
Sequential Monte Carlo: introduction, recent

advances

Nicolas Chopin (ENSAE, Paris)

(partly based on joint work with Mathieu Gerber, Bristol University)

nicolas.chopin@ensae.fr

1

Motivation: Feynman-Kac models,

particle filtering

Feynman-Kac models: definition

A Feynman-Kac model is made of:

• A Markov chain in X : initial law is m0(dx0), Markov kernel at

iteration t is mt(xt−1, dxt)

• A sequence of potential functions G0 : X → R+,

Gt : X × X → R+

Aim is to compute sequentially quantities such as

Qt(ϕ) =
1

Zt
E

[
ϕ(Xt)G0(X0)

t∏
s=1

Gs(Xs−1,Xs)

]
,

with Zt = E

[
G0(X0)

t∏
s=1

Gs(Xs−1,Xs)

]
.

⇒ change of measure.

2

Feynman-Kac models: definition

A Feynman-Kac model is made of:

• A Markov chain in X : initial law is m0(dx0), Markov kernel at

iteration t is mt(xt−1, dxt)

• A sequence of potential functions G0 : X → R+,

Gt : X × X → R+

Aim is to compute sequentially quantities such as

Qt(ϕ) =
1

Zt
E

[
ϕ(Xt)G0(X0)

t∏
s=1

Gs(Xs−1,Xs)

]
,

with Zt = E

[
G0(X0)

t∏
s=1

Gs(Xs−1,Xs)

]
.

⇒ change of measure.
2

Application to rare events

Take for instance

Gt(xt−1, xt) = 1At (xt)

then Zt is the probability that the Xs ∈ As for all s ≤ t, Qt is the

dist’ of Xt conditional on Xs ∈ As for s ≤ t and so on.

3

Application to HMMs (hidden Markov models)

Imagine a model for a Markov chain (Xt) that is not observed

directly, but through

Yt = h(Xt) + noise

and let g(yt |xt) be the density of Yt conditional on Xt = xt . Then,

taking

Gt(xt−1, xt) = g(yt |xt)

turns Qt into the filtering distribution (the law of Xt conditional

on data y0:t), and Zt into the likelihood of the data (the marginal

density of y0:t).

Applications in signal processing, Ecology, neurosciences...

4

Application to HMMs (hidden Markov models)

Imagine a model for a Markov chain (Xt) that is not observed

directly, but through

Yt = h(Xt) + noise

and let g(yt |xt) be the density of Yt conditional on Xt = xt . Then,

taking

Gt(xt−1, xt) = g(yt |xt)

turns Qt into the filtering distribution (the law of Xt conditional

on data y0:t), and Zt into the likelihood of the data (the marginal

density of y0:t).

Applications in signal processing, Ecology, neurosciences...

4

Example: autonomous positioning

Vehicle moves in 2D space, acquires its speeds every Ts seconds,

and receives dy radio signals. Model is:

Yti = 10 log10

(
Pi0

‖ri − Xt‖αi

)
+ νit , i = 1, . . . , dy

Xt = Xt−1 + TsVt + Tsεt

and noise terms εt , νt are Laplace-distributed.

5

Simulated data

Ts = 1s, dy = 5 (5 emiters), αi = 0.95.

●

●

●

●

●

0

5000

10000

15000

−15000 −10000 −5000 0

Figure 1: Simulated trajectory (15 min)

Results

6

Particle Filtering: why?

For a given Feynman-Kac model, a possible approach to

approximate Qt sequentially would be (sequential) importance

sampling:

1. At time t, simulate N copies X n
t of Markov chain (Xt);

2. reweight according to function Gt .

Problem: variance of cumulative weigts:

w(xn0:t) =
t∏

s=0

Gs(xns−1, x
n
s)

increases over time (at exponential rate).

7

Particle Filtering: why?

For a given Feynman-Kac model, a possible approach to

approximate Qt sequentially would be (sequential) importance

sampling:

1. At time t, simulate N copies X n
t of Markov chain (Xt);

2. reweight according to function Gt .

Problem: variance of cumulative weigts:

w(xn0:t) =
t∏

s=0

Gs(xns−1, x
n
s)

increases over time (at exponential rate).

7

Particle Filtering: Basic idea

At time 0, use importance sampling, to go from m0(dx0) to

Q0(dx0) ∝ m0(dx0)G0(x0). We thus obtain the following

approximation of Q0:

QN
0 (dx0) =

1∑N
n=1 G0(X n

0)

N∑
n=1

G0(X n
0)δX n

0
(dx0)

To progress to time 1:

1. Choose one ‘ancestor’ X n
0 with probability ∝ G0(X n

0); call An
0

the index of the selected ancestor.

