Constrained Hawkes processes for modeling limit order books.

François Roueff http://perso.telecom-paristech.fr/~roueff/

joint work with Ban Zheng (Natixis) and Frédéric Abergel (ECP)

Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI

March 19, 2014

Outline

2 Constrained Hawkes processes

A 🖓 h

1 Limit order books

- 2 Constrained Hawkes processes
- 3 Some applications

(日) (同) (三) (三)

э

High frequency price data

Price, SOGN.PA, 20110405

Figure: Price of an asset over one day.

< 1[™] >

Signature plots

How do the usual models behave at small scales ?

Figure: Red: Normalized realized volatility as a function of the sampling period.

François Roueffhttp://perso.telecom-pari

High frequency price data: another asset

Price, TOTF.PA, 20110401

Figure: Price of an asset over one day.

Signature plots: another asset

Figure: Red: Normalized realized volatility as a function of the increment period.

- **4 A b**

The smallest time scale: Limit order book

Figure: A limit order book (LOB) at a given fixed time. Bid prices (red) and Ask prices (blue) available for market orders.

Limit order book events: limit order arrival

Price

Price

Figure: LOB before and after a limit order. Light blue: new ask limit.

François Roueffhttp://perso.telecom-pari

Limit order book events: limit order cancellation

Price

Figure: LOB before and after a limit order cancellation. Gray: canceled ask limit.

François Roueffhttp://perso.telecom-pari

Time evolution of a LOB and mid-price.

Limit Order Book Dynamics

Figure: Time evolution of a LOB and mid-price.

François Roueffhttp://perso.telecom-pari

Constrained Hawkes processes

March 19, 2014 11 / 40

A simplified LOB: Best Bid (BB) and Best Ask (BA) prices.

BestBid/BestAsk dynamics, FTE.PA

FTE.PA

Figure: Successive BB and BA events in physical time (mn).

François Roueffhttp://perso.telecom-pari

Constrained Hawkes processes

March 19, 2014 13 / 40

3

-∢ ≣⇒

Point process of a simplified LOB

We consider the marked point process describing the dynamics of the BB and BA prices,

$$N = \sum_k \delta_{T_k, I_k} \quad \text{with} \quad 0 < T_1 < T_2 < \dots \quad \text{and} \quad I_1, I_2, \dots \in \{1, \dots, p\} \;,$$

where each mark i in $\{1,\ldots,p\}$ corresponds to a quantified shift of either the BB or the BA price, e.g.

- \triangleright i = 1 Best Ask price moves upward one tick,
- \triangleright i = 2 Best Ask price moves downward one tick,
- \triangleright i = 3 Best Bid price moves upward one tick,
- \triangleright i = 4 Best Bid price moves downward one tick.

Point process of a simplified LOB

We consider the marked point process describing the dynamics of the BB and BA prices,

$$N = \sum_k \delta_{T_k, I_k} \quad \text{with} \quad 0 < T_1 < T_2 < \dots \quad \text{and} \quad I_1, I_2, \dots \in \{1, \dots, p\} \;,$$

where each mark i in $\{1,\ldots,p\}$ corresponds to a quantified shift of either the BB or the BA price, e.g.

- \triangleright i = 1 Best Ask price moves upward one tick,
- \triangleright i = 2 Best Ask price moves downward one tick,
- \triangleright i = 3 Best Bid price moves upward one tick,
- \triangleright i = 4 Best Bid price moves downward one tick.

Extensions

By increasing the set of marks, one can consider one marked process describing the LOBs of several assets.

François Roueffhttp://perso.telecom-pari

()

< 🗗 🕨

Point process and prices dynamics

One can recover the dynamics of BB, BA and mid prices from the point process N through formulas of the form

$$P_t - P_0 = N \left(\mathbb{1}_{(0,t]} \otimes J \right) = \sum_{0 < T_k \le t} J(I_k), \quad t > 0.$$

For instance, in the previous example,

$$J(1) = 1, J(2) = -1, J(3) = J(4) = 0$$

corresponds to $P_t = BA$ price.

