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Convex infimum convolution inequality

X – a random vector in Rn, ϕ : Rn → [0,∞] – a measurable function (a
cost function),
f : Rn → R – a bounded measurable function (a test function),

f�ϕ(x) := inf{f (y) + ϕ(x − y) : y ∈ Rn} – infimum convolution.

We say that a pair (X , ϕ) satisfies the infimum convolution inequality (ICI
for short) if for every test function f : Rn → R,

Eef�ϕ(X )Ee−f (X ) ≤ 1. (1)

We also say that a pair (X , ϕ) satisfies the convex infimum convolution
inequality (convex ICI for short) if (1) holds for every convex function
f : Rn → R bounded from below.
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What we know

• Gaussian random variable on the real line satisfies the ICI with
a quadratic cost function (Maurey);

• exponential r.v. on the real line satisfies the ICI with a quadratic-linear
cost function (⇒ Talagrand’s two-level concentration) (Maurey);

• bounded random variables satisfy the convex ICI with a quadratic cost
function (Maurey);

• convex ICI (on the real line) with a quadratic-linear cost function
⇔ ∃λ ∈ [0, 1), h > 0 such that P(X ≥ x + h) ≤ λP(X ≥ x)
(Feldheim, Marsiglietti, Nayar, Wang, 2018);

• convex ICIs are the dual formulation of weak transport-entropy
inequalities introduced by Gozlan, Roberto, Samson, Tetali, 2017;

• on the real line: a characterization of convex ICI with an arbitrary
convex cost function quadratic near 0 ;

• ICI with optimal cost function (scaled Legendre transform) for vectors
uniformly distributed on `np-balls and for product log-concave vectors
(Lata la, Wojtaszczyk, 2008).

Marta Strzelecka (University of Warsaw) On the convex IC with optimal cost function Cargèse, May 16, 2018 3 / 11
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Optimal cost function

For a random vector X in Rn let

ΛX (x) := lnEe〈x ,X 〉, x ∈ Rn

(the cumulant-generating function). We define its Legendre transform

Λ∗X (x) := LΛX (x) := sup
y∈Rn
{〈x , y〉 − lnEe〈y ,X 〉}.

Proposition

If a symmetric random vector X satisfies the convex ICI with a convex cost
function ϕ, then ϕ ≤ Λ∗X .

We say that X satisfies the (convex) IC (β) if the pair(X ,Λ∗X ( ·β )) satisfies
the (convex) ICI.
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Characterization of convex IC on the real line

µ – the distribution of a random variable X , ν – the (symmetric)
exponential distribution.

Fµ(t) := µ(−∞, t], Fν(t) := ν(−∞, t].

U = Uµ := F−1
µ ◦ Fν

is the unique non-decreasing, left-continuous function transporting ν on µ.

Theorem [Gozlan, Roberto, Samson, Shu, Tetali, 2018+]

ϕ – convex, symmetric cost function, ϕ(t) = t2 for |t| ≤ t0. Then the
following are equivalent:

(i) There exists a > 0 such that X satisfies IC with a cost function ϕ(a ·)
(ii) There exists b > 0 such that for all x , y ∈ R,∣∣U(x)− U(y)

∣∣ ≤ 1

b
ϕ−1

(
1 + |x − y |

)
.
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Convex IC with optimal cost function

Assume that a symmetric random variable X has log-concave tails:

P(|X | ≥ t) = e−N(t), N is convex.

How to use the characterization to get the optimal convex IC for X?

• Rescale X so that EX 2 = (2e)−2. Then N(1/2) ≥ 2 and the Chernoff
inequality implies that N(t) + ln 2 ≥ Λ∗X (t). (We may assume that µ
is nice.)

• Modify the cost function Λ∗X :

ϕ(x) :=
(
x21{|x |<1} + (2|x | − 1)1{|x |≥1}

)
∨ Λ∗X

(
x/(4e)

)
.

