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MCMC method

o Target law p x e~ Y¥)dx

@ Markov process (X;)t>0, ergodic with equilibrium 1, so that
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Choice for X ? Criterion ?
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MCMC method

o Target law p x e~ Y¥)dx

@ Markov process (X;)t>0, ergodic with equilibrium 1, so that
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Choice for X ? Criterion ?

@ Asymptotical variance :
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Vi (-/ F(X.)ds —/fdu> L N(0,0(F))
tJo t—o00
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MCMC method

o Target law p x e~ Y¥)dx

@ Markov process (X;)t>0, ergodic with equilibrium 1, so that

1 t

Choice for X ? Criterion ?

@ Asymptotical variance :

1 t
Vi (-/ F(X.)ds —/fdu> L N(0,0(F))
tJo t—o00
@ Speed of relaxation to equilibrium (L2,| - ||z,V, Ent...)

LX) — p

t—o00

@ self-correlation. . .
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General remarks

e Changing time (X\¢)¢>0 is cheating: discretization,
amount of alea in the system.
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General remarks

e Changing time (X\¢)¢>0 is cheating: discretization,
amount of alea in the system.

@ For any criterion, the goal is to explore efficiently the
space.

@ (And the explorer is amnesic)

@ General principle: avoid places which have already P —
been visited.

Theorem (Peskun, 73)

Let p and q two transition kernels on E (finite), irreducible,
reversible w.r.t. the same law u, and such that

Vx € E,  p(x,x) < q(x,x).

Then op(f) < oq4(f) for any test function f.
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Reversible sampling

Definition

The transition kernel p is p-reversible if for all x € E,

p(x)p(x,y) = wu(y)ply,x)

or, equivalently, denoting P = (p(x,y)), jeg2, if

L = P—1I
is self-adjoint in L?(j1)
v
o
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Reversible sampling

Definition

The transition kernel p is p-reversible if for all x € E,
p(x)p(x,y) = wuly)ply,x)
or, equivalently, denoting P = (p(x,y)), ,cg2, if
L = P—1I

is self-adjoint in L?(j1)

@ Always the possibility to backtrack.
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Reversible sampling

Definition

The transition kernel p is p-reversible if for all x € E,
p(x)p(x,y) = wuly)ply,x)
or, equivalently, denoting P = (p(x,y)), ,cg2, if
L = P—1I

is self-adjoint in L?(j1)

@ Always the possibility to backtrack.

o Diffusive behaviour : N? step to cover a distance N.
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A spectral argument

In continuous time,
Ec (X))~ [ fdu = (et = pf.
Reversible case = L self-adjoint in L2(1) = ON eigenbasis, and
(G p—

le™ — plli2(y = sup
() £-£0 1]

with Ay = mino(—L) \ {0}.
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A spectral argument

In continuous time,
Ec (X))~ [ fdu = (et = pf.

Reversible case = L self-adjoint in L2(1) = ON eigenbasis, and
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le — ullagy = sup &ML pon
S S ]
with A; = mino(—L) \ {0}. Setting L = L + L’ with L’ anti-adjoint,

0. (I¢eT - wf?)
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Advantages of reversibility

@ Metropolis-Hastings : given a kernel g, define a u-reversible kernel, by
accepting a new proposal y of law g(x,y) with probability

w(y)aly,x)

M 0atay)

@ Theoric study : spectral tools, functional inequalities, ellipticity for
diffusions. . .
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© Lifted chains and kinetic jump processes
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An order 2 chain

Diaconis et al. (2000, 2009): for the uniform law on {1,..., N},

P (Xn+1 - Xn = Xn - Xn—l) =

IED()<n+1 - Xn = - (Xn - anl)) =
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An order 2 chain

Diaconis et al. (2000, 2009): for the uniform law on {1,..., N},

]P)(Xn—i—l - Xn = Xn - Xn—l) =

IP)()<n—|—1 - Xn = _(Xn - Xn—l)) =
|\ —

Yn

1+«
2

l—«o
2

Alone, (X,)n>0 not Markov, but (X,, X,—1) is, or (Xp, Y5).

l1+a

IED(Yn—+-1:Yn) = 5
11—«

P(Yn+1:—yn) = 2

Xn+1 = Xn+Yn+1
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An order 2 chain