Point process and BB-BA spread

The gap between the BB price and the BA price is called the spread, from now on denoted by

$$S_t = \mathsf{BA} \ \mathsf{price}_t - \mathsf{BB} \ \mathsf{price}_t \in \{1, 2, 3, \dots\}$$
.

We will denote by J the corresponding function on $\{1, \ldots, p\}$ such that, for all t > 0,

$$S_t = S_0 + N\left(\mathbbm{1}_{(0,t]} \times J\right) = S_0 + \sum_{0 < T_k \leq t} J(I_k) \;.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

16 / 40

Point process and BB-BA spread

The gap between the BB price and the BA price is called the spread, from now on denoted by

$$S_t = \mathsf{BA} \ \mathsf{price}_t - \mathsf{BB} \ \mathsf{price}_t \in \{1, 2, 3, \dots\}$$
.

We will denote by J the corresponding function on $\{1, \ldots, p\}$ such that, for all t > 0,

$$S_t = S_0 + N\left(\mathbb{1}_{(0,t]} \times J\right) = S_0 + \sum_{0 < T_k \le t} J(I_k) .$$

Important remarks

- \triangleright J takes positive and negative values while S only takes positive ones.
- \triangleright S_t behaves as a stationary random process.
- BB and BA prices typically behave as integrated (and thus co-integrated) stationary processes.

Limit order books

3 Some applications

François Roueffhttp://perso.telecom-pari Constrained Hawkes processes

3

(日) (同) (三) (三)

Hawkes processes

Consider a marked point process $N = \sum_k \delta_{T_k, I_k}$ with

 $\cdots < T_{-1} < T_0 \le 0 < T_1 < T_2 < \dots$ and $\dots, I_{-1}, I_0, I_1, I_2, \dots \in \mathcal{I}$.

It is an Hawkes process if its conditional density is of the form

$$\mu(t,i) = \mu_0(i) + \int_{(-\infty,t)} \phi(t-s,j;i) \ N(\mathrm{d} s,\mathrm{d} j) \ ,$$

where $\mu_0 : \mathcal{I} \to \mathbb{R}_+$ is called the immigrant intensity and $\phi : [0, \infty) \times \mathcal{I}^2 \to \mathbb{R}_+$ is called the fertility function.

イロト イポト イヨト イヨト 二日

Multivariate Hawkes processes

If $\mathcal{I} = \{1, \dots, p\}$, The marked Hawkes process can be seen as a multivariate Hawkes process

$$N_i = N(\cdot \times \{i\}), \quad 1 \le i \le p ,$$

the fertility is written as a $p \times p$ matrix $\phi(t) = [\phi_{i,j}(t)]_{i,j}$,

$$\mu(t,i) = \mu_0(i) + \int_{(-\infty,t)} \sum_{j=1}^p \phi_{i,j}(t-s) N_j(\mathrm{d}s), \quad 1 \le i \le p ,$$

or in a more compact form

$$\boldsymbol{\mu}(t) = \boldsymbol{\mu}_0 + \int_{(-\infty,t)} \boldsymbol{\phi}(t-s) \, \mathbf{N}(\mathrm{d}s) \; .$$

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\alpha_{i,j}]_{i,j} = \int_0^\infty \phi(t) \, \mathrm{d}t$$

is in [0, 1).

A 1

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\alpha_{i,j}]_{i,j} = \int_0^\infty \phi(t) \, \mathrm{d}t$$

is in [0, 1).

Remarks

▶ A Hawkes process can be represented as a cluster process.

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\alpha_{i,j}]_{i,j} = \int_0^\infty \phi(t) \, \mathrm{d}t$$

is in [0, 1).

- ▷ A Hawkes process can be represented as a cluster process.
- ▶ It can be generalized to spatial point processes.

