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Outline of the Talk

I Introduction

I Semigroup interpolation and hypercontractive arguments.

I Recent improvements of concentration for convex functions.

I Monotone rearrangement and product measures.

I Open questions.
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Introduction

Concentration theory : effective tool in various mathematical areas

I Probability in high dimension

I Probability in Banach spaces

I Empirical process

I Mechanical statistics

I · · ·

Lack of precision for particular example ?
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Standard Gaussian measure

γn standard Gaussian measure on Rn, f : Rn → R smooth enough

Poincaré’s inequality

Varγn(f ) ≤
∫
Rn

|∇f |2dγn

Consequence

If X ∼ N (0, Γ) then

Var( max
i=1,...,n

Xi ) ≤ max
i=1,...,n

Var(Xi )

At this level of generality, this inequality is sharp but does not depend
on Γ. problem ?
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Toy model, Γ = Id

Mn = maxi=1,...,n Xi .

I Var(Mn) ≤ 1 (classical theory). Correct ?

I Var(Mn) ≤ C/ log n (direct calculus).

Poincaré’s inequality sub-optimal for some functionals =
Superconcentration (Chatterjee)
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Branching Random Walk

I T binary tree with depth n.

I Xe i .i .d . N (0, 1) on each edge e.

I Take a path π ∈ P
(
T
)

and set Xπ =
∑

e∈π Xe .

Var(max
π∈P

(
T
) Xπ) ≤ ?

I Classical theory : Var(max
π∈P

(
T
) Xπ) ≤ n (Xπ ∼ N (0, n)).

I In fact, Var(max
π∈P

(
T
) Xπ) = O(1) [Bramson-Ding-Zeitouni].

Tools : modified second moment method combined with comparison
arguments (very technical proof).
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Other examples

I Largest eigenvalue in random matrix theory. [Ledoux,
Dallaporta,. . . ].

I First time passage in percolation theory. [Damron, Hanson,. . . ]

I Free energy in Spin Glass theory. [Chen, Panchenko,. . . ].

I Discrete Gaussian Free Field Z2. [Bramson, Ding, Zeitouni,. . . ]

I Order statistics from an i.i.d. sample. [Boucheron, Thomas,. . . ]

I lp norm of standard Gaussian vector in Rn. [Paouris, Valettas,
Zinn]

I · · ·

I Each models, ad-hoc methods, sometimes very technicals

I Common properties ? Is it possible, in general, to improve (even
slightly) upon classical concentration ?
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Some trials to improve concentration of measure

Gaussian setting

I Semigroup interpolation and hypercontractive arguments.
Attention : Hypercontractivity = logarithmic gain (sub-linearity)

I Improvements for convex functions thanks to Erhrard’s inequality.

I Inverse, integrated, infinite curvature criterion.
Attention : few examples available

Non Gaussian framework

Transporting functional inequalities by monotone rearrangement.
Attention : limited to product measures
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Semigroups arguments. Application to stationary
Gaussian sequences
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Stationary Gaussian sequences

(Xn)n≥0 centered stationary Gaussian sequence, with covariance
function E[XiXj ] = φ(|i − j |) où φ : N→ R+.

Extreme theory [Berman]

If φ(n) log n −→
n→∞

0 then√
2 log n

(
Mn − bn)

L−→ Λ0

with Mn = maxi=1,...,n Xi .

Gumbel’s distribution : P(Λ0 ≥ t) = 1− e−e
−t

(∼ e−t for t large
enough)
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Extreme theory [Berman]

If φ(n) log n −→
n→∞

0 then√
2 log n

(
Mn − bn)

L−→ Λ0

with Mn = maxi=1,...,n Xi .

Gumbel’s distribution : P(Λ0 ≥ t) = 1− e−e
−t

(∼ e−t for t large
enough)

Kevin Tanguy Variance bounds and Superconcentration : a short Survey



Stationary Gaussian sequences

Variance
I Var(Mn) ≤ 1 (classical theory).

