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Recurrent issue in ML : Comparing probability distributions
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Figure 1: Many objects can be viewed as probability distributions (courtesy of M.
Cuturi)
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Optimal Transport and the Wasserstein Distance
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@ Optimal Transport : find coupling that minimizes total cost of moving
i to v whith unit cost function c

@ Constrained problem : coupling has fixed marginals
@ Minimal cost of moving 1 to v(e.g. solution of the OT problem) is
called the Wasserstein distance (it's an actual distance!)
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OT for ML problems
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Figure 2: OT gives a natural framework for distances between probability
distributions that takes geometry into account (courtesy of M. Cuturi)
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Optimal Transport

Two positive Radon measures 1 on X and v on ) of mass 1
Cost c¢(x, y) to move a unit of mass from x to y
Set of couplings with marginals 1 and v

M) 2 fr € ML(X x V) | 7(A x V) = p(A), (X x B) = u(B)}

What's the coupling that minimizes the total cost?

v \ V= Z/ g,
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Kantorovitch Formulation of OT

The optimal overall cost for transporting p to v is given by

W(u,v)= min / c(x,y)dr(x,y) (P.)
me€M(pu) Jxxy
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Kantorovitch Formulation of OT

The optimal overall cost for transporting p to v is given by

W.(p,v) = min /Xxy c(x,y)dn(x,y) + e KL(m|p ® v) (P:)

meM(u,v)
where
Ki(rlnen) [ (log (57 (6)) ~ dn(x.y)
XXy d,LLdU
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Entropy!

Basically : Adding an entropic regularization smoothes the constraint
@ Makes the problem easier :

> vyields an unconstrained dual problem
» discrete case can be solved efficiently with alternate maximizations on
the dual variables : Sinkhorn's algorithm (more on that later)

For ML applications, regularized Wasserstein is better than standard one

In high dimension, helps avoiding overfitting
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Reminder on convex duality

Primal problem:

miny f(x)

subject to  hi(x) =0 fori=1...m

Lagrange dual function:

Dual problem:
m/{axg(/\)

Under good assumptions, both problems are equivalent.
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Dual formulation of OT

W)= max /X u(x)dpa(x) + /y V)du(y) — v (uv) (D)

ueC(X),veC(y)

where the constraint set U. is defined by

Ue = {(u,v) €C(X) x C(V) ; ¥(x,y) € X x YV, u(x) + v(y) < c(x,y)}
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Dual formulation of OT (with entropy)

W)= max a0 + /y Y)Anly) — i (u,v)

and the smoothed indicator is

il e [ ea(E =L auay)
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Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This
yields :

u(x) = min c(x,y) = v(y)
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Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This
yields :

u(x) = min c(x,y) = v(y)

Plugging back in the dual :

We(ur) = max /X min (c(x, ) — v(y)) du(x) + /y V()di(y) — e

velC(Y) yey
= max Eufmin (c(ey) —vi) + [ viy)iny) <]
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This

yields :
() —etog ( [ ("= Lyany))

e
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Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This

yields :
() —etog ( [ ("= Lyany))

€
Plugging back in the dual :

We(p,v) = Jmax /X —¢log ( /y em(WMVW)) dy(y)
+ /y v(y)dv(y) —e

= max E,[—clog (/yexp(v(y)_c(x’y))>

veC(Y) €
v(y)dr —
" /y (y)du(y) — <]
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We consider 2 frameworks :

o Semi-Discrete : y is continuous and v = " 1;5y; The optimization

j
problem is
oo 00 <o) ) LS
max E.| —clog Zexp(f) +Zv(yj)1/j—5
v j=1 j=1
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We consider 2 frameworks :

o Semi-Discrete : y is continuous and v = " 1;5y; The optimization

j
problem is
oo 00 <o) ) LS
max E.| —clog Zexp(f) +Zv(yj)1/j—5
v j=1 j=1

@ Discrete : u = Z,N:l wiox; and v = ZAil vidy; The optimization

j
problem is
. N v(y) ) ) L o
max —¢lo ex J D2 + vy v, —e|
VGRM; g ; p( . ) JE_; () —e|m
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Stochastic Optimization

Computing the full gradient is

@ Hard in the semi-discrete setting (even impossible if we don't know p
explicitly)
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Stochastic Optimization

Computing the full gradient is
@ Hard in the semi-discrete setting (even impossible if we don't know p
explicitly)
@ Very costly in the discrete case since we need to compute N gradients
and sum them.
The idea of stochastic optimization is to use approximate gradients so that
each iteration is inexpensive.
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Stochastic Optimization |

e Goal : maximize H.(v) = E, [h:(X, v)] over v in RM.

