,p) = Y, c(xi,pi), X = (Xt,...,Xn).
¢ Any product probability fiehsure 1" satisfies Tcn(1/(1 — ), 1/s) and
Ten(1/(1 —5),1/s).
o Any product probability measure p a Dim-Free Concentration property

— Improves some Talagrand’s results (1996) for product measures
(convex hull method).

— Gives Bernstein deviation’s bounds for suprema of empirical processes (S. 07)

— an alternative method to the Ledoux entropy method (Herbst argument).
— Extented to non-product measures, with mixing conditions (S. 2000,
Marton 2003), Dobrushing contitions (Paulin 2014).
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o Any product probability measure p a Dim-Free Concentration property

— Improves some Talagrand’s results (1996) for product measures
(convex hull method).

— Gives Bernstein deviation’s bounds for suprema of empirical processes (S. 07)

— an alternative method to the Ledoux entropy method (Herbst argument).
— Extented to non-product measures, with mixing conditions (S. 2000,
Marton 2003), Dobrushing contitions (Paulin 2014).
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure ;.5 on X = {0, 1} with parameter q = 1.4(1) satisfies
Te.(1/(1 —s),1/s), s€ (0,1)
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure ;.5 on X = {0, 1} with parameter q = 1.4(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

with 0s(h) ~gt 522

h2
30=q)’ and 6s(h)

~o— 2q°
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure ;.5 on X = {0, 1} with parameter q = 1.4(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

with 0s(h) ~p+ 5

h2
30=q)’ and 0s(h) L

~0- 2g°
As a consequence, the product measure yg on {0, 1}" satisfies
T (1/(1 = 8),1/s),
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure ;.5 on X = {0, 1} with parameter q = 1.4(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

P 2
with 0s(h) ~g+ ﬁ, and 6s(h) ~o— %_

As a consequence, the product measure yg on {0, 1}" satisfies
2 Xn) = D g Xp),

Ter(1/(1 = 8),1/s), and by projection arguments ((x1, ...
Proposition [GRST 2015] : Weak transport inequalities for the binomial law
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter ¢ = pq(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

f H2 i
with 0s(h) ~g+ 20—q) and 6s(h) ~q- 2q°
As a consequence, the product measure yg on {0, 1}" satisfies
Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law
The Binomial law pq,, 0n {0, 1, ..., n} satisfies T, ,(1/(1 — s),1/s)
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter ¢ = pq(1) satisfies
T..(1/(1 —s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

g H2 i
with 0s(h) ~g+ 20—q) and 6s(h) ~q- 2q°
As a consequence, the product measure yg on {0, 1}" satisfies
Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law
The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with

Cs,n(X,p) = N0Os (1 (x—Jydp(y))), xe{0,1,...,n}.

n
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
Te.(1/(1 — s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

P 2
with 0s(h) ~g+ ﬁ, and 6s(h) ~o— %_

As a consequence, the product measure yg on {0, 1}" satisfies
Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law
The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with
1
cnx,p) = nts (5 (x= [ydow)).  xe(0.1,...m).

0s is the same cost function as for the Bernoulli measure.
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
Te.(1/(1 — s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

P 2
with 0s(h) ~g+ ﬁ, and 6s(h) ~o— %_

As a consequence, the product measure yg on {0, 1}" satisfies

Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law

The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with

Cs,n(X,p) = N0Os (1 (X—Jydp(y))), xe{0,1,...,n}.

n

0s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure
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Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
Te.(1/(1 — s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

P 2
with 0s(h) ~g+ ﬁ, and 6s(h) ~o— %_

As a consequence, the product measure yg on {0, 1}" satisfies

Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law

The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with

Cs,n(X,p) = N0Os (1 (X—Jydp(y))), xe{0,1,...,n}.

n
0s is the same cost function as for the Bernoulli measure.
Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

Choose g = \/n, A > 0, and use the weak convergence as n — +co of the
binomial law 1, /5 , to the Poisson measure p, (k) = %e”, ke N.
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
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Characterization of probability measures on R satisfying a barycentric

transport-entropy inequality

Let 0 : R — R* be a symmetric convex cost function satisfying

o(t) = 12,

vt < 1o,

for some t, > 0.
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 0 : R — RT be a symmetric convex cost function satisfying

for some t, > 0.
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 0 : R — RT be a symmetric convex cost function satisfying
0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

To,(vlp) = inf )fea (fx - fy dpx(y)>du(X)~

mwel(p,v
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality

Let 0 : R — RT be a symmetric convex cost function satisfying

0(t) =2, Vt<t,, forsomet,> 0.
Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost
Touwi) = _int [ 6a ([~ [yapetv))auto
wel(p,v)
Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 0 : R — RT be a symmetric convex cost function satisfying
0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost
Touwi) = _int [ 6a ([~ [yapetv))auto
wel(p,v)
Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
Let p € P(R).
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 0 : R — RT be a symmetric convex cost function satisfying
0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