I Var(Mn) ≤ C/ log n [Chatterjee].

Tools : variance representation by semigroups and hypercontractivity.

Let us start with an easy case when Γ = Id .
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Talagrand’s inequality : bounding the variance

γn standard Gaussian measure on Rn.

Theorem [Talagrand]

f : Rn → R smooth enough

Varγn(f ) ≤ C
n∑

i=1

‖∂i f ‖2
2

1 + log ‖∂i f ‖2

‖∂i f ‖1

Improve upon Poincaré’s inequality.
Proof ?
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Semigroup

Ornstein-Uhlenbeck’s semigroup

Pt(f )(x) =

∫
Rn

f (e−tx +
√

1− e−2ty)dγn(y) t ≥ 0, x ∈ Rn

Hypercontractivity

‖Pt f ‖q ≤ ‖f ‖p(t), p(t) = (q − 1)e−2t + 1, t > 0

Note : p(t) < q (improve upon Jensen’s inequality).
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Representation formula

Interpolation by semigroup

Varγn(f ) = 2

∫ ∞
0

e−2t

∫
Rn

|Pt∇f |2dγndt

= 2

∫ ∞
0

e−2t
n∑

i=1

‖Pt(∂i f )‖2
2dt

Hypercontractivity

For i = 1, . . . , n

‖Pt(∂i f )‖2 ≤ ‖∂i f ‖p(t) p(t) = 1 + e−2t , t > 0.

It implies Talagrand’s inequality (after some interpolation arguments
based on Hölder’s inequality)
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Application

X1, . . . ,Xn i.i.d. N (0, 1), Mn = maxi=1,...,n Xi

Superconcentration

Var(Mn) ≤ C

log n

Proof :

f (x) = max
i=1,...,n

xi =
n∑

i=1

xi1Ai
, Ai = {xi ≥ xj ∀j}

Apply Talagrand’s inequality

∂i (f ) = 1Ai
‖∂i f ‖2

2 = ‖∂i f ‖1 = P(Xi ≥ Xj ∀j) =
1

n
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At the level of variance : dealing with correlations

Talagrand’s inequality behaves badly with respect to correlations !

Let X ∼ N (0, Γ)

Theorem [Chatterjee]

If ∃r0 ≥ 0 and ∃C a covering of {1, . . . , n} such that ∀i , j ∈ {1, . . . , n}
if E[XiXj ] = Γij ≥ r0 then ∃D ∈ C, i , j ∈ D

I = argmaxiXi and ρ(r0) = maxD∈C P(I ∈ D).
Then

Var(Mn) ≤ C

(
r0 +

1

log 1/ρ(r0)

)
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i.i.d. case

When Γ = Id choose r0 > 0

and C(r0) =
{
{1}, . . . , {n}

}
.

If Γij ≥ r0 > 0 then i = j i.e. i , j ∈ {1} or {2} or . . .

ρ(r0) = maxD∈C(r0) P(I ∈ D) = maxi=1,...,n P(I = i) = 1/n

Var(Mn) ≤ C

(
r0 +

1

log n

)
Let r0 → 0
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Stationary case

Assume φ (covariance function) to be non-increasing, choose
r0 = φ(nα), 0 < α < 1.

C(r0) =

{
{1, . . . , 2nα}, {nα, . . . , 3nα}, {2nα, . . . , 4nα}, . . .

}

If Γij = φ(|i − j |) ≥ r0 = φ(nα) then |i − j | ≤ nα. So
i , j ∈ {1, . . . , 2nα} or . . .

One can show that ρ(r0) ≤ 1/nη, 0 < η < 1.Finally,

Var(Mn) ≤ C

(
φ(nα) +

1

log n

)
≤ C ′

log n
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Chatterjee’s Theorem : a sketch of proof

X ∼ N (0, Γ), f : Rn → R smooth enough

Variance representation

Var
(
f (X )

)
= 2

∫ ∞
0

e−2t
n∑

i ,j=1

ΓijE[∂j f (X )Pt(∂i f )(X )]dt.