2. Simulate X n
1 ∼ m1(X

An
0

0 , dx1)

3. Reweight, with weight G1(X
An
0

0 ,X n
1)

8

Particle Filtering: Basic idea

At time 0, use importance sampling, to go from m0(dx0) to

Q0(dx0) ∝ m0(dx0)G0(x0). We thus obtain the following

approximation of Q0:

QN
0 (dx0) =

1∑N
n=1 G0(X n

0)

N∑
n=1

G0(X n
0)δX n

0
(dx0)

To progress to time 1:

1. Choose one ‘ancestor’ X n
0 with probability ∝ G0(X n

0); call An
0

the index of the selected ancestor.

2. Simulate X n
1 ∼ m1(X

An
0

0 , dx1)

3. Reweight, with weight G1(X
An
0

0 ,X n
1)

8

Particle filtering: the algorithm

Operations must be be performed for all n ∈ 1 : N.

At time 0,

(a) Generate X n
0 ∼ m0(dx0).

(b) Compute W n
0 = G0(X n

0)/
∑N

m=1 G0(Xm
0).

Recursively, for time t = 1 : T ,

(a) Generate An
t−1 ∼M(W 1:N

t−1).

(b) Generate X n
t ∼ mt(X

An
t−1

t−1 ,dxt).

(c) Compute

W n
t = Gt(X

An
t−1

t−1 ,X
n
t)/

∑N
m=1 Gt(X

Am
t−1

t−1 ,X
m
t).

9

Cartoon representation

Source: Chris Steinruecken

10

PF output

At iteration t, compute

QN
t (ϕ) =

N∑
n=1

W n
t ϕ(X n

t)

to approximate Qt(ϕ) (the filtering expectation of ϕ).

In addition, compute

ZN
t =

t∏
s=0

{
1

N

N∑
n=1

Gt(X
An
t−1

t−1 ,X
n
t)

}

as an approximation of Zt (the likelihood of the data in a HMM).

11

PF output

At iteration t, compute

QN
t (ϕ) =

N∑
n=1

W n
t ϕ(X n

t)

to approximate Qt(ϕ) (the filtering expectation of ϕ).

In addition, compute

ZN
t =

t∏
s=0

{
1

N

N∑
n=1

Gt(X
An
t−1

t−1 ,X
n
t)

}

as an approximation of Zt (the likelihood of the data in a HMM).

11

Beyond boostrap filters: guided proposals

A PF such that mt(xt−1, dxt) (the kernel used to simulate

particles) matches ft(xt−1, dxt) (the Markov kernel of (Xt) for the

considered HMM) is called a bootstrap filter. However, it is

possible, and often useful, to take mt 6= ft . Provided

Gt(xt−1, xt) =
ft(xt−1,dxt)g(yt |xt)

mt(xt−1,dxt)
,

Qt still matches the filtering distribution.

The idea is to choose mt so that the variance of Gt is as small as

possible. The ‘optimal’ choice is the distribution of Xt conditional

on Xt−1 and Yt (usually intractable).

Notice how Gt depends on both xt−1 and xt in this case.

12

Beyond boostrap filters: guided proposals

A PF such that mt(xt−1, dxt) (the kernel used to simulate

particles) matches ft(xt−1, dxt) (the Markov kernel of (Xt) for the

considered HMM) is called a bootstrap filter. However, it is

possible, and often useful, to take mt 6= ft . Provided

Gt(xt−1, xt) =
ft(xt−1,dxt)g(yt |xt)

mt(xt−1,dxt)
,

Qt still matches the filtering distribution.

The idea is to choose mt so that the variance of Gt is as small as

possible. The ‘optimal’ choice is the distribution of Xt conditional

on Xt−1 and Yt (usually intractable).

Notice how Gt depends on both xt−1 and xt in this case.

12

Beyond boostrap filters: guided proposals

A PF such that mt(xt−1, dxt) (the kernel used to simulate

particles) matches ft(xt−1, dxt) (the Markov kernel of (Xt) for the

considered HMM) is called a bootstrap filter. However, it is

possible, and often useful, to take mt 6= ft . Provided

Gt(xt−1, xt) =
ft(xt−1,dxt)g(yt |xt)

mt(xt−1,dxt)
,

Qt still matches the filtering distribution.

The idea is to choose mt so that the variance of Gt is as small as

possible. The ‘optimal’ choice is the distribution of Xt conditional

on Xt−1 and Yt (usually intractable).

Notice how Gt depends on both xt−1 and xt in this case.