Diaconis et al. (2000, 2009): for the uniform law on {1,..., N},

]P)(Xn—i—l - Xn = Xn - Xn—l) =

IP)()<n—|—1 - Xn = _(Xn - Xn—l)) =
—_———

Yn

14+«
2

11—«
2

Alone, (X,)n>0 not Markov, but (X,, X,—1) is, or (Xp, Y5).

l1+a

P(Yn+1:Yn) = 5
11—«

P(Yn+1:—yn) = 2

Xn+1 = Xn+Yn+1

Reversible walk : o = 0. Optimal speed for a = apr > 0.
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Spectral study, nevertheless

The spectrum is no more real. If @ is the transition matrix,

M= 1-sup{R(), v € a(Q)\ {1}}
= —sup{R(), v € o(Q 1)\ {0}}

1—sin(
1+sin(

)

For aopt =

=3z

™

R R T
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Spectral study, nevertheless

The spectrum is no more real. If @ is the transition matrix,

M= 1—sup{R(), v € o(Q)\ {1}}
= —sup{R(), v € o(Q 1)\ {0}}

1—sin( &

R R T

For the symetric walk,

s
)\]_ = 1—COSN ~ W

To mix, O(N?) steps were needed, now only O(N) (N.B. : the
deterministic computation of an in integral is N step).
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Scaling limit

Limit N — oo, with a rate of order N and 1_70‘ of order % :

e (X,Y) a Markov process, where X € T and Y = +1
e dX; = Yidt (kinetic process)

@ Y jumps to —Y with rate a > 0 (piecewise deterministic)

Pierre Monmarché Non reversible sampling 01/12/2017 12 /28
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Limit N — oo, with a rate of order N and 1_70‘ of order % :
e (X,Y) a Markov process, where X € T and Y = +1
e dX; = Yidt (kinetic process)
@ Y jumps to —Y with rate a > 0 (piecewise deterministic)

Uniform equilibrium g, generator

Lf(X,y) = yaxf(x,y)—i—a(f(x, _y) - f(X7y))

Again, spectral study, for instance for agp: =1 :

_ 2
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Scaling limit

Limit N — oo, with a rate of order N and 1_70‘ of order % :
e (X,Y) a Markov process, where X € T and Y = +1
e dX; = Yidt (kinetic process)
@ Y jumps to —Y with rate a > 0 (piecewise deterministic)

Uniform equilibrium g, generator

Lf(X,y) = yaxf(x,y)—i—a(f(x, _y) - f(X7y))

Again, spectral study, for instance for agp: =1 :

2
IPe—pl = et 14—t ~ 2pet
1+%_1t4)00

t
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Piecewise deterministic MCMC

Kinetic jump processes:
(X, Y) Markov on R? x E with E Cc RY.
dX = Ydt.

Y piecewise constant, jumps at random times.

At equilibrium, X ~ p.
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Piecewise deterministic MCMC

Kinetic jump processes:
e (X, Y) Markov on RY x E with E C RY.
e dX = Ydt.
@ Y piecewise constant, jumps at random times.
o At equilibrium, X ~ p.
Two things to chose:

@ The jump rate A(x,y), which defines the next jump time by
t
T - inf{t>o, Eg/ A(XG, Ys)ds}, otl E ~ £(1).
0

@ The jump kernel Q(x,y), so that Y7 ~ Q(X1, YT-).
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Recent years (re)discovery

o Peters, de With (2012, Rejection-free Metropolis Hastings, y € RY
gaussian; event-driven MC in physic litterature, Michel, Kapfer,
Krauth 2013 by ex.), Bouchard-Cété, Vollmer, Doucet (2016, 2017,
bouncy particle sampler)

e Fontbona, Guérin, Malrieu (2012, 2016, integrated telegraph process)

e Calvez, Raoul, Schmeiser (2016, run-and-tumble process, bacterium
chemotaxis, non-explicit equilibrium, y € [—1,1]).

o Bierkens, Fearnhead, Roberts (2016, Zig-zag process, y € {—1,+1}9)

e Miclo, M. (2012, Volte-Face, 2013, 2016)
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The bouncy particle sampler