(Pt)t≥0 generalized Ornstein-Uhlenbeck’s semigroup.

Choose f (x) = maxi=1,...,n xi

Sketch of proof

I Γ satisfies a � covering �property (which allows one to gather the
Γij in pack of same � size �).

I (Pt)t≥0 is hypercontractive, it can be used to control the size (in
L2-norm) of each of these packs.
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Stationnary Gaussian sequences

Mn = maxi=1,...,n Xi

Recall √
2 log n

(
Mn − bn)

L−→ Λ0

with P(Λ0 ≥ t) = 1− e−e
−t

.

Non-asymptotic concentration inequality ?

Goal

I P(
√

2 log n(Mn − bn) ≥ t) ≤ ψ1(t), t ≥ 0

I P(
√

2 log n(Mn − bn) ≤ −t) ≤ ψ2(t), t ≥ 0

with ψi , i = 1, 2 reflecting Gumbel’s asymptotics.
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Gaussian concentration

Let f : Rn → R be a L-Lipschitz function and X ∼ N (0, Id) then

Theorem [Borell, Sudakov-Tsirel’son]

P
(
|f (X )− E

[
f (X )

]
| ≥ t

)
≤ 2e−t

2/2L

f (x) = maxi=1,...,n xi is 1-Lipschitz.

P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 2e−t

2/4 log n (classical theory)

I The Gaussian decay is not reflecting the behavior of the limiting
distribution.

I The dependance in n is very bad.

Superconcentration inequality ?
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Stationary Gaussian sequences

Assume φ is non-increasing and φ(n) log n→ 0 as n→∞.

Superconcentration inequality [T.]

P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 3e−ct

I Up to numerical constant, same result holds with bn instead of
E[Mn].

I Corresponds to Gumbel’s asymptotics (right tail).

I Implies Chatterjee’s variance bound (after integration) .
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Sketch of proof

Goal : P
(√

2 log n|Mn − E[Mn]| ≥ t
)
≤ 3e−ct

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ ∈ R then

P
(√

K−1|Z − E[Z ]| ≥ t
)
≤ 6e−ct , t ≥ 0 (1)

We would like to obtain (1) for Z = Mn = maxi=1,...,n Xi with
K ∼ Var(Mn) ∼ C/ log n.

Proof : Extension of Chatterjee’s Theorem at an exponential level.
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Few words on recent results
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Other improvements

New concentration results for γn the standard Gaussian measure on Rn.

[Paouris-Valettas]

I Extension of Talagrand’s inequality at an exponential level.

I Improvement of Borell’s inequality for convex function :

γn
(
f − E [f ] < −t

√
Varγn(f )

)
≤ e−ct

2
, t > 1 (2)

Remarks
I (2) obtained thanks to Ehrhard’s inequality.

I Valettas also proved, with Ehrhard’s inequality, that Borell’s
inequality is sharp for convex functions which are not
superconcentrated.
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Superconcentration for product measures by monotone
rearrangement
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Basic transport of product measures in Rn

Step 1 : choose ν as γ1 the standard Gaussian measure on R and µ as
the symmetric Exponential measure (with density g(x) = 1

2e
−|x |).

Step 2 : consider the increasing rearrangement t : R→ R transporting

µ onto γ1. That is to say
∫ x
−∞ dµ =

∫ t(x)
−∞ dγ1.