12

Simple example of a guided proposal

Xt |Xt−1 = xt−1 ∼ N(xt−1, 1)

Yt = 1[0,ε](Xt)

and assume data such that yt = 1 for all t.

The bootstrap PF simulates particles from N(xt−1, 1), and kill

particles that fall outside [0, ε].

Instead, take mt(xt−1, dxt) to be N(xt−1, 1) conditional on

xt ∈ [0, ε]. Then

Gt(xt−1, xt) = Φ(ε− xt−1)− Φ(−xt−1)

and all particles fall in [0, ε].

13

Simple example of a guided proposal

Xt |Xt−1 = xt−1 ∼ N(xt−1, 1)

Yt = 1[0,ε](Xt)

and assume data such that yt = 1 for all t.

The bootstrap PF simulates particles from N(xt−1, 1), and kill

particles that fall outside [0, ε].

Instead, take mt(xt−1, dxt) to be N(xt−1, 1) conditional on

xt ∈ [0, ε]. Then

Gt(xt−1, xt) = Φ(ε− xt−1)− Φ(−xt−1)

and all particles fall in [0, ε].

13

Simple example of a guided proposal

Xt |Xt−1 = xt−1 ∼ N(xt−1, 1)

Yt = 1[0,ε](Xt)

and assume data such that yt = 1 for all t.

The bootstrap PF simulates particles from N(xt−1, 1), and kill

particles that fall outside [0, ε].

Instead, take mt(xt−1, dxt) to be N(xt−1, 1) conditional on

xt ∈ [0, ε]. Then

Gt(xt−1, xt) = Φ(ε− xt−1)− Φ(−xt−1)

and all particles fall in [0, ε].

13

Resampling

Resampling schemes: Informal definition

A resampling scheme is a randomization procedure that takes as

an input a weighted sample
{

(X n,W n)
}N
n=1

and returns as an

output resampled variables
{
XAn}N

n=1
, where An is a random index

in {1, . . . ,N}.

A good resampling scheme should be such that

1

N

N∑
n=1

δ(XAn
) ≈

N∑
n=1

W nδ(X n)

or, in words, the empirical probability measure of the resampled

variables should remain close (in some sense) to the weighted

empirical measure of the input variables.

14

Motivation: Resampling, a key element of particle filtering

It is well known that particle filters ‘collapse’ if the particles are not

resampled from time to time.

(Other applications of resampling algorithms include e.g. survey

sampling and weighted bootstrap.)

15

Most commonly used resampling methods (in PF)

• Multinomial resampling:

An = F−N (Un), n = 1, . . . ,N, FN(x) =
N∑

n=1

W nI(n ≤ x)

where {Un}Nn=1 are i.i.d. U(0, 1) random variables.

• Stratified resampling (Kitagawa, 1996):

An = F−N

(n − 1 + Un

N

)
, n = 1, . . . ,N

where {Un}Nn=1 are i.i.d. U(0, 1) random variables.

• Systematic resampling (Carpenter et al., 1999):

An = F−N

(n − 1 + U

N

)
, n = 1, . . . ,N

where U ∼ U(0, 1).

16

Inverse CDF plot

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

U(1)

U(2)

U(3)

Figure 2: Function FN(x) =
∑N

n=1 W
nI(n ≤ x)

17

Schizophrenic Monte Carlo

In practice, We use stratified/systematic (rather than multinomial)

resampling, because these schemes are (a) a bit faster, and (b)

leads to lower-variance estimates numerically. (See next slide)

In theory, we only consider multinomial resampling, as it is so

much easier to study; indeed, resampled particles are IID, from

distribution
N∑

n=1

W nδ(X n).

As a result, little is known about stratified/systematic; even wether

they are consistent or not.

18

Numerical comparison of resampling schemes

0 2 4 6 8 10
τ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TV
 d

is
ta

nc
e

multinomial
residual
stratified
systematic

Figure 3: TV distance between empirical distributions of weighted

particles, and resampled particles as a function of τ ; particles are

∼ N(0, 1), weight function is w(x) = exp(−τx2/2).

19

Consistency results for unordered

resampling schemes

Preliminaries

• We say that a resampling scheme is consistent if it preserves

weak convergence.

• Random variables (Zn)Nn=1 are negatively associated (NA) if,

for every pair of disjoint subsets I1 and I2 of {1, . . .N},

Cov
(
ϕ1

(
Zn, n ∈ I1

)
, ϕ2

(
Zn, n ∈ I2

))
≤ 0

for all coordinatewise non-decreasing functions ϕ1 and ϕ2,

such that for k ∈ {1, 2}, ϕk : R|Ik | → R and such that the

covariance is well-defined.

20

Preliminaries

• We say that a resampling scheme is consistent if it preserves

weak convergence.

