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X — a random vector in R”, ¢ : R” — [0, co] — a measurable function (a
cost function),

f:R"™ — R — a bounded measurable function (a test function),

Marta Strzelecka (University of Warsaw)

On the convex IC with optimal cost function

Cargese, May 16, 2018 2/11



Convex infimum convolution inequality

X — a random vector in R”, ¢ : R” — [0, co] — a measurable function (a
cost function),

f:R"™ — R — a bounded measurable function (a test function),

fOp(x) == inf{f(y) + o(x —y) : y € R"} —infimum convolution.

Marta Strzelecka (University of Warsaw) On the convex IC with optimal cost function

Cargese, May 16, 2018 2/11



Convex infimum convolution inequality

X — a random vector in R”, ¢ : R” — [0, co] — a measurable function (a
cost function),

f:R"™ — R — a bounded measurable function (a test function),

fOp(x) == inf{f(y) + o(x —y) : y € R"} —infimum convolution.
We say that a pair (X, ¢) satisfies the infimum convolution inequality (1Cl
for short) if for every test function f : R" — R,

EeDe(XRe—(X) < 1.

(1)
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Convex infimum convolution inequality

X — a random vector in R”, ¢ : R” — [0, co] — a measurable function (a
cost function),

f:R"™ — R — a bounded measurable function (a test function),

fOp(x) == inf{f(y) + o(x —y) : y € R"} —infimum convolution.

We say that a pair (X, ¢) satisfies the infimum convolution inequality (1Cl
for short) if for every test function f : R" — R,

EeDe(XRe—(X) < 1.

(1)

We also say that a pair (X, ¢) satisfies the convex infimum convolution

inequality (convex ICl for short) if (1) holds for every convex function
f : R" — R bounded from below.
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What we know

o Gaussian random variable on the real line satisfies the |Cl with
a quadratic cost function (Maurey);
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o Gaussian random variable on the real line satisfies the ICl with
a quadratic cost function (Maurey);

o exponential r.v. on the real line satisfies the ICl with a quadratic-linear
cost function (= Talagrand's two-level concentration) (Maurey);
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o bounded random variables satisfy the convex ICl with a quadratic cost
function (Maurey);
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o Gaussian random variable on the real line satisfies the ICl with
a quadratic cost function (Maurey);

o exponential r.v. on the real line satisfies the ICl with a quadratic-linear
cost function (= Talagrand's two-level concentration) (Maurey);

o bounded random variables satisfy the convex ICl with a quadratic cost
function (Maurey);

« convex ICl (on the real line) with a quadratic-linear cost function
< 3X €[0,1), h > 0 such that P(X > x + h) < AP(X > x)
(Feldheim, Marsiglietti, Nayar, Wang, 2018);
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o Gaussian random variable on the real line satisfies the ICl with
a quadratic cost function (Maurey);

o exponential r.v. on the real line satisfies the |Cl with a quadratic-linear
cost function (= Talagrand's two-level concentration) (Maurey);

o bounded random variables satisfy the convex ICl with a quadratic cost
function (Maurey);

« convex ICl (on the real line) with a quadratic-linear cost function
< 3X €[0,1), h > 0 such that P(X > x + h) < AP(X > x)
(Feldheim, Marsiglietti, Nayar, Wang, 2018);

o convex ICls are the dual formulation of weak transport-entropy
inequalities introduced by Gozlan, Roberto, Samson, Tetali, 2017;

o on the real line: a characterization of convex ICl with an arbitrary
convex cost function quadratic near 0 (Gozlan, Roberto, Samson,
Shu, Tetali, 2018+);
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Gaussian random variable on the real line satisfies the ICI with

a quadratic cost function (Maurey);

exponential r.v. on the real line satisfies the ICl with a quadratic-linear
cost function (= Talagrand's two-level concentration) (Maurey);
bounded random variables satisfy the convex ICl with a quadratic cost
function (Maurey);

convex ICl (on the real line) with a quadratic-linear cost function

< 3X €[0,1), h > 0 such that P(X > x + h) < AP(X > x)
(Feldheim, Marsiglietti, Nayar, Wang, 2018);

convex |Cls are the dual formulation of weak transport-entropy
inequalities introduced by Gozlan, Roberto, Samson, Tetali, 2017,

on the real line: a characterization of convex ICl with an arbitrary
convex cost function quadratic near 0 (G., R., S., Shu, T., 2018+);
ICl with optimal cost function (scaled Legendre transform) for vectors
uniformly distributed on £p-balls and for product log-concave vectors
(Latata, Wojtaszczyk, 2008).
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Optimal cost function