• Roughly speaking U−1(x) = N(|x |) sgn x . One may show that it is
enough to prove that

ϕ
(
|x − y |

)
≤ 1 +

∣∣N(|x |) sgn x − N(|y |) sgn y
∣∣ for x , y ∈ U(R).
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Concentration inequalities

• In the log-concave setting: IC with optimal cost function is equivalent
to the optimal concentration (we enlarge a given set by Zp(X )
instead of pBn

2 ) (Lata la, Wojtaszczyk, 2008);

• Convex IC ⇒ one-side concentration (under the condition of regularly
growing moments);

• However, convex IC(β) and α-regularly growing moments of
coordinates imply also that for every norm ‖ · ‖ on Rn,

P
(∣∣‖X‖ − E‖X‖

∣∣ > t
)
≤ 2e−tp/(4eαβσ(p), for t ≥ 2eαβσ(p),

where σ(p) is the weak p-th moment of X with respect to ‖ · ‖:

σ(p) = σ‖·‖,X (p) := sup
‖t‖∗≤1

‖〈t,X 〉‖p.
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Concentration inequalities – a proof

Aim

P
(∣∣‖X‖ − E‖X‖

∣∣ > t
)
≤ 2e−tp/(4eαβσ(p)), for t ≥ 2eαβσ(p).

(
Λ∗X (·/β)�a‖ · ‖

)
(x) = inf

y
sup
z

{
β−1〈y , z〉 − ΛX (z) + a‖x − y‖

}
Choose u = σ‖·‖,X (p)−1v with ‖v‖∗ ≤ 1 such that 〈y , v〉 = ‖y‖. Then

Λ∗X (·/β)�f (x) ≥ inf
y

{(
2eαβσ‖·‖,X (p)

)−1
p‖y‖ − p + a‖x − y‖

}
.

Set a = p(2eαβσ‖·‖,X (p))−1 to get(
Λ∗X (·/β)�a‖ · ‖

)
(x) ≥ a‖x‖ − p.
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For a = p(2eαβσ‖·‖,X (p))−1 we have(
Λ∗X (·/β)�a‖ · ‖

)
(x) ≥ a‖x‖ − p.

Hence the infimum convolution inequality with a test function a‖ · ‖ implies

Eea‖X‖Ee−a‖X‖ ≤ ep.

Thus Jensen’s and Markov’s inequalities imply

P
(
a
∣∣‖X‖ − E‖X‖

∣∣ > t
)
≤ 2e−tep ≤ 2e−t/2, for t ≥ 2p.
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Comparison of weak and strong moments

Convex IC(β) and α-regularly growing moments of coordinates imply that
for every norm ‖ · ‖ on Rn,

P
(∣∣‖X‖ − E‖X‖

∣∣ > t
)
≤ 2e−tp/(4eαβσ(p), for t ≥ 2eαβσ(p),

where σ(p) is the weak p-th moment of X with respect to ‖ · ‖:

σ(p) = σ‖·‖,X (p) := sup
‖t‖∗≤1

‖〈t,X 〉‖p.

Integrate it to obtain a comparison of weak and strong moments:(
E‖X‖p

)1/p ≤ E‖X‖+ Dσ‖·‖,X (p),

Note that the constant at E‖X‖ is equal to 1.
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Further questions

1. When (
E‖X‖p

)1/p ≤ D1E‖X‖+ D2σ‖·‖,X (p) (2)

holds with D1 = 1?

• In the case of independent coordinates: log-concave tails are sufficient,
but α-regularly growing moments are not sufficient

2. Is there any other way to obtain (2) with D1 = 1 than by integrating
a concentration inequality?

3. What is the characterization of random variables satisfying convex IC
with optimal cost function? (Note that Λ∗X does not have to be
quadratic near 0.)

• The previous example shows that in the case of independent
coordinates: log-concave tails are sufficient, but α-regularly growing
moments are not sufficient.
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Define X by P(|X | > t) = FX (t):

FX (t) := 1[0, 2)(t) +
∞∑
k=1

e−2k

1[2k , 2k+1)(t), t ≥ 0,

or, in other words, let |X | have the distribution

(1− e−2)δ2 +
∞∑
k=2

(
e−2k−1

− e−2k )
δ2k .
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