• Random variables (Zn)Nn=1 are negatively associated (NA) if,

for every pair of disjoint subsets I1 and I2 of {1, . . .N},

Cov
(
ϕ1

(
Zn, n ∈ I1

)
, ϕ2

(
Zn, n ∈ I2

))
≤ 0

for all coordinatewise non-decreasing functions ϕ1 and ϕ2,

such that for k ∈ {1, 2}, ϕk : R|Ik | → R and such that the

covariance is well-defined.

20

Main result

We have a theorem that says that an unbiased resampling scheme

is consistent if the collection of variables

{
#n
ρ,z :=

N∑
m=1

I(Am = n)
}N
n=1

is negatively associated (plus other conditions).

21

Applications

From the previous theorem we deduce that the following

resampling schemes are consistent:

• Multinomial resampling (not new);

• Residual resampling (not new):

• Stratified resampling (new);

• Residual/Stratified resampling (new)

• SSP resampling (new, see next slide)

Unfortunately, the theorem does not apply to systematic

resampling.

22

Basic idea behind of SSP

Start with Y n = NW n for n = 1, . . . ,N. Take a pair, say

Y 1 = 3.7, Y 2 = 2.2.

• With probability p, increase both, by amount 0.3: then Y 1 is

4.

• With probablity (1− p), decrease both, by amount 0.2; then

Y 2 is 2.

(Choose p so that the scheme remains unbiased: p = 2/5.)

Pair the particle with a fractional weight with another particle, and

start over.

23

Very vague sketch of the proof

In a first step, we show that consistency is equivalent to a certain

condition on the set of points, when ordered through the Hilbert

curve.

In a second step, we use the NA condition to show that the same

technical condition holds whatever the order of the input points.

24

Hilbert curve

n = 1 n = 2 n = 3 n = 4 n = 5

The Hilbert curve is the limit of this sequence. Note the locality

property of the Hilbert curve: if two points are close in [0, 1], then

the the corresponding transformed points remains close in [0, 1]d .

(Source for the plot: Marc van Dongen)

25

Analysis of Hilbert-ordered

resampling schemes

Motivation: Kitagawa’s Conjecture

Using simulations, Kitagawa (1996) noticed the following.

[Kitagawa, 1996] Assume X = R (i.e. d = 1). Then, if the X n
t ’s

are ordered before the resampling, The approximation error of

stratified resampling is of size OP(N−1);

Is this true? does it generalize to d > 1?

26

Short version

• Yes.

• Use the Hilbert curve.

27

CLT

N1/2

(
N∑

n=1

W n
t ϕ(X n

t)−Qt(ϕ)

)
⇒ N (0,Vt(ϕ))

where the asymptotic variances are defined recursively:

Vt [ϕ] =
1

`2t
Ṽt [Gt {ϕ− πt(ϕ)}]

V̂t [ϕ] = Vt [ϕ] + Rt (ρ, ϕ)

Ṽt+1 [ϕ] = V̂t [Mt+1(ϕ)] + πt [Vt+1(ϕ)]

We proved that Rt(ϕ) = 0 for the Hilbert-ordered version of

stratified resampling. (It is > 0 for multinomial and residual, see C,

2004).

Note: also optimality results for the auxiliary weight function of

the APF, where the optimal function depends on the resampling

scheme.
28

Quick introduction to QMC

QMC basics

Consider the standard MC approximation

1

N

N∑
n=1

ϕ(un) ≈
ˆ
[0,1]d

ϕ(u)du

where the N vectors un are IID variables simulated from U
(
[0, 1]d

)
.

QMC replaces u1:N by a set of N points that are more evenly

distributed on the hyper-cube [0, 1]d . This idea is formalised

through the notion of discrepancy.

29

QMC basics

Consider the standard MC approximation

1

N

N∑
n=1

ϕ(un) ≈
ˆ
[0,1]d

ϕ(u)du

where the N vectors un are IID variables simulated from U
(
[0, 1]d

)
.

QMC replaces u1:N by a set of N points that are more evenly

distributed on the hyper-cube [0, 1]d . This idea is formalised

through the notion of discrepancy.

29

QMC vs MC in one plot

QMC versus MC: N = 256 points sampled independently and

uniformly in [0, 1]2 (left); QMC sequence (Sobol) in [0, 1]2 of the

same length (right)

30

Discrepancy

Koksma–Hlawka inequality:

∣∣∣∣∣ 1

N

N∑
n=1

ϕ(un)−
ˆ
[0,1]d

ϕ(u) du

∣∣∣∣∣ ≤ V (ϕ)D?(u1:N)

where V (ϕ) depends only on ϕ, and the star discrepancy is defined

as:

D?(u1:N) = sup
[0,b]

∣∣∣∣∣ 1

N

N∑
n=1

1 (un ∈ [0,b])−
d∏

i=1

bi

∣∣∣∣∣ .