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\alpha_{i,j}]_{i,j} = \int_0^\infty \phi(t) \, \mathrm{d}t$$

is in [0, 1).

- ▷ A Hawkes process can be represented as a cluster process.
- ▶ It can be generalized to spatial point processes.
- It can be easily simulated using such representation or Ogata's algorithm (for temporal Hawkes processes).

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\boldsymbol{\alpha}_{i,j}]_{i,j} = \int_0^\infty \boldsymbol{\phi}(t) \, \mathrm{d}t$$

is in [0, 1).

- ▷ A Hawkes process can be represented as a cluster process.
- ▶ It can be generalized to spatial point processes.
- It can be easily simulated using such representation or Ogata's algorithm (for temporal Hawkes processes).
- Second order properties (intensity, covariance measure, Bartlett spectrum) are well known.

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\boldsymbol{\alpha}_{i,j}]_{i,j} = \int_0^\infty \boldsymbol{\phi}(t) \, \mathrm{d}t$$

is in [0, 1).

- ▷ A Hawkes process can be represented as a cluster process.
- ▶ It can be generalized to spatial point processes.
- It can be easily simulated using such representation or Ogata's algorithm (for temporal Hawkes processes).
- Second order properties (intensity, covariance measure, Bartlett spectrum) are well known.
- The delay and mark of the next event can be forecasted using the Hazard rate.

It can be shown that such a point process is well defined and admit a stationary version if

(BC) the spectral radius of the $p \times p$ matrix

$$\aleph = [\alpha_{i,j}]_{i,j} = \int_0^\infty \phi(t) \, \mathrm{d}t$$

is in [0, 1).

- ▷ A Hawkes process can be represented as a cluster process.
- ▶ It can be generalized to spatial point processes.
- It can be easily simulated using such representation or Ogata's algorithm (for temporal Hawkes processes).
- Second order properties (intensity, covariance measure, Bartlett spectrum) are well known.
- The delay and mark of the next event can be forecasted using the Hazard rate.

Hawkes processes for modeling a simple LOB

Suppose that a stationary Hawkes process N is used to model the dynamics of a simple LOB as defined previously yielding to

$$P_t - P_0 = N \left(\mathbb{1}_{(0,t]} \otimes J \right) = \sum_{0 < T_k \le t} J(I_k), \quad t > 0.$$

for a BB, BA or mid-price P (with an adequate J) and

$$S_t = S_0 + N\left(\mathbbm{1}_{(0,t]} imes J
ight) = S_0 + \sum_{0 < T_k \le t} J(I_k) \; .$$

Hawkes processes for modeling a simple LOB

Suppose that a stationary Hawkes process N is used to model the dynamics of a simple LOB as defined previously yielding to

$$P_t - P_0 = N \left(\mathbb{1}_{(0,t]} \otimes J \right) = \sum_{0 < T_k \le t} J(I_k), \quad t > 0.$$

for a BB, BA or mid-price P (with an adequate J) and

$$S_t = S_0 + N \left(\mathbb{1}_{(0,t]} \times J \right) = S_0 + \sum_{0 < T_k \le t} J(I_k) \; .$$

However, for a Hawkes process, provided that $\mu_0(i) > 0$ for all i, we have, for any k,

$$\min_{1 \le i \le p} \mathbb{P}(I_{k+1} = i \,|\, \mathcal{F}_{T_k}) = \frac{\mu(T_k, i)}{\mu(T_k, 1) + \dots + \mu(T_k, p)} > 0$$

What's wrong with Hawkes processes ?

As a consequence,

the spread has positive probability to eventually reach a negative value.

A 🖓 h

What's wrong with Hawkes processes ?

As a consequence,

the spread has positive probability to eventually reach a negative value.

In fact, S_t behaves similarly to a random walk with drift $\mathbb{E}_0[J(I_k)]$, so cannot model a stationary and stable behavior.