Step 3 : Set T : Rn → Rn as

T (x1, . . . , xn) =
(
t(x1), . . . , t(xn)

)
x = (x1, . . . , xn) ∈ Rn

Notice : T transports µn onto γn and Eγn(f ) = Eµn(f ◦ T ) for
f : Rn → R smooth enough
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Transporting Poincaré’s inequality
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Weighted Poincaré’s inequality

Poincaré’s inequality for the Exponential measure

Varµn(f ) ≤ 4

∫
Rn

|∇f |2dµn

then

Varγn(f ) = Varµn(f ◦ T ) ≤ 4
n∑

i=1

∫
Rn

(∂i f )2 ◦ T (x)t ′2(xi )dµ
n(x)

= 4
n∑

i=1

∫
Rn

(∂i f )2
[
t ′ ◦ t−1

]2
(xi )dγn(x)

.

Estimate the behavior of t ′ ◦ t−1 to bound the variance of f under γn
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Sample result

Lemma

Under the preceding framework, the following estimates holds

|t ′ ◦ t−1(x)| ≤ C

1 + |x |
, x ∈ R

Thus,

Standard Gaussian measure

Varγn(f ) ≤ C
n∑

i=1

∫
Rn

(∂i f (x))2

(
1

1 + |xi |

)2

dγn(x)
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Some remarks

I Houdré-Bobkov and Bobkov-Ledoux already obtained the
preceding inequality (in dimension 1) by other means.

I Explicit version of Gozlan’s theoretical work on weighted
Poincaré’s inequalities.

I Precedings transport arguments are completely general.
If ν, µ are probability measure on R with (respectively) density h, g
and c.d.f H,G . Then

t ′(x) =
g(x)

1− G (x)
×

1− H
(
t(x)

)
h
(
t(x)

)
Notice : ratio of the so-called hazard rate function associated
(respectively) to µ and ν.
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Application in Superconcentration
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Application in Superconcentration

f (x) = maxi=1,...,n xi =
∑n

i=1 xi1Ai
with Ai = {xi = maxj=1,...,n xj}.

(Ai )i=1,...,n is a partition of Rn and ∂i f = 1Ai
.

Set Mn = maxi=1,...,n Xi with Xi ∼ N (0, 1) i.i.d, then

Var(Mn) ≤ CE
[

1

1 + M2
n

]
≤ C

1 + log n
+ C ′P(Mn ≤

√
log n)

≤ C

1 + log n
+
[
1− P(X1 ≥

√
log n)

]n
≤ C ′

1 + log n
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Other applications

I For the Gaussian measure : we can study others functionnals
(median, lp-norms) and recover some work of Boucheron-Thomas
and Paouris-Valettas-Zinn.

I Large choice of measure : for instance, log-concave measure can
be studied. For instance, if µn = Z−1e−|x |

α/α, α ≥ 1 we obtained
(with the same methodology).

Proposition [T.]

Var(Mn) ≤ C

1 + Cα[ln(n)]2(α−1)/α

Note : as far as we know, this can not be obtained by hypercontractive
arguments (when α > 2).This is also sharp with respect to Extreme
Theory.
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Extreme Theory and non-asymptotic deviation
inequalities
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Convergence of Extremes

Recall the following fact, in the Gaussian case,√
2 log n(Mn − bn) −→

L
Λ0, n→∞

with P(Λ0 ≥ x) = 1− e−e
−t
, t ∈ R (Gumbel distribution).

What about deviation inequalities ?

i.e. P
(√

log n
(
Mn − E[Mn]

)
≥ t

)
≤ Ce−ct

It should reflect the size of the variance of Mn and the asymptotics of
Λ0 (here on the right tail).
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Extension to an exponential level : two further arguments

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ > 0 then

P
(√

K−1(Z − E[Z ]) ≥ t
)
≤ 3e−ct , t ≥ 0

(3)

Goal : obtain (3) with K ∼ Var(Mn).To this task, we use Harris’
negative association inequality

Lemma

Let f : Rn → R non-increasing and g : Rn → R non-decreasing, then

E
[
f (X )g(X )

]
≤ E

[
f (X )

]
E
[
g(X )

]
, X = (X1, . . . ,Xn)

with Xi independent random variables.