There are various ways to construct point sets PN =
{

u1:N
}

so

that D?(u1:N) = O(N−1+ε).

31

Discrepancy

Koksma–Hlawka inequality:

∣∣∣∣∣ 1

N

N∑
n=1

ϕ(un)−
ˆ
[0,1]d

ϕ(u) du

∣∣∣∣∣ ≤ V (ϕ)D?(u1:N)

where V (ϕ) depends only on ϕ, and the star discrepancy is defined

as:

D?(u1:N) = sup
[0,b]

∣∣∣∣∣ 1

N

N∑
n=1

1 (un ∈ [0,b])−
d∏

i=1

bi

∣∣∣∣∣ .
There are various ways to construct point sets PN =

{
u1:N

}
so

that D?(u1:N) = O(N−1+ε).

31

SQMC

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at

iteration t as an importance sampling step from random

probability measure

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1)mt(X̃t−1,dxt) (1)

to

{same thing} × Gt(x̃t−1, xt).

Idea: use QMC instead of MC to sample N points from (1); i.e.

rewrite sampling from (1) this as a function of uniform variables,

and use low-discrepancy sequences instead.

32

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at

iteration t as an importance sampling step from random

probability measure

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1)mt(X̃t−1,dxt) (1)

to

{same thing} × Gt(x̃t−1, xt).

Idea: use QMC instead of MC to sample N points from (1); i.e.

rewrite sampling from (1) this as a function of uniform variables,

and use low-discrepancy sequences instead.

32

Intermediate step

More precisely, we are going to write the simulation from

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1)mt(X̃t−1,dxt)

as a function of un
t = (unt , v

n
t), unt ∈ [0, 1], vnt ∈ [0, 1]d , such that:

1. We will use the scalar unt to choose the ancestor X̃t−1.

2. We will use vnt to generate X n
t as

X n
t = Γt(X̃t−1, v

n
t)

where Γt is a deterministic function such that, for

vnt ∼ U [0, 1]d , Γt(X̃t−1, vnt) ∼ mt(X̃t−1, dxt).

The main problem is point 1.

33

Intermediate step

More precisely, we are going to write the simulation from

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1)mt(X̃t−1,dxt)

as a function of un
t = (unt , v

n
t), unt ∈ [0, 1], vnt ∈ [0, 1]d , such that:

1. We will use the scalar unt to choose the ancestor X̃t−1.

2. We will use vnt to generate X n
t as

X n
t = Γt(X̃t−1, v

n
t)

where Γt is a deterministic function such that, for

vnt ∼ U [0, 1]d , Γt(X̃t−1, vnt) ∼ mt(X̃t−1, dxt).

The main problem is point 1.

33

Case d = 1

Simply use the inverse transform method: X̃ n
t−1 = F̂−1(unt), where

F̂ is the empirical cdf of

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1).

34

From d = 1 to d > 1

When d > 1, we cannot use the inverse CDF method to sample

from the empirical distribution

N∑
n=1

W n
t−1δX n

t−1
(dX̃t−1).

Idea: we “project” the X n
t−1’s into [0, 1] through the (generalised)

inverse of the Hilbert curve.

35

SQMC Algorithm

At time 0,

(a) Generate a QMC point set u1:N
0 in [0, 1]d , and

compute X n
0 = Γ0(un

0). (e.g. Γ0 = F−1m0
)

(b) Compute W n
0 = G0(X n

0)/
∑N

m=1 G0(Xm
0).

Recursively, for time t = 1 : T ,

(a) Generate QMC ps u1:N
t in [0, 1]d+1; let un

t = (unt , v
n
t).

(b) Hilbert sort: find permutation σ such that

h ◦ ψ(X
σ(1)
t−1) ≤ . . . ≤ h ◦ ψ(X

σ(N)
t−1).

(c) Generate a1:Nt−1 using inverse CDF Algorithm, with

inputs sort(u1:Nt) and W
σ(1:N)
t−1 , and compute

X n
t = Γt(X

σ(ant−1)

t−1 , v
σ(n)
t). (e.g. Γt = F−1mt

)

(e) Compute W n
t ∝ Gt(X

σ(ant−1)

t−1 ,X n
t).

36

Some remarks

• Related to array-RQMC (L’Ecuyer et al, 2006): same idea of

using (T + 1) RQMC sequences of dimension d + 1, rather

than a single sequence of dimension (T + 1)d .