What's wrong with Hawkes processes?

As a consequence,

the spread has positive probability to eventually reach a negative value.

In fact, S_t behaves similarly to a random walk with drift $\mathbb{E}_0[J(I_k)]$, so cannot model a stationary and stable behavior.

In other words, the BB and BA prices do behave as integrated processes but not as cointegrated ones.

What's wrong with Hawkes processes ?

As a consequence,

the spread has positive probability to eventually reach a negative value.

In fact, S_t behaves similarly to a random walk with drift $\mathbb{E}_0[J(I_k)]$, so cannot model a stationary and stable behavior.

In other words, the BB and BA prices do behave as integrated processes but not as cointegrated ones.

Idea :

modify the conditional density by adding constraints depending on S_t .

くほと くほと くほと

Constrained Hawkes processes

We consider a point process N with marks in $\{1, \ldots, p\}$ with conditional intensity given by, for all $i = 1, \ldots, p$,

$$\mu(t,i) = \begin{cases} 0 & \text{if } \mathbf{S}(t-) \in \mathbf{A}_i \\ \mu_0(i) + \int_{(-\infty,t)} \sum_{j=1}^p \phi_{i,j}(t-s) \ N(\mathrm{d}s \times \{j\}) & \text{otherwise} \ , \end{cases}$$

where S is a q-dimensional process valued in \mathbb{N}^q and defined by

$$\mathbf{S}_t = \mathbf{S}_0 + N\left(\mathbb{1}_{(0,t]} \times \mathbf{J}\right) \;,$$

for some $\mathbf{J}: \{1, \ldots, p\} \to \mathbb{Z}^q$.

Here

- $\triangleright p$ denotes the number of marks
- \triangleright q denotes the number of constraints.

 \triangleright **A**₁,..., **A**_p are constraints subsets of \mathbb{Z}^q .

Simple facts and questions

-

3

4 ∰ > 4
\triangleright Under the basic condition (BC), N is always well defined.

< 4 → <

3

- \triangleright Under the basic condition (BC), N is always well defined.
- It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.

- \triangleright Under the basic condition (BC), N is always well defined.
- It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▶ It can also be simulated by Ogata's algorithm.

- \triangleright Under the basic condition (BC), N is always well defined.
- \triangleright It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▷ It can also be simulated by Ogata's algorithm.
- ▷ Forecasting the next event delay and mark is easy.

- \triangleright Under the basic condition (BC), N is always well defined.
- \triangleright It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▷ It can also be simulated by Ogata's algorithm.
- ▷ Forecasting the next event delay and mark is easy.
- ▷ Application to a simple LOB : q = 1, S_t is the spread at time t, the sets A_i are chosen so that S_t remains positive.

- \triangleright Under the basic condition (BC), N is always well defined.
- \triangleright It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▷ It can also be simulated by Ogata's algorithm.
- ▷ Forecasting the next event delay and mark is easy.
- ▷ Application to a simple LOB : q = 1, S_t is the spread at time t, the sets A_i are chosen so that S_t remains positive.

However,

▶ What about the stability of S?

- \triangleright Under the basic condition (BC), N is always well defined.
- \triangleright It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▷ It can also be simulated by Ogata's algorithm.
- ▷ Forecasting the next event delay and mark is easy.
- ▷ Application to a simple LOB : q = 1, S_t is the spread at time t, the sets A_i are chosen so that S_t remains positive.

However,

- ▶ What about the stability of S?
- ▶ Ergodicity of (N, \mathbf{S}) .

- \triangleright Under the basic condition (BC), N is always well defined.
- It can be simulated by using the non-constrained Hawkes process N' (Cluster method) by removing events (and its descendants) that do not meet the constraints.
- ▷ It can also be simulated by Ogata's algorithm.
- ▷ Forecasting the next event delay and mark is easy.
- ▷ Application to a simple LOB : q = 1, S_t is the spread at time t, the sets A_i are chosen so that S_t remains positive.