Kevin Tanguy Variance bounds and Superconcentration : a short Survey



Extension to an exponential level : two further arguments

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ > 0 then

P
(√

K−1(Z − E[Z ]) ≥ t
)
≤ 3e−ct , t ≥ 0 (3)

Goal : obtain (3) with K ∼ Var(Mn).

To this task, we use Harris’
negative association inequality

Lemma

Let f : Rn → R non-increasing and g : Rn → R non-decreasing, then

E
[
f (X )g(X )

]
≤ E

[
f (X )

]
E
[
g(X )

]
, X = (X1, . . . ,Xn)

with Xi independent random variables.

Kevin Tanguy Variance bounds and Superconcentration : a short Survey



Extension to an exponential level : two further arguments

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ > 0 then

P
(√

K−1(Z − E[Z ]) ≥ t
)
≤ 3e−ct , t ≥ 0 (3)

Goal : obtain (3) with K ∼ Var(Mn).To this task, we use Harris’
negative association inequality

Lemma

Let f : Rn → R non-increasing and g : Rn → R non-decreasing, then

E
[
f (X )g(X )

]
≤ E

[
f (X )

]
E
[
g(X )

]
, X = (X1, . . . ,Xn)

with Xi independent random variables.

Kevin Tanguy Variance bounds and Superconcentration : a short Survey



Extension to an exponential level : two further arguments

Lemma

If Var(eθZ/2) ≤ θ2

4 KE[eθZ ] θ > 0 then

P
(√

K−1(Z − E[Z ]) ≥ t
)
≤ 3e−ct , t ≥ 0 (3)

Goal : obtain (3) with K ∼ Var(Mn).To this task, we use Harris’
negative association inequality

Lemma

Let f : Rn → R non-increasing and g : Rn → R non-decreasing, then

E
[
f (X )g(X )

]
≤ E

[
f (X )

]
E
[
g(X )

]
, X = (X1, . . . ,Xn)

with Xi independent random variables.

Kevin Tanguy Variance bounds and Superconcentration : a short Survey



Application in the Gaussian case

Standard Gaussian measure

Varγn(f ) ≤ C
n∑

i=1

∫
Rn

(∂i f (x))2

(
1

1 + |xi |

)2

dγn(x)

Step 1 : apply to f (x) = e
θ
2

maxi=1,...,n xi , θ > 0 to get

Var(eθMn/2) ≤ C
θ2

4
E
[
eθMn

1

1 + (Mn)2

]
(we used again the fact (Ai )i=1,...,n is a partition).
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Application in the Gaussian case

Step 2 : (x1, . . . , xn) 7→ 1
1+maxi=1,...,n xi

is a non-increasing function, so

apply Harris’s Lemma :

Var(eθMn/2) ≤ C
θ2

4
E
[
eθMn

]
E
[

1

1 + (Mn)2

]

Step 3 : use previous bounds on E
[

1
1+(Mn)2

]
and conclude with the

concentration Lemma.

Notice : all we needed was a bound on the variance of Mn and the fact
that the map t ′ ◦ t−1(x) was dominated by a non-increasing function.
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Transporting Isoperimetric inequalities
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Left tail of Gumbel’s distribution

Recall that P(Λ0 ≤ −x) = e−e
x
, x > 0 : fast decay for the Gumbel’s

left tail.

Question : is it possible to obtain non-asymptotic deviation inequalities
for measure belonging to the Gumbel’s domain of attraction ?

Is it possible to transport stronger functional inequalities to obtain
something relevant in the domain of attraction of the Gumbel’s

distribution ?
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Transporting isoperimetric inequalities improves the
concentration

Talagrand obtained isoperimetric inequalities (with particular
enlargements) for the symmetric Exponential measure.

Transporting it onto γn improve concentration results. As a
consequence it implies

Transporting Talagrand’s inequality

P
(√

log n
∣∣Mn − E[Mn]

∣∣ ≥ t

)
≤ Ce−ct , t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. N (0, 1).