• Because two sort operations are performed, the complexity of

SQMC is O(N logN) (while SMC is O(N)).

• The main requirement to implement SQMC is that one may

simulate from Markov kernel mt(xt−1,dxt) by computing

Xt = Γt(Xt−1,ut), where ut ∼ U [0, 1]d , for some

deterministic function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : first

component is for selecting the parent particle, the d remaining

components is for sampling X n
t given X

ant−1

t−1 .

37

Some remarks

• Related to array-RQMC (L’Ecuyer et al, 2006): same idea of

using (T + 1) RQMC sequences of dimension d + 1, rather

than a single sequence of dimension (T + 1)d .

• Because two sort operations are performed, the complexity of

SQMC is O(N logN) (while SMC is O(N)).

• The main requirement to implement SQMC is that one may

simulate from Markov kernel mt(xt−1,dxt) by computing

Xt = Γt(Xt−1,ut), where ut ∼ U [0, 1]d , for some

deterministic function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : first

component is for selecting the parent particle, the d remaining

components is for sampling X n
t given X

ant−1

t−1 .

37

Some remarks

• Related to array-RQMC (L’Ecuyer et al, 2006): same idea of

using (T + 1) RQMC sequences of dimension d + 1, rather

than a single sequence of dimension (T + 1)d .

• Because two sort operations are performed, the complexity of

SQMC is O(N logN) (while SMC is O(N)).

• The main requirement to implement SQMC is that one may

simulate from Markov kernel mt(xt−1,dxt) by computing

Xt = Γt(Xt−1,ut), where ut ∼ U [0, 1]d , for some

deterministic function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : first

component is for selecting the parent particle, the d remaining

components is for sampling X n
t given X

ant−1

t−1 .

37

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal

likelihood Zt .

• This means we can use SQMC within the PMCMC

framework. (More precisely, we can run e.g. a PMMH

algorithm, where the likelihood of the data is computed via

SQMC instead of SMC.)

• We can develop QMC versions of particle smoothing

algorithms: forward smoothing, backward smoothing,

two-filter smoothing.

38

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal

likelihood Zt .

• This means we can use SQMC within the PMCMC

framework. (More precisely, we can run e.g. a PMMH

algorithm, where the likelihood of the data is computed via

SQMC instead of SMC.)

• We can develop QMC versions of particle smoothing

algorithms: forward smoothing, backward smoothing,

two-filter smoothing.

38

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal

likelihood Zt .

• This means we can use SQMC within the PMCMC

framework. (More precisely, we can run e.g. a PMMH

algorithm, where the likelihood of the data is computed via

SQMC instead of SMC.)

• We can develop QMC versions of particle smoothing

algorithms: forward smoothing, backward smoothing,

two-filter smoothing.

38

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal

likelihood Zt .

• This means we can use SQMC within the PMCMC

framework. (More precisely, we can run e.g. a PMMH

algorithm, where the likelihood of the data is computed via

SQMC instead of SMC.)

• We can develop QMC versions of particle smoothing

algorithms: forward smoothing, backward smoothing,

two-filter smoothing.

38

Main results

We were able to establish the following types of results: consistency

QN
t (ϕ)−Qt(ϕ)→ 0, as N → +∞

for certain functions ϕ, and rate of convergence

MSE
[
QN

t (ϕ)
]

= O(N−1)

(under technical conditions, and for certain types of RQMC point

sets).

Theory is non-standard and borrows heavily from QMC concepts.

39

Some concepts used in the proofs

Let X = [0, 1]d . Consistency results are expressed in terms of the

star norm

‖QN
t −Qt‖? = sup

[0,b]⊂[0,1)d

∣∣∣(QN
t −Qt

)
(B)
∣∣∣→ 0.

This implies consistency for bounded functions ϕ,

QN
t (ϕ)−Qt(ϕ)→ 0.

The Hilbert curve conserves discrepancy:

‖πN − π‖? → 0 ⇒ ‖πNh − πh‖? → 0

where π ∈ P([0, 1]d), h : [0, 1]d → [0, 1] is the (pseudo-)inverse of

the Hilbert curve, and πh is the image of π through π.

40

Examples

Examples: Kitagawa (d = 1)

Well known toy example (Kitagawa, 1998):

Yt = X 2
t
a + εt

Xt = b1Xt−1 + b2
Xt−1

1+X 2
t−1

+ b3 cos(b4t) + σνt

No paramater estimation (parameters are set to their true value).

We compare SQMC with SMC (based on systematic resampling)

both in terms of N, and in terms of CPU time.