Jump rate A(x,y) = (y - VxU(x))+ ; since y = X/,

t
/ AXs, Ys)ds = U(Xy) — U(Xo)  when going up
0

=0 when going down

Pierre Monmarché Non reversible sampling 01/12/2017 15 / 28



The bouncy particle sampler

Jump rate A(x,y) = (y - VxU(x))+ ; since y = X/,

t
/ AXs, Ys)ds = U(Xy) — U(Xo)  when going up
0

=0 when going down
e
01/12/2017

15 / 28



The bouncy particle sampler

Jump rate A(x,y) = (y - VxU(x))+ ; since y = X/,

t
/ AXs, Ys)ds = U(Xy) — U(Xo)  when going up
0

=0 when going down
e
01/12/2017

15 / 28



The bouncy particle sampler

Jump rate A(x,y) = (y - VxU(x))+ ; since y = X/,

t
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The Bouncy Particle Sampler

Jump kernel Q(x,y) = d,+ with

Y VUK

=Y EGgR Y Y

U = cst
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The Bouncy Particle Sampler

Jump kernel Q(x,y) = d,+ with

Y VUK

=Y EGgR Y Y

U = cst

Not necessarily ergodic = velocity refreshment at constant rate.
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The bouncy particle sampler

Finally,

Lf(Xay) = yvxf(x7y) + (y : VU(X))-i- (f(X,y*) - f(Xay))
+r </Sd—1 f(x,z)dz — f(x,y))
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Lf(Xay) = yvxf(x?y) + (y : VU(X))-i- (f(X?y*) - f(X7Y))
+r </Sd—1 f(x,z)dz — f(x,y))

e Ergodic with equilibrium ;= e~ Ydxdy.

@ Non-reversible, kinetic (y = inertia = short-term memory)

Pierre Monmarché Non reversible sampling 01/12/2017 17 / 28



The bouncy particle sampler

Finally,
Lf(Xay) = yvxf(x?y) + (y : VU(X))-i- (f(X?y*) - f(X7Y))
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The bouncy particle sampler

Finally,
Lf(Xay) = yvxf(x?y) + (y : VU(X))-i- (f(X?y*) - f(X7Y))
+r </Sd—1 f(x,z)dz — f(x,y))

e Ergodic with equilibrium ;= e~ Ydxdy.

@ Non-reversible, kinetic (y = inertia = short-term memory)

o Piecewise deterministic Markov process (PDMP) : exat simulation
(thining).

o ("Physical”, trajectoral reversibility)
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Some recent questions

Empirical studies (choice of the jump rate, of the law of the velocity,
of the deterministic flow).

Adapting existing methods (subsampling, control variates. . .).
e Irreducibility without refreshment (for the Zig-Zag).
@ Geometric ergodicity and CLT.

o Diffusive limits.
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Some recent questions

Empirical studies (choice of the jump rate, of the law of the velocity,
of the deterministic flow).

Adapting existing methods (subsampling, control variates. . .).
@ Irreducibility without refreshment (for the Zig-Zag).
@ Geometric ergodicity and CLT.

o Diffusive limits.

Not easy to compare different dynamics (dimension 1...)
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Metastability

Replace U by %U.

Theorem (Eyring-Kramers formula, M. 2016)
In dimension 1, let T = inf{s > 0, Xs = x1}. Then

[ 8me  Uba)-Ulx)
E[T] 0 —U”(Xo)e €

P(r>tElr]) — e
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Metastability

Replace U by %U.

Theorem (Eyring-Kramers formula, M. 2016)
In dimension 1, let T = inf{s > 0, Xs = x1}. Then

[ 8me  ULa)-UCxq)
E[T] 0 —U”(Xo)e €

P(r>tE[r]) — e

With a temperature scheme (g¢)¢>0, NSC for annealing (same as
reversible) ; SC in dimension d (same).