However,

- ▶ What about the stability of S?
- ▶ Ergodicity of (N, \mathbf{S}) .
- Application to LOB modeling.

A very special case

Consider the simple LOB process, so that

▷ p = 4, q = 1,

- $\triangleright~S_t$ is the spread at time t and, at each event, moves a tick upward or downward,
- ▷ $A_i = \{1\}$ for the events i making the spread move downward, so that S_t remains positive.

Take moreover the simple case $\phi = 0$ (no memory case : the conditional density does not depend on N).

通 ト イヨ ト イヨト

A very special case

Consider the simple LOB process, so that

▷ p = 4, q = 1,

- \triangleright S_t is the spread at time t and, at each event, moves a tick upward or downward,
- ▷ $A_i = \{1\}$ for the events i making the spread move downward, so that S_t remains positive.

Take moreover the simple case $\phi = 0$ (no memory case : the conditional density does not depend on N).

Then S_t alone is a birth and death process on $\mathbb N$ and the ergodicity is equivalent to

$$\mathbf{J}^T \boldsymbol{\mu}_0 < 0$$
 .

(negative drift)

(人間) とうき くうとう う

Markov assumption

Let us investigate the case where

$$\phi_{i,i}(t) = \alpha_{i,j} \beta e^{-\beta t}, \quad t \ge 0 ,$$

so that the unknown parameters are reduced to $\aleph = [\alpha_{i,j}]$, $\beta > 0$ and $\mu_0 \in (0,\infty)^p$. Then, defining the \mathbb{R}^p valued process

$$\boldsymbol{\lambda}(t) = \int_{-\infty}^{t} \boldsymbol{\phi}(t-s) \, \boldsymbol{N}(\mathrm{d}s) \,,$$

we have that $\mathbf{X}(t) = (\mathbf{S}(t), \boldsymbol{\lambda}(t))$ is a Markov process (due to the exponential form of the fertility function).

イロト 不得下 イヨト イヨト 二日

Markov assumption

Let us investigate the case where

$$\phi_{i,i}(t) = \alpha_{i,j} \beta e^{-\beta t}, \quad t \ge 0,$$

so that the unknown parameters are reduced to $\aleph = [\alpha_{i,j}]$, $\beta > 0$ and $\mu_0 \in (0,\infty)^p$. Then, defining the \mathbb{R}^p valued process

$$\boldsymbol{\lambda}(t) = \int_{-\infty}^{t} \boldsymbol{\phi}(t-s) \, \boldsymbol{N}(\mathrm{d}s) \,,$$

we have that $\mathbf{X}(t) = (\mathbf{S}(t), \boldsymbol{\lambda}(t))$ is a Markov process (due to the exponential form of the fertility function).

Moreover, the following discrete time processes are Markov chains :

- ▷ $\mathbf{X}_k = \mathbf{X}(T_k)$, with Markov kernel Q on $\mathbf{X} = \mathbb{N}^q \times (0, \infty)^p$, ▷ $\mathbf{Y}_k = (I_k, \mathbf{X}_k)$, with Markov kernel \check{Q} on $\mathbf{Y} = \{0, \dots, p\} \times \mathbf{X}$,
- ▷ $\mathbf{Z}_k = (\Delta_k, I_k, \mathbf{X}_k)$, where $\Delta_k = T_k T_{k-1}$, with Markov kernel \bar{Q} on $\mathbf{Z} = \mathbb{R}_+ \times \mathbf{Y}$,.

Irreducibility, aperiodicity, partial drift

Some conditions on \aleph and \mathbf{J} are required to get that

▷ the above chains are ψ -irreducible and aperiodic (by adding an artificial mark i = 0 such that J(0) = 0).