To,(vlp) = inf Jea Uxffydpx(y))du()()

mwel(p,v
Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
Let € P(R). The following propositions are equivalent :
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Characterization of probability measures on R satisfying a barycentric

transport-entropy inequality
Let 0 : R — RT be a symmetric convex cost function satisfying

0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

To,(vlp) = inf Jea Uxffydpx(y))du()()

mwel(p,v
Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
Let € P(R). The following propositions are equivalent :
i) There exists a > 0 such that for all v € P(R),
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Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric
probability measure with log-concave tails satisfies a barycentric transport
inequality with optimal cost, up to a universal constant.
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— comparison results for weak and strong moments for random vectors of
independent coordinates with log-concave tails.
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Proof based on Hoeffding’s inequality - martingale method.
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By Cauchy-Schwarz inequality - Wi2(v1,v0) < Ta(valvy) < Wy (vy, ),

where W; is the Wasserstein distance on P(S;) associated to dy.
Theorem : [S. 2017]
Forall se (0,1),
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Examples of configuration functions on S.
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Examples of configuration functions on S.
e (o) = |o|k : number of cycles of lengh k in the cycle decomposition of o.
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Question : Is there a “good” notion of curvature in discrete setting from which
we can recover
o transport-entropy inequalities,
e Poincaré inequalities ,
e modified log-Sobolev inequalities, hypercontractivity,
o Prékopa-Leindler types of inequalities,
e concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend
the lower bound on Ricci-curvature in Riemannian geometry.
e The Bakry-Emery curvature condition (1985) - I',-calculus,
the exponential curvature-dimension condition
Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)

e The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
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- Rough curvature bounds, Bonciocat-Sturm (2009),

- The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),

- Geodesic convexity property of entropy along interpolation paths :
Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)
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Curvature in discrete setting
Question : Is there a “good” notion of curvature in discrete setting from which
we can recover
o transport-entropy inequalities,
e Poincaré inequalities ,
e modified log-Sobolev inequalities, hypercontractivity,
o Prékopa-Leindler types of inequalities,
e concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend
the lower bound on Ricci-curvature in Riemannian geometry.

e The Bakry-Emery curvature condition (1985) - I',-calculus,
the exponential curvature-dimension condition
Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)

e The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).

e Lott-Sturm-Villani definition of curvature.

- Rough curvature bounds, Bonciocat-Sturm (2009),

- The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),

- Geodesic convexity property of entropy along interpolation paths :
Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...
We will focus on the approach by C. Leonard in discrete, following the recent

approach by G. Conforti (2018) in continuous spaces when L is a diffusion
generator Lf = J(Af — VU - V).
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A definition of curvature along Schroédinger paths
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Definition : Schrodinger path
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A definition of curvature along Schroédinger paths
Definition : Schrédinger path

Given pg and py € P(X) with finite support. The Schrodinger path associated
to L with reversible measure m, is

Q= X#Q, tel0,1],
where Q7 is the Schrédinger bridge associated to LY and m for pg and puq.
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A definition of curvature along Schroédinger paths
Definition : Schrédinger path

Given pg and py € P(X) with finite support. The Schrodinger path associated
to L7 with reversible measure m, is

Q) = X#Q7, telo,1],
where Q7 is the Schrédinger bridge associated to LY and m for pg and p.
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A curvature definition [Conforti 2018-Léonard 2013]
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From curvature to functional inequalities
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e In continuous setting (Léonard 2013, Conforti 2018) :
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The definition of curvature is equivalent to the Bakry-Emery curvature
condition CD(k, ), since
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It recovers the Lott-Sturm-Villani definition of Ricci curvature > «.
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Examples of discrete space with curvature bounded from below [S. 2018]
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Examples of discrete space with curvature bounded from below [S. 2018]
e X =17, forallxeZ L(x,x+1)=L(x,x—1)=1,L(x,x) = —2.
m : the counting measure.
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Examples of discrete space with curvature bounded from below [S. 2018]
e X =17, forallxeZ L(x,x+1)=L(x,x—1)=1,L(x,x) = —2.

m : the counting measure.

Result: < > 0.
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m : the counting measure. Result: < > 0.
Observing that
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one recovers Hillion’s result on Z,
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e X =17, forallxeZ L(x,x+1)=L(x,x—1)=1,L(x,x) = —2.
m : the counting measure. Result: < > 0.
Observing that
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one recovers Hillion’s result on Z, and we get a new PLI on Z.
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According to Gao-Quastel (2003) Bobkov-Tetali (2006), oo = Cn.
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