For a random vector X in R” let
Ax(x) :=InEe™X)  xeR"
(the cumulant-generating function). We define its Legendre transform

Nx(x) == LAx(x) := seuﬂg {{x,y) — |nEe<y’X>}.
y n
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Ax(x) :=InEe™X)  xeR"
(the cumulant-generating function). We define its Legendre transform

Nx(x) == LAx(x) := seuﬂg {{x,y) — |nEe<«V’X>}.
y n

If a symmetric random vector X satisfies the convex ICl with a convex cost
function ¢, then ¢ < A%,
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Optimal cost function

For a random vector X in R” let
Ax(x) :=InEe™X)  xeR"
(the cumulant-generating function). We define its Legendre transform

Nx(x) == LAx(x) := seuﬂg {{x,y) — |nEe<y’X>}.
y n

If a symmetric random vector X satisfies the convex ICl with a convex cost
function ¢, then ¢ < A%,

We say that X satisfies the (convex) /C(B) if the pair(X, A% (3)) satisfies
the (convex) ICI.
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Characterization of convex IC on the real line

w — the distribution of a random variable X, v — the (symmetric)
exponential distribution.

Fu(t) := p(—o0,t], F,(t) :=v(—o0,t].
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U=UM:=FM_10F,,

is the unique non-decreasing, left-continuous function transporting v on p.
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Characterization of convex IC on the real line

w — the distribution of a random variable X, v — the (symmetric)
exponential distribution.

Fu(t) := p(—o0,t], F,(t) :=v(—o0,t].

U=U”:=FM_10F,,

is the unique non-decreasing, left-continuous function transporting v on p.

 — convex, symmetric cost function, ¢(t) = t2 for |t| < ty. Then the
following are equivalent:

(i) There exists a > 0 such that X satisfies IC with a cost function ¢(a-)
(ii) There exists b > 0 such that for all x,y € R,

|U(x) = U(y)| < %90‘1(1 + |x — yl).
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Convex IC with optimal cost function

Assume that a symmetric random variable X has log-concave tails:
P(|X| > t)=e MO Nis convex.

How to use the characterization to get the optimal convex IC for X7?
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Convex IC with optimal cost function

Assume that a symmetric random variable X has log-concave tails:
P(|X| > t)=e MO Nis convex.

How to use the characterization to get the optimal convex IC for X7?
+ Rescale X so that EX? = (2¢)~2. Then N(1/2) > 2 and the Chernoff
inequality implies that N(t) 4+ In2 > A} (t). (We may assume that
is nice.)
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Convex IC with optimal cost function

Assume that a symmetric random variable X has log-concave tails:
P(|X| > t)=e MO Nis convex.

How to use the characterization to get the optimal convex IC for X7?

+ Rescale X so that EX? = (2¢)~2. Then N(1/2) > 2 and the Chernoff
inequality implies that N(t) 4+ In2 > A} (t). (We may assume that
is nice.)

© Modify the cost function A%:

o(x) = (XPLncry + Qx| — D1us1y) V Ak (x/(4€)).
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Convex IC with optimal cost function

Assume that a symmetric random variable X has log-concave tails:
P(|X| > t)=e MO Nis convex.

How to use the characterization to get the optimal convex IC for X7?

+ Rescale X so that EX? = (2¢)~2. Then N(1/2) > 2 and the Chernoff
inequality implies that N(t) 4+ In2 > A} (t). (We may assume that
is nice.)

© Modify the cost function A%:

p(x) = (X*Lxcay + @x] = Dlgazn) VAKX (x/(4e)).

+ Roughly speaking U~1(x) = N(|x|) sgn x. One may show that it is
enough to prove that

p(lx —yl) < 1+ |N(x|)sgnx — N(ly)sgny|  for x,y € U(R).
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Concentration inequalities

o In the log-concave setting: |C with optimal cost function is equivalent
to the optimal concentration (we enlarge a given set by Z,(X)
instead of pBY) (Latata, Wojtaszczyk, 2008);
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Concentration inequalities

o In the log-concave setting: |C with optimal cost function is equivalent
to the optimal concentration (we enlarge a given set by Z,(X)
instead of pBY) (Latata, Wojtaszczyk, 2008);

» Convex IC = one-side concentration (under the condition of regularly
growing moments);

» However, convex IC(/3) and a-regularly growing moments of
coordinates imply also that for every norm || - || on R”,

P (|[|1X]| — E[X||| > t) < 2¢~t/(ecfo(P) - for t > 2eaBa(p),
where o(p) is the weak p-th moment of X with respect to || - |:

o(p) = oy x(p) = ”tshuril (£, Xl p-
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Concentration inequalities — a proof

P (|[X]| - E[X||| > t) < 2e~tP/(ecBole)) = for t > 2eafo(p).
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Concentration inequalities — a proof

P (|[X]| - E[X||| > t) < 2e~tP/(ecBole)) = for t > 2eafo(p).