< 回 ト < 三 ト < 三 ト

Irreducibility, aperiodicity, partial drift

Some conditions on \aleph and \mathbf{J} are required to get that

- ▷ the above chains are ψ -irreducible and aperiodic (by adding an artificial mark i = 0 such that J(0) = 0).
- ▷ For all K = 1, 2, 3, ... and M > 0, all sets $\{1, ..., K\}^q \times (0, M]^p$ are petite-sets for Q.

- 本間 と えき と えき とうき

Irreducibility, aperiodicity, partial drift

Some conditions on \aleph and \mathbf{J} are required to get that

- ▷ the above chains are ψ -irreducible and aperiodic (by adding an artificial mark i = 0 such that J(0) = 0).
- ▷ For all K = 1, 2, 3, ... and M > 0, all sets $\{1, ..., K\}^q \times (0, M]^p$ are petite-sets for Q.
- ▶ we have the *partial* drift condition,

$$[\mathbf{Q}(\mathbb{1}_{\mathbb{Z}^q_+} \otimes V_{1,\gamma})](\mathbf{s}, \boldsymbol{\ell}) \leq \theta \ V_{1,\gamma}(\boldsymbol{\ell}) + b\mathbb{1}_{(0,M]^p}(\boldsymbol{\ell}) \ ,$$

where M, b > 0, $\theta \in (0, 1)$ and

$$V_{1,\gamma}(\boldsymbol{\ell}) = \mathrm{e}^{\gamma \mathbf{u}^T \boldsymbol{\ell}} ,$$

for some $\gamma > 0$ and \mathbf{u} some vector with positive entries.

・ 同 ト ・ 三 ト ・ 三 ト

Geometric ergodicity: case q = 1

Consider the case q = 1 and suppose that

```
\mathbf{J}^T (I - \aleph)^{-1} \boldsymbol{\mu}_0 < 0 \; .
```

This actually means that, would the constraints be removed, the process J would have a negative drift under the stationary distribution (and thus be eventually negative with probability 1).

Geometric ergodicity: case q = 1

Consider the case q = 1 and suppose that

```
\mathbf{J}^T (I - \aleph)^{-1} \boldsymbol{\mu}_0 < 0 \; .
```

This actually means that, would the constraints be removed, the process J would have a negative drift under the stationary distribution (and thus be eventually negative with probability 1).

Then we obtain a complete drift condition which implies that Q is $(V_{0,\gamma_0} \otimes V_{1,\gamma_1})$ -geometrically ergodic for some $\gamma_0, \gamma_1 > 0$, with

$$V_{0,\gamma_0}(s) = \mathrm{e}^{\gamma_0 s}$$

and V_{1,γ_1} defined as above.

イロト 不得 トイヨト イヨト 二日

All the usual good properties of geometrically ergodic Markov chains follow :

3

(日) (同) (三) (三)

All the usual good properties of geometrically ergodic Markov chains follow :

 \triangleright Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,

All the usual good properties of geometrically ergodic Markov chains follow :

- \triangleright Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,
- ▷ Ergodicity, central limit theorems for any continuous time processes

$$P_t = P_0 + N((0, t] \times J) = P_0 + \sum_{0 < T_k < t} J(I_k)$$

All the usual good properties of geometrically ergodic Markov chains follow :

- \triangleright Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,
- ▷ Ergodicity, central limit theorems for any continuous time processes

$$P_t = P_0 + N((0, t] \times J) = P_0 + \sum_{0 < T_k < t} J(I_k) .$$

Scaling limit (Donsker Theorem)

 $T^{-1/2} \left(P_{tT} - P_0 - tT \mathbb{E}^0[J] \right)_{t \in [0,1]} \Rightarrow \sigma(J) \ (B_t)_{t \in [0,1]} \quad \text{in } D \ , \quad (1)$

where B is the standard Brownian motion.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

All the usual good properties of geometrically ergodic Markov chains follow :

- \triangleright Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,
- ▷ Ergodicity, central limit theorems for any continuous time processes

$$P_t = P_0 + N((0, t] \times J) = P_0 + \sum_{0 < T_k < t} J(I_k)$$

Scaling limit (Donsker Theorem)

$$T^{-1/2} \left(P_{tT} - P_0 - tT \mathbb{E}^0[J] \right)_{t \in [0,1]} \Rightarrow \sigma(J) \ (B_t)_{t \in [0,1]} \quad \text{in } D \ , \quad (1)$$

where B is the standard Brownian motion.

