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The Metropolis algorithm

Metropolis
(
π(θ), θ0, Σ, Niter)

1 for k ← 1 to Niter

2 θ ← θk−1

3 θ′ ∼ N (.|θ,Σ), u ∼ U(0,1),

4 α = π(θ′)
π(θ)

5 if u < α

6 θk ← θ′ . Accept

7 else θk ← θ . Reject

8 return (θk)k=1,...,Niter

I Under assumptions [13],

√
Niter

[
1

Niter

Niter∑
k=0

h(θk)−
∫

h (θ)π(θ)dθ

]
→ N (0, σ2

lim(h)),
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Bayesian statistics in one slide

I Statisticians recommend actions.
I When you have a joint model p(θ, x1, . . . , xn) on

I the state θ of the world
I some observable data x1, . . . , xn,

decision theory and a few axioms [24, 22] lead to picking

a = argmax

∫
L(θ, a)p(θ|x1, . . . , xn)dθ.

Common situation

I have

I a p(θ) that summarizes my beliefs on θ prior to an experiment,

I measurements x1, . . . , xn assumed to be i.i.d. from p(·|θ).

Then, I have fixed

p(θ|x1, . . . , xn) ∝ p(θ)
n∏

i=1

p(xi |θ)
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The Metropolis algorithm in Bayesian statistics
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Divide-and-conquer approaches

Principle

Divide the data into batches, run MCMC on each batch and
combine the results...

I by multiplying smooth approximations to batch posteriors
[16, 26, 21].

I asymptotically justified,
I but the MSE of resulting estimators scales exponentially with

the number of batches, even under strong simplifying
assumptions [21].

I targeting a more tractable result than the full posterior
[20, 28].

I more stable,
I but the statistical meaning of the result is unclear.

I Other techniques [15, 31], with the same advantages and
drawbacks.
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Subsampling approaches

Metropolis
(
π(θ), θ0, Niter)

1 for k ← 1 to Niter

2 θ ← θk−1

3 θ′ ∼ N (.|θ,Σ), u ∼ U(0,1),

4 α =
∏n

i=1 p(xi |θ′)p(θ′)∏n
i=1 p(xi |θ)p(θ)

5 if u < α

6 θk ← θ′ . Accept

7 else θk ← θ . Reject

8 return (θk)k=1,...,Niter

I Can we use

Λ∗t (θ, θ′) =
1

t

t∑
i=1

log

[
p(x∗i |θ′)
p(x∗i |θ)

]
?
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(
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A T-test within Metropolis?

I Metropolis is based on checking whether

Λn(θ, θ′) =
1

n

n∑
i=1

log

[
p(xi |θ′)
p(xi |θ)

]
> ψ(u, θ, θ′).

I From 1988 [10] to 2013 [17], various similar propositions using
T-tests to check whether

Λn(θ, θ′) = ψ(u, θ, θ′).

I Austerity MH [17] provides useful heuristics for machine
learning tasks.

I But for MCMC integration: hard to tune and no guarantee!
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Austerity MH on a toy example

I X ∼ N (0, 1),

I p(·|θ) = N (·|µ, σ2).
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Austerity MH on a toy example

I X ∼ LogNormal(0, 1),

I p(·|θ) = N (·|µ, σ2).
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Concentration inequalities

I Let δ > 0, θ, θ′ ∈ Θ. We can find
(
t, ct(δ)

)
such that

P(|Λ∗t (θ, θ′)− Λn(θ, θ′)| ≤ ct(δ)) ≥ 1− δ.

I For example, sampling without replacement, we prove [4]

ct(δ) = · · · ×
√

1− t/n
σ̂t√
t

+ · · · × Cθ,θ′

t
.

is valid, where Cθ,θ′ = max1≤i≤n | log p(xi |θ′)− log p(xi |θ)|.
I Assume you can compute Cθ,θ′ in o(n) time.

I Can we make the right decision with probability 1− δ?
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An adaptive choice of t

I Given θ, θ′ ∈ Θ and u ∈ [0, 1], an adaptive choice of t can
guarantee we know whether

Λn(θ, θ) > ψ(u, θ, θ′)

with probability 1− δ.