(Ax(-/B8)al - [[)(x) = infsup {871y, 2) = Ax(2) + allx — I}
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Concentration inequalities — a proof

P (||IX| - E[IX]|]| > t) < 2e~%#/(4eafo(P)) " for ¢ > 2eafo(p).

(Ax(-/B)3al| - [[)(x) = infsup {671y, 2) = Ax(2) + allx — I}

= infsup {(2ea8) " p(y, u) = Ax((2ea) " pu) + allx - v}
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Concentration inequalities — a proof

P (||IX| - E[IX]|]| > t) < 2e~%#/(4eafo(P)) " for ¢ > 2eafo(p).

(Ax(-/B)3al| - [[)(x) = infsup {671y, 2) = Ax(2) + allx — I}

>inf sup  {(2eaB) " ply. u) — Ax((2ea) " pu) + allx v}
Yow[(uX)|p<1
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Concentration inequalities — a proof

P (|[X]| — E[X||| > t) < 2¢~t/(ecBolP)) = for t > 2eaBa(p).

(Nx(:/B)Ba] - 1)) (x) = infsup {57y, 2) = Ax(2) + allx = v 1}

>inf sup  {(2eaB) 'p(y,u) — Ax((2ea) " pu) + al|x — y||}
Y (. X) <1

a-regularly growing moments of (t, X) and [[(u, X)|[, < 1 imply

Ax((2ea) tpu) < p.
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Y (. X) <1
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Concentration inequalities — a proof

P (|[X]| — E[X||| > t) < 2¢~t/(ecBolP)) = for t > 2eaBa(p).

(Nx(:/B)Ba] - 1)) (x) = infsup {57y, 2) = Ax(2) + allx = v 1}

>inf sup  {(2eaB) 'p(y,u) — Ax((2ea) " pu) + al|x — y||}
Y (. X) <1

>inf sup  {(2eaB)'p(y,u) —p+allx -y}
Y | (. X) o<1

Choose u = o). x(p) v with |lv|. <1 such that (y,v) = |ly]|.

o(p) = oy.x(p) = Sup, {2, X}l
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Concentration inequalities — a proof

P (|[X]| — E[X||| > t) < 2¢~t/(ecBolP)) = for t > 2eaBa(p).

(Nx(:/B)Ba] - 1)) (x) = infsup {57y, 2) = Ax(2) + allx = v 1}
>inf  sup  {(2eaB)'ply,u) — Ax((2ea) " pu) + al|x — y||}

Yo {u.X)|lp<1

>inf sup  {(2eaB)'p(y,u) —p+allx -y}
Y | (. X) o<1

Choose u = oy x(p) v with |lv|. <1 such that (y,v) = |ly|l. Then

Nx(-/B)0F (x) = inf { (2eaBoy.x(p) Pyl = p+allx = I}
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Concentration inequalities — a proof

P (|[X]| — E[X||| > t) < 2¢~t/(ecBolP)) = for t > 2eaBa(p).

(Ax(-/8)8al - [[) (x) = inf sup {87y, 2) = Ax(2) + allx — y|I}
>inf  sup  {(2eaB)'ply,u) — Ax((2ea) " pu) + al|x — y||}

Yo {u.X)|lp<1

>inf sup  {(2eaB)'p(y,u) —p+allx -y}
Y | (. X) o<1

Choose u = oy x(p) v with |lv|. <1 such that (y,v) = |ly|l. Then
* . —1
Nx(-/B)0F (x) = inf { (2eaBoy.x(p) Pyl = p+allx = I}

Set a = p(2eafoy. x(p)) " to get
(Ax (-/B8)8all - 1) (x) = allx]| - p.
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Concentration inequalities — a proof

P (|[X]| - E[X||| > t) < 2e~tP/(ecBole)) = for t > 2eafo(p).

For a = p(2eafoy.| x(p))~" we have

(N (-/8) Tl - 1) (x) = allx| - p.
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Concentration inequalities — a proof

P (|[X]| - E[X||| > t) < 2e~tP/(ecBole)) = for t > 2eafo(p).