▷ we expect $\mathbb{E}^0[J] = 0$ for the BB or BA price, and P_t behaves as a random walk at large scales.

All the usual good properties of geometrically ergodic Markov chains follow :

- \triangleright Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,
- ▷ Ergodicity, central limit theorems for any continuous time processes

$$P_t = P_0 + N((0, t] \times J) = P_0 + \sum_{0 < T_k < t} J(I_k)$$

Scaling limit (Donsker Theorem)

$$T^{-1/2} \left(P_{tT} - P_0 - tT \mathbb{E}^0[J] \right)_{t \in [0,1]} \Rightarrow \sigma(J) \ (B_t)_{t \in [0,1]} \quad \text{in } D \ , \quad (1)$$

where B is the standard Brownian motion.

- ▷ we expect $\mathbb{E}^0[J] = 0$ for the BB or BA price, and P_t behaves as a random walk at large scales.
- ▷ It is of course not the case for *S* for which $\sigma(J) = 0$.

All the usual good properties of geometrically ergodic Markov chains follow :

- ▷ Ergodicity, central limit theorems for the chains Q, \check{Q} , \bar{Q} ,
- ▷ Ergodicity, central limit theorems for any continuous time processes

$$P_t = P_0 + N((0, t] \times J) = P_0 + \sum_{0 < T_k < t} J(I_k)$$

Scaling limit (Donsker Theorem)

$$T^{-1/2} \left(P_{tT} - P_0 - tT \mathbb{E}^0[J] \right)_{t \in [0,1]} \Rightarrow \sigma(J) \ (B_t)_{t \in [0,1]} \quad \text{in } D \ , \quad (1)$$

where B is the standard Brownian motion.

- ▷ we expect $\mathbb{E}^0[J] = 0$ for the BB or BA price, and P_t behaves as a random walk at large scales.
- ▷ It is of course not the case for *S* for which $\sigma(J) = 0$.
- ▷ The result can be extended to all q ≥ 1 by recursively checking negative drifts on the chains obtained by removing an arbitrary set of constraints.

François Roueffhttp://perso.telecom-pari

Limit order books

2 Constrained Hawkes processes

3 Some applications

François Roueffhttp://perso.telecom-pari Constrained Hawkes processes

3

(日) (同) (三) (三)

Simple LOB

We use the Constrained Hawkes process to describe the dynamics of a simple LOB using the marks

- \triangleright i = 1 Best Ask price moves upward one tick,
- \triangleright i = 2 Best Ask price moves downward one tick,
- \triangleright i = 3 Best Bid price moves upward one tick,
- \triangleright i = 4 Best Bid price moves downward one tick.

In this case we have

 \triangleright p = 4, q = 1, S_t is the spread at time t.

All the parameters are estimated by numerically maximizing the likelihood.

周下 イモト イモト

Excitation and immigrant intensities for ENI.MI, over ten days, time unit = seconds

ScLOBHP, Cross-Excitation Map, ENI.MI

François Roueffhttp://perso.telecom-pari

All parameters, same data, same unit

Parameter estimation, mu0, ENI.MI

Parameter estimation, alpha, ENI.MI

Parameter estimation, beta, ENI.MI

One/two ticks events, TOTF.PA

ScLOBHP, Cross-Excitation Map, TOTF.PA

(日) (周) (三) (三)

François Roueffhttp://perso.telecom-pari

Constrained Hawkes processes

March 19, 2014 35 / 40

Cross excitation, LOB with two assets

We use the Constrained Hawkes process to describe the dynamics of a simple LOB using the marks

- $\triangleright~i=1,5$ Best Ask price moves upward one tick for asset 1,2, respectively,
- \triangleright i = 2, 6 Best Ask price moves downward one tick for asset 1,2, respectively,
- $\triangleright~i=3,7$ Best Bid price moves upward one tick for asset 1,2, respectively,
- \triangleright i = 4,8 Best Bid price moves downward one tick for asset 1,2, respectively.