ψ Λn Λ∗
1000

2c1000(δ1)

I Taking (δt) such that ∑
t≥1

δt ≤ δ

gives the result by a union bound.
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An adaptive choice of t

I Given θ, θ′ ∈ Θ and u ∈ [0, 1], an adaptive choice of t can
guarantee we know whether

Λn(θ, θ) > ψ(u, θ, θ′)

with probability 1− δ.

b b
ψ Λn

b
Λ∗

4000

2c4000(δ3)

I Taking (δt) such that ∑
t≥1

δt ≤ δ

gives the result by a union bound.

Rémi Bardenet On MCMC for tall data 10 / 15



A control in total variation

Theorem [3]

Let P, P̃ be the ideal MH kernel and our approximate kernel,
respectively. Assume there exists m,A <∞ such that

∀θ ∈ Θ, ∀k > 0, ‖Pk(θ, ·)− π‖TV ≤ Aρbk/mc. (1)

Then there exists B <∞ and a probability distribution π̃ on
(Θ,B (Θ)) such that

∀θ ∈ Θ, ∀k > 0, ‖P̃k(θ, ·)− π̃‖TV ≤ B[1− (1− δ)m (1− ρ)]bk/mc

(2)
and π̃ satisfies

‖π − π̃‖TV ≤
Amδ

1− ρ. (3)

I P̃ inherits its ergodicity from P.

I Geometric ergodicity is also preserved [25].
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Confidence MH on a toy example

I X ∼ N (0, 1),

I p(·|θ) = N (·|µ, σ2).
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Confidence MH on a toy example

I X ∼ LogNormal(0, 1),

I p(·|θ) = N (·|µ, σ2).
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Introducing proxies as control variates

Assume you have

℘i (θ, θ
′) ≈ log p(xi |θ′)− log p(xi |θ),

then the Metropolis acceptance decision is equivalent to

1

n

n∑
i=1

[
log

p(xi |θ′)
p(xi |θ)

− ℘i (θ, θ
′)

]
> ψ(u, θ, θ′)− 1

n

n∑
i=1

℘i (θ, θ
′),

and the leading term of Bernstein’s bound now uses the std of{
log

p(x∗i |θ′)
p(x∗i |θ)

− ℘i (θ, θ
′), i = 1, . . . , t

}
.

Claim

If e.g. Taylor expansions can be used as ℘i (θ, θ
′), then the leading

term of ct(δ) can be o(n−1).
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Confidence MH with 2nd order Taylor proxy on a toy example

I X ∼ N (0, 1),

I p(·|θ) = N (·|µ, σ2).
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Confidence MH with 2nd order Taylor proxy on a toy example

I X ∼ LogNormal(0, 1),

I p(·|θ) = N (·|µ, σ2).
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Conclusion

I Lots of work on MCMC for tall data, but still mostly unsolved
from a statistician’s point of view.

I Our algorithm makes heavy assumptions, but has strong
theoretical guarantees, and can perform well with the right
control variates.

I Still, it requires keeping the whole dataset at hand.
Streaming-like solutions don’t help [5].

I We leverage cheaper optimization to help MH.

I Full survey in JMLR [6] with code for examples.
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Conclusion

To do

I Applications [11].

I Investigate the constant cost of a problem.

I Investigate generalizations of our algorithm to intractable
acceptance ratios.
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Conclusion

Other exciting stuff going on

I Other important approaches I haven’t mentioned, like
stochastic gradient Langevin descent [30], see our paper [6].

I [9, 8] propose subsampling versions of recently introduced
piecewise deterministic continuous-time Markov processes.
The gains so far are debatable [9].

I If EP-based divide-and-conquer can be theoretically
understood [12], it could become a useful building block.
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Bonus 1: A saturation phenomenon

I Toy 2D logistic regression.

I We can use 2nd order Taylor proxies in this case.
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Figure: Histograms of the number of likelihood evaluations

I We seem to have hit the sample complexity of the problem!
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Bonus 2: Can we avoid keeping the whole dataset at hand?

I Not with uniform subsampling.

I But consider linear regression

π(θ) ∝ p(θ) exp
(
−‖Xθ − Y ‖2

)
.

I Then for a suitable “fat” random p × n matrix A, and a fixed
θ, we control the error

‖AXθ − AY ‖ − ‖Xθ − Y ‖2

with high probability.

© These confidence bounds can be chained across Θ, meaning it
would be enough to store the p “super-samples” AX ,AY ,
which can even be computed for streaming data.

§ But p has to scale linearly with n to implement confidence
MH [5]. Natural proxies don’t help.
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