Standard gradient ascent :

@ The whole gradient V, H.(v) is too costly/complicated to compute

|dea : Sample x from p and use V, h.(x, v) as a proxy for the full
gradient in the gradient ascent.
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Stochastic Optimization |l

Algorithm 1 Averaged SGD
Input: C
Output: v
v 0Oy, Vev
for k=1,2,... do
Sample x; from p

Vvt %Vvhg(xk, v)  (gradient ascent step)

V< v+ 520 (averaging)
end for

@ cost of each iteration M
o convergence rate O(1/1/(k))
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Discrete OT : Sinkhorn's Algorithm |

State-of-the-art : Sinkhorn’s Algorithm
@ Two equivalent views

» Alternate projections on the constraints of the primal
» Alternate minimizations on the dual

1
a= A

o lterates a2 & exp(¥) and b def: exp(¥) : K(bCi)V)
b= %Gom

def. _ . . . .. .
where K = exp —¢ and © is coordinatewise vector multiplication.

@ Linear convergence of the iterates to the optimizers
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Discrete OT : Sinkhorn's Algorithm 1l

Algorithm 2 Sinkhorn
Output: v

b« ]lJ

for k =1, 2 . do

end for
v < ¢log(b)

Implies matrix vector multiplications at each iteration

: cost | x J per
iteration
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Stochastic Optimization : Case of a Finite Sum |

When 1 is also a discrete measure, we are minimizing a finite sum of N
functionals :

- = oo L) — €30, )
max —¢elog g exp( Y]+ vlyj)vi—elpi
veERM £ p € ;
i=1 j=1 j=1
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Stochastic Optimization : Case of a Finite Sum I

A more efficient stochastic algorithm consists in using an average of the past
gradients as a proxy for the full gradient :

o At iteration k, an index i is drawn. Its gradient V, h.(x;, v(¥)) is

updated in the vector of partial gradients (vector with N entries kept in
memory).

@ The average gradient is updated accordingly, and used in a step of the
gradient ascent
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Stochastic Optimization : Case of a Finite Sum Il

Algorithm 3 SAG for Discrete OT
Input: C
Output: v
V%O/\/l, d %OJ, Vi,g,- %OM
for k=1,2,... do
Sample i € {1,2,...,/} uniform.
d«d- gi
g [j,;v\,/_L;(X,',v)
d«d+g;v+v+Cd
end for

@ cost of each iteration M

e convergence rate O(1/k)
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Stochastic Optimization : Case of a Finite Sum IV

= Slower convergence rate than Sinkhorn but online algorithm, better for
(very) large-scale problems
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Numerical Results for Word Mover's Distance (Discrete OT)

1-Norm of Gradient Speedup of SAG vs. Sinkhorn Deviation to Optimal Dual
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Figure 3: Results for the computation of 595 pairwise word mover’s distances
between 35 very large corpora of text, each represented as a cloud of / = 20,000
word embeddings.
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Numerical Results for Density Fitting (Semi-discrete OT)

10°
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—— SAG, N =1000
—  SAG, N = 10000

(a) SGD (b) SGD vs. SAG
Figure 4: (a) Plot of ||vi — v§l|, / ||v§]l, as a function of k, for SGD and different
values of ¢ (¢ = 0 being un-regularized). (b) Plot of |vx — v%||, /|[vZ]|, averaged
over 40 runs as a function of k, for SGD and SAG with different number N of
samples, for regularized OT using ¢ = 1072.
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Density Fitting

Observed dataset (yi, ..., yn) € X (11D assumption)
Empirical measure 7 = 1 27:1 dy,
Parametric model (ug)oco

Goal : find 6 = arg mingcg L(19, 7) where L is a loss on measures.