In this case we have

 \triangleright p = 8, q = 2, \mathbf{S}_t contains the spreads of the two assets at time t.

- 4 同 6 4 日 6 4 日 6

Excitation and immigrant intensities for ENI.MI and TOTF.PA

ScLOBHP, Cross-Excitation Map, TOTF.PA-ENI.MI

François Roueffhttp://perso.telecom-pari

François Roueffhttp://perso.telecom-pari

 ■
 ■
 ■
 >
 Q
 Q

 March 19, 2014
 38 / 40

Back to the case q = 1, conclusion

Using the estimated parameters one can evaluate the drift appearing in the stability condition :

$$\mathbf{J}^T(I-\mathbf{\aleph})^{-1}\boldsymbol{\mu}_0$$
 .

It seems to be a good indicator of the volatility.

Back to the case q = 1, conclusion

Using the estimated parameters one can evaluate the drift appearing in the stability condition :

 $\mathbf{J}^T(I-\boldsymbol{\aleph})^{-1}\boldsymbol{\mu}_0 \ .$

It seems to be a good indicator of the volatility.

Some directions for future work

▷ Computation of the asymptotic deviation $\sigma(J)$ of the midprice appearing in (1), which seems a more sensible estimate of the volatility.

Back to the case q = 1, conclusion

Using the estimated parameters one can evaluate the drift appearing in the stability condition :

 $\mathbf{J}^T(I-\boldsymbol{\aleph})^{-1}\boldsymbol{\mu}_0 \ .$

It seems to be a good indicator of the volatility.

Some directions for future work

- ▷ Computation of the asymptotic deviation $\sigma(J)$ of the midprice appearing in (1), which seems a more sensible estimate of the volatility.
- Possible extensions to other applications for describing the dynamics of an object driven by a Point process within some boundary conditions.
Back to the case q = 1, conclusion

Using the estimated parameters one can evaluate the drift appearing in the stability condition :

 $\mathbf{J}^T(I-\boldsymbol{\aleph})^{-1}\boldsymbol{\mu}_0 \ .$

It seems to be a good indicator of the volatility.

Some directions for future work

- ▷ Computation of the asymptotic deviation $\sigma(J)$ of the midprice appearing in (1), which seems a more sensible estimate of the volatility.
- Possible extensions to other applications for describing the dynamics of an object driven by a Point process within some boundary conditions.
- ▷ Markov assumption should not be necessary.

Back to the case q = 1, conclusion

Using the estimated parameters one can evaluate the drift appearing in the stability condition :

 $\mathbf{J}^T(I-\boldsymbol{\aleph})^{-1}\boldsymbol{\mu}_0 \ .$

It seems to be a good indicator of the volatility.

Some directions for future work

- ▷ Computation of the asymptotic deviation $\sigma(J)$ of the midprice appearing in (1), which seems a more sensible estimate of the volatility.
- Possible extensions to other applications for describing the dynamics of an object driven by a Point process within some boundary conditions.
- ▷ Markov assumption should not be necessary.
- Locally stationary case (work in progress for standard Hawkes processes).

Further reading

Ban Zheng, François Roueff, and Frédéric Abergel. Modelling bid and ask prices using constrained Hawkes processes: Ergodicity and scaling limit. *SIAM J. Finan. Math.*, 5(1):99–136, February 2014. doi: 10.1137/130912980. Preprint available at [HAL] or [arXiv].

< 回 ト < 三 ト < 三 ト