For a = p(2eafoy.| x(p))~" we have

(Ax (-/B8)8all - 1) (x) = allx]| - p.
Hence the infimum convolution inequality with a test function a|| - || implies

Ee?lXIEe—2IXIl < ep.
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Concentration inequalities — a proof

P (|[IX]| - E[X||| > t) < 2e~t/(4eBolP)) - for t > 2eaBo(p).

For a = p(2eafo.| x(p))~! we have
(Ax (-/B8)8all - 1) (x) = allx]| - p.
Hence the infimum convolution inequality with a test function a|| - || implies
REe?lXlIpe—allXIl < ¢p.
Thus Jensen's inequality imply

EelXI—2EIXI| < op
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Concentration inequalities — a proof

P (|[X]| - E[X||| > t) < 2e~tP/(ecBole)) = for t > 2eafo(p).

For a = p(2eafoy.| x(p))~" we have
(A (-/8)Ball - 1) (x) = allx|| — p.
Hence the infimum convolution inequality with a test function a|| - || implies
Ee?lXIEe—allXll < e,
Thus Jensen's and Markov's inequalities imply

P (a|[|X|| — E|[X]|| > t) <2e7feP <2e72 for t > 2p.
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Comparison of weak and strong moments

Convex IC() and a-regularly growing moments of coordinates imply that
for every norm | - || on R”,

B (|IX] — EIX]| > £) < 2e~®/@=590) for t > 2eao(p),
where o(p) is the weak p-th moment of X with respect to || - ||:

a(p) = o x(p) == sup [[{t, X},
el <1
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Comparison of weak and strong moments

Convex IC() and a-regularly growing moments of coordinates imply that
for every norm | - || on R”,

B (|IX] — EIX]| > £) < 2e~®/@=590) for t > 2eao(p),
where o(p) is the weak p-th moment of X with respect to || - ||:

a(p) = o x(p) = Hjlugl [t X[ p-

Integrate it to obtain a comparison of weak and strong moments:
1
(EIX[17)""® < E|IX]| + Doy x(p):

Note that the constant at E||X|| is equal to 1.

Marta Strzelecka (University of Warsaw) On the convex IC with optimal cost function Cargese, May 16, 2018



Further questions

1. When g
(E[|X]|P)"? < DiE||X]|| 4+ D20y x(p) (2)

holds with D; = 17
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Further questions

1. When g
(E[|X]|P)"? < DiE||X]|| 4+ D20y x(p) (2)

holds with D; = 17

o In the case of independent coordinates: log-concave tails are sufficient,
but a-regularly growing moments are not sufficient:
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Further questions

1. When Y
P
(E[IX[|?) " < DiE[|X]| + D20y x(P) (2)
holds with D; = 17
o In the case of independent coordinates: log-concave tails are sufficient,
but a-regularly growing moments are not sufficient:

Define X by P(|X]| > t) = Fx(t):

Fx(8) = 10,2)(0) + 3 e 1%, 27 (8), 20,
k=1

or, in other words, let |X| have the distribution
o0

(1—e2)d, + Z(e‘zk_1 - e_2k)52k.
k=2
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Further questions

1. When g
(E[|X]|P)"? < DiE||X]|| 4+ D20y x(p) (2)
holds with D; = 17

o In the case of independent coordinates: log-concave tails are sufficient,
but a-regularly growing moments are not sufficient.

2. Is there any other way to obtain (2) with D; = 1 than by integrating
a concentration inequality?
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Further questions

1. When g
(E[|X]|P)"? < DiE||X]|| 4+ D20y x(p) (2)

holds with D; = 17
o In the case of independent coordinates: log-concave tails are sufficient,
but a-regularly growing moments are not sufficient.

2. Is there any other way to obtain (2) with D; = 1 than by integrating
a concentration inequality?

3. What is the characterization of random variables satisfying convex IC
with optimal cost function? (Note that A} does not have to be
quadratic near 0.)
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Further questions

1. When Y
(E[|X]|P)"? < DiE||X]|| 4+ D20y x(p) (2)

holds with D; = 17
o In the case of independent coordinates: log-concave tails are sufficient,
but a-regularly growing moments are not sufficient.

2. Is there any other way to obtain (2) with D; = 1 than by integrating
a concentration inequality?

3. What is the characterization of random variables satisfying convex IC
with optimal cost function? (Note that A} does not have to be
quadratic near 0.)

o The previous example shows that in the case of independent
coordinates: log-concave tails are sufficient, but a-regularly growing
moments are not sufficient.
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