If we assume (1¢) has density (fy)pco problem is solved with
Maximum Likelikood Estimator

A

0 argmin— log f(y |0
0c© Z | )

Aude Genevay (CEREMADE - INRIA) Stochastic OT 25 / 38



Motivations

Basics of OT

Stochastic Optimization for OT

Generative Models

Learning Generative Models
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Figure 5: Illustration of Density Fitting on a Generative Model
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Density Fitting for Generative Models |

Stochastic Optimization for OT

Parametric model : gy = gpsC

gy : Z — X from latent space to data space

Very popular topic in ML : image generation

>

0

l.,{

/

Aude Genevay (CEREMADE - INRIA)
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Learning Generative Models

¢ reference measure on (low dimensional) latent space Z

Sampling procedure : x ~ 1y obtained by x = gy(z) were z ~ ¢
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Density Fitting for Generative Models |l

o Generative Models usually supported on low dimensional manifolds
(dim 2 < dim X)

@ g doesn't have density wrt Lebesgue measure

= MLE can’t be applied in this context!

@ 2 natural candidates emerge for £
» Maximum Mean Discrepency (based on Reproducing Kernel Hilbert
Spaces) — Hilbertian norm
» The Wasserstein Distance (based on Optimal Transport) —
Non-Hilbertian distance
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Density Fitting with Sinkhorn loss "Formally"

Define the Sinkhorn loss between two measures p, v as:

V_VC,é(:U’v V) = 2WC,€(:UJ7 V) - Wc,e(ﬂ7 N) - Wc,s(”a V)
Solve ming E(6)

def. 7

where E(0) = W (o, )

= Issue : untractable gradient
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Approximating Sinkhorn loss

@ Rather than approximating the gradient approximate the loss itself

o Minibatches : £(0)

» sample xi,...,x, from ug

» use empirical Wasserstein distance W, .(fig, ) where jig = % S O
e Use L iterations of Sinkhorn's algorithm : £(D(6)

» compute L steps of the algorithm
> use this as a proxy for W(fig, )

Aude Genevay (CEREMADE - INRIA) Stochastic OT 30 / 38



Motivations Basics of OT Stochastic Optimization for OT Learning Generative Models

Computing the Gradient in Practice

(((-Lz'yj))7-1 € ((C@K)b]l,aL)

(@ng0c0s

Zm)
]
>
N
)
|
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X

(z15-- -,

E T 0+1
Sinkhorn /(=1,..., L-1

Input data

Generative model

Figure 6: Scheme of the loss approximation

o Compute exact gradient of £(5)(6) with autodiff
@ Backpropagation through above graph
e Same computational cost as evaluation of £(1) ()
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Numerical Results : a toy example

(a) MMD (d) e = 0.01

Figure 7: Ellipses after convergence of the stochastic gradient descent with L = 20,
m = 200
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Numerical Results on MNIST (L2 cost)
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Figure 8: Samples from MNIST dataset
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Stochastic Optimization for OT

Basics of OT

Motivations

Numerical Results on MNIST (L2 cost)
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Figure 9: Manifolds in the latent space for various parameters
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Learning the cost [Li et al. '17, Bellemare et al. '17]

On complex data sets, choice of a good ground metric ¢ is not trivial

Use parametric cost function cy(x,y) = [|f3(x) — f¢(y)||§
(where f, : X = R?)

Optimization problem becomes minmax (like GANs)

mingmaxg, V_\/c¢,s (1o, v)

Same approximations but alternate between updating the cost
parameters ¢ and the measure parameters 6
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Numerical Results on CIFAR (learning the cost)

& 2N S

0 - airplane 1 - automobile 2 - bird 3-cat 4 - deer
Ve 7
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Figure 10: Samples from CIFAR dataset
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Numerical Results on CIFAR (learning the cost)

(b) e = 1000 | (c e =10

Figure 11: Samples from the generator trained on CIFAR 10 for MMD and
Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but more about
capturing a high dimensional distribution... Hard to evaluate.
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