41

Kitagawa (d = 1)

Log-likelihood evaluation (based on T = 100 data point and 500

independent SMC and SQMC runs).

42

Kitagawa (d = 1)

Filtering: computing E(Xt |y0:t) at each iteration t. Gain factor is

MSE(SMC)/MSE(SQMC).

43

Autonomous positioning: results

100

101

102

103

104

105

106

0 250 500 750
Time step

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

N = 28 N = 210 N = 216

0

100

200

300

400

500

600

700

800

900

0.00 0.05 0.10 0.15
CPU time in second

Figure 4: Left: Gain factor vs time (PF MSE/SQMC MSE); Right:

number of time steps such that MSE(x̂t1) > 0.01Var(xt1|y0:t), as a

function of CPU time

Model

44

Multivariate Stochastic Volatility

Model is

yt = S
1
2
t εt

Xt = µ + Φ(Xt−1 − µ) + Ψ
1
2νt

where St = diag(ext1 , . . . , extd), with correlated noise terms:

(εt ,νt) ∼ N2d(0,C).

45

Multivariate Stochastic Volatility (d = 2)

Log-likelihood evaluation (based on T = 400 data points and 200

independent runs).

46

Multivariate Stochastic Volatility (d = 2)

Log-likelihood evaluation (left) and filtering (right) as a function of

t.

47

Multivariate Stochastic Volatility (d = 4)

Log-likelihood estimation (based on T = 400 data points and 200

independent runs)

48

Multivariate Stochastic volatility: dimension comparison

Log-likelihood estimation (based on T = 400 data points and 200

independent runs)

49

Remark on dimension

Increasing the dimension has two effects:

1. The Hilbert curve is less and less smooth (See also He and

Owen, 2015)

2. The proportion of particles with non-negligible weights get

small.

We managed recently to obtain reasonable gains even for d = 10

for a multivariate linear Gaussian model (using the optimal

proposal).

50

Remark on dimension

Increasing the dimension has two effects:

1. The Hilbert curve is less and less smooth (See also He and

Owen, 2015)

2. The proportion of particles with non-negligible weights get

small.

We managed recently to obtain reasonable gains even for d = 10

for a multivariate linear Gaussian model (using the optimal

proposal).

50

Diffusion-driven SV model (d =∞)

dYt = {µP + βeXt}dt + eXt/2dBt

dX̃t = µ(X̃t)dt + ω(X̃t)dWt

where (Bt)t≥0 and (Wt)t≥0 are Brownian motions with correlation

coefficient ρ ∈ (−1, 1) and

µ(x) = κ(µ− ex)e−x − 0.5ω2e−x

ω(x) = ωe−x/2

The Yt are observed at times t = 0, 1, . . . ,T .

51

Euler Discretisation

For M ≥ 1 (with δ = M−1), let xt ∈ RM be such that:



Yt |Yt−1,Xt ∼ N1

(
Yt−1 + µP + βσ2t + ρZt , (1− ρ2)σ2t

)
Xt(1) = Xt−1(M) + δµ(Xt−1(M)) + ω(Xt−1(M))(Wt−1+δ −Wt−1)
...

Xt(M) = Xt−1(M − 1) + δµ(Xt−1(M − 1))

+ω(Xt−1(M − 1))(Wt −Wt−δ)

and

σ2t =
1

M

M∑
m=1

eXt−1(m), Zt =
M∑

m=1

eXt−1(m)
(
Wt+mδ −Wt+(m−1)δ

)
.

For this model, M = 10 is a reasonable choice (Chib et al., 2004).

52

Euler Discretisation

For M ≥ 1 (with δ = M−1), let xt ∈ RM be such that:



Yt |Yt−1,Xt ∼ N1

(
Yt−1 + µP + βσ2t + ρZt , (1− ρ2)σ2t

)
Xt(1) = Xt−1(M) + δµ(Xt−1(M)) + ω(Xt−1(M))(Wt−1+δ −Wt−1)
...

Xt(M) = Xt−1(M − 1) + δµ(Xt−1(M − 1))

+ω(Xt−1(M − 1))(Wt −Wt−δ)

and

σ2t =
1

M

M∑
m=1

eXt−1(m), Zt =
M∑

m=1

eXt−1(m)
(
Wt+mδ −Wt+(m−1)δ

)
.

For this model, M = 10 is a reasonable choice (Chib et al., 2004).
52

Resampling step collapses to d = 1

A naive application of SQMC would imply working in dimension

M = 10, in particular for the Hilbert ordering.

However, if we implement a bootstrap filter, we notice that (a) Gt

depends only on Xt ; and (b) the simulation of X̃t depends only on

Xt−1(M) (the last component of Xt−1), because process (Xt) is

Markov. Thus we can collapse the choice of the ancestor to the

choice of a scalar.