Remark : reflects the size of Var(Mn) and the right tail of Gumbel’s
distribution (but not the left tail !).
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Reaching the left tail in Gumbel’s domain of attraction

One way to reach the asymptotics of the left tail of the Gumbel’s
distribution is to use another isoperimetric inequality.

Bobkov obtained
an isoperimetric inequality for the Exponential measure on Rn

+.

He only considered particular sets A ⊂ Rn
+ (well suited for maximum)

and used uniform enlargements B∞ instead of mixture of l1 and l2

balls.

Transporting Bobkov’s inequality

P(Mn − E[Mn] ≤ −t) ≤ Ce−e
ct
, t ≥ 0,

with Mn = maxi=1,...,n Xi , Xi i.i.d. Gamma random variables.

Sharp with respect to Extreme theory (left tail of Gumbel’s
distribution). Still work for log-concave measure on Rn

+.
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distribution). Still work for log-concave measure on Rn

+.
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Open Questions
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Open questions

I Easier proof to reach sharp variance bounds for the Branching
Random Walk (semigroups + second moment) ?

Let (Xπ)π∈P(T ) be the BRW on a binary tree.

Var(max
π

Xπ) ≤


n (Poincaré’s inequality)
C log n (Hypercontractivity, short and easy)
C (Second moment method, long and technical)

Then, possibility to deal with the DGFF on Z2 ?
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Open questions

I Sharp left tail deviation inequality for law belonging to the
Gumbel’s domain of attraction (in particular, standard Gaussian) ?

I Reverse weighted Poincaré’s inequalities, for convex function, in
Rn (extension of Bobkov-Houdré’s work) ?

I Non-product measures by Optimal Transport
(Knothe-Rosenblatt ?) arguments ?
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Thanks for your attention
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Inverse, integrated, infinite curvature dimension
criterion
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Representation formula

Recall the representation formula of the variance, along the
Ornstein-Uhlenbeck semigroup (Pt)t≥0,

Varγn(f ) = 2

∫ ∞
0

∫
Rn

|∇Pt f |2dγndt. (4)

Equation (4) can be rewritten in terms of the carré du champ operator
Γ(f ) = |∇f |2

Varγn(f ) = 2

∫ ∞
0

∫
Rn

Γ(Pt f )dγndt
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Bakry-Emery’s criterion and Poincaré’s inequality

Set I (t) =
∫
Rn Γ(Pt f )dγn, t ≥ 0.

The celebrated Bakry-Emery’s
criterion

CD(1,+∞)

Γ2 ≥ Γ with Γ2(f ) = ‖Hessf ‖2
2 + |∇f |2

can be used to obtain a differential inequality for t 7→ I (t).

∫
Rn

Γ2(Pt f )dγn ≥
∫
Rn

Γ(Pt f )dγn ⇐⇒ 2I + I ′ ≤ 0 ∀f ∈ D(L)

that can be integrated over [0, t] to bound from above I (t), t ≥ 0

I (t) ≤ e−2t

∫
Rn

|∇f |2dγn thus Varγn(f ) ≤
∫
Rn

|∇f |2dγn
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Inverse, integrated, infinite curvature criterion

Let fβ(x) = 1
β log

(∑n
i=1 e

βxi

)
, β > 0 be fixed.

Reverse inequality for fβ

I ′ + 2I ≥ψβ with ψβ = −4β2e−2t I

Integration over [t,+∞[ yields

I (t) ≤
∣∣ ∫

Rn ∇fdγn
∣∣2 + R(t) for some function t 7→ R(t)

Possibility to investigate the REM model at various temperature β, the
SK model (with some further work). Variance bounds obtained that
way improve upon Poincaré’s inequality.

Question : other functions f s.t. I ′ + 2I ≥ ψf for some function ψf ?
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