More generally, notion of effective dimension for the choice of the

ancestors.

53

Resampling step collapses to d = 1

A naive application of SQMC would imply working in dimension

M = 10, in particular for the Hilbert ordering.

However, if we implement a bootstrap filter, we notice that (a) Gt

depends only on Xt ; and (b) the simulation of X̃t depends only on

Xt−1(M) (the last component of Xt−1), because process (Xt) is

Markov. Thus we can collapse the choice of the ancestor to the

choice of a scalar.

More generally, notion of effective dimension for the choice of the

ancestors.

53

Resampling step collapses to d = 1

A naive application of SQMC would imply working in dimension

M = 10, in particular for the Hilbert ordering.

However, if we implement a bootstrap filter, we notice that (a) Gt

depends only on Xt ; and (b) the simulation of X̃t depends only on

Xt−1(M) (the last component of Xt−1), because process (Xt) is

Markov. Thus we can collapse the choice of the ancestor to the

choice of a scalar.

More generally, notion of effective dimension for the choice of the

ancestors.

53

Mutation step of SQMC: Choice of Γt

To simulate X n
t given X n

t−1(M), we must simulate the innovation

terms Wt+mδ −Wt+(m−1)δ.

• Forward approach: simulate the consecutive

W n
t+mδ −W n

t+(m−1)δ

as IID N(0, δ) variates.

• Brownian bridge: Simulate Wt+mδ (cond. on the previous

ones) in the following order: m = M, m = M/2, m = M/4,

m = 3M/4, ...

54

Mutation step of SQMC: Choice of Γt

To simulate X n
t given X n

t−1(M), we must simulate the innovation

terms Wt+mδ −Wt+(m−1)δ.

• Forward approach: simulate the consecutive

W n
t+mδ −W n

t+(m−1)δ

as IID N(0, δ) variates.

• Brownian bridge: Simulate Wt+mδ (cond. on the previous

ones) in the following order: m = M, m = M/2, m = M/4,

m = 3M/4, ...

54

Diffusion driven SV model: Simulation set-up

The parameters of the model are set to their estimated values for

the daily return data on the closing price of the S&P 500 index

from 5/5/1995 to 4/14/2003 (Chib et al., 2004).

55

Diffusion driven SV model: Simulation Results

figs_diff/SQRT_EX_10_MCvsNormal.pdffigs_diff/SQRT_EX_10_MCvsBB.pdf
.

Estimation of E[Xt |Y0:T] for t ∈ {1, . . . ,T} and for different values of N (and

based 100 independent SMC and SQMC runs). SQMC is implemented with the

forward method (left) and with the Brownian Bridge method (right).

56

Diffusion driven SV model: Simulation Results

figs_diff/SQRT_L_10_MCvsNormal.pdffigs_diff/SQRT_L_10_MCvsBB.pdf
.

Estimation of the log-likelihood for different values of N (and based 100

independent SMC and SQMC runs). SQMC is implemented with the forward

method (left) and with the Brownian Bridge method (right).

57

Conclusion

SQMC: conclusion

• Only requirement to replace SMC with SQMC is that the

simulation of X n
t |X n

t−1 may be written as a X n
t = Γt(X

n
t−1,u

n
t)

where un
t ∼ U[0, 1]d .

• impressive gains in performance (even for small N and

moderate d).

• Supporting theory.

• C++ package by Mathieu (improved), Python library coming

soon.

58

References

• Gerber, M., and C., N. Sequential quasi Monte Carlo. J. R.

Stat. Soc. Ser. B. Stat. Methodol. 77, 3 (2015), 509–579.

• Gerber, M., and C., N. Convergence of sequential

quasi-monte carlo smoothing algorithms. Bernoulli

(forthcoming), ArXiv:1506.06117.

• C., N., and Gerber, M. Application of sequential

quasi-Monte Carlo to autonomous positioning EUSIPCO

2015 proceedings, ArXiv:1503.01631.

• C., N. and Gerber, M. Sequential quasi-Monte Carlo:

Introduction for Non-Experts, Dimension Reduction,

Application to Partly Observed Diffusion Processes

MCQMC2016 proceedings (forthcoming).

• Chopin, N. and Gerber, M. and Whiteley, N. Negative

association, ordering and convergence of resampling

methods, arxiv:1707.01845.
59

	Motivation: Feynman-Kac models, particle filtering
	Resampling
	Consistency results for unordered resampling schemes
	Analysis of Hilbert-ordered resampling schemes
	Quick introduction to QMC
	SQMC
	Examples
	Conclusion