Pierre Monmarché
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© Non-reversible diffusions
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Non-reversible diffusions
@ Fokker-Planck (or overdamped Langevin) diffusion, reversible :
dX; = —VU(X:)+ V2dB:,

with invariant measure e~ Y.
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Non-reversible diffusions
@ Fokker-Planck (or overdamped Langevin) diffusion, reversible :
dX; = —VU(X:)+ V2dB:,

with invariant measure e~ Y.

o Still the case, if V- (be‘U) =0 (ex: b= AVU), for

dX; = —VU(X:)+ b(X;)dt + V2dB;

(Hwang, Hwang-Ma, Sheu 05) and improved spectral gap.
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Non-reversible diffusions
o Fokker-Planck (or overdamped Langevin) diffusion, reversible :
dX; = —VU(X:)+ V2dB;,

with invariant measure e~ Y.

o Still the case, if V- (be‘U) =0 (ex: b= AVU), for

dX; = —VU(X:)+ b(X;)dt + V2dB;

(Hwang, Hwang-Ma, Sheu 05) and improved spectral gap.

e Kinetic Langevin diffusion (inertia),

dXt - Yt
dYt = —VU(Xt) — ’yyt + 2"}/dBt,

with equilibrium e=", H(x,y) = U(x) + |y/|*.
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Some questions

@ Empirical studies.

Scaling limit (large dimension) of a Metropolized discretization.
@ Non-reversible discretization.

@ Metastability and annealing.
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Some questions

@ Empirical studies.

Scaling limit (large dimension) of a Metropolized discretization.
@ Non-reversible discretization.

@ Metastability and annealing.

Again, hard to compare dynamics and to tune parameters.
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The Gaussian case

For A a matrix and D a positive one, let

dXt -

AXdt + V2DdB:;.

o = = £ DA
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The Gaussian case

For A a matrix and D a positive one, let
dX; = AXudt+ v2DdB;.

Question:
@ A target equilibrium p(x) o< exp (—%x . Sx) being fixed,

@ The amount of randomness Tr(D) =Tr(/) = d being fixed (Gadat,
Miclo 2012),

= Find A and D which maximizes the speed of £L(X;) — .
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Explicit hypocoercive speed
Set :
o p = p(A) = —sup{R(v), v € o(A)}
o N the dimension of the largest Jordan block of A with {R(v) = —p}

@ M the number of Lie brackets necessary to satisfy Hérmander's
condition, equivalent here to

M
> AKD(AT)E > 0.
k=0
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Explicit hypocoercive speed
Set :

o p = p(A) = —sup{R(v), v € o(A)}
o N the dimension of the largest Jordan block of A with {R(v) = —p}

@ M the number of Lie brackets necessary to satisfy Hérmander's
condition, equivalent here to

M
> AKD(AT)E > 0.
k=0

Theorem (Arnold, Erb 2014, M. 2015)
There exist ¢,k > 0 such that
_(1+ t2(N71))ef2pt < HetL _M”Z < C(1+ t2(N71))ef2pt
c
and

”etL _ N||2 < e—xt(l—e_f)QM ~ 1— g2M+1
t—0

v

01/12/2017 24 /28
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Hypoelliptic diffusion

For a covariance matrix S, denote

Z(S) ={(A,D),AST'+STAT = —2Det TrD < d}.
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Hypoelliptic diffusion

For a covariance matrix S, denote

Z(S) ={(A,D),AS"' +ST'AT = —2Det TrD < d}.

Theorem (Lelievre, Nier, Pavliotis, 2012 ; Guillin, M. 2016)

p(=S) = mino(S)

. TS
I(sl)rjf):/p (A) = N
: N
I(S),Ir?\fersiblep(A) - Trs 1
Il?sf)p(A) = maxo(S)
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Hypoelliptic diffusion

For a covariance matrix S, denote

Z(S) ={(A,D),AS"' +ST'AT = —2Det TrD < d}.

Theorem (Lelievre, Nier, Pavliotis, 2012 ; Guillin, M. 2016)

p(=S) = mino(S)
TrS
inf A = —
I(SI)FTD:IP( ) N
N
inf A = ——
I(S),Ir?versiblep( ) TrS-1
inf p(A) = S
II?S)p( ) max o(S)
No improvement when S is an homothety.
01/12/2017 25 /28



Highly degenerated diffusion
The Brownian noise is concentrated on a single coordinate: slow
regularization,

”etLopt - MH2 < Ce max o (S)t

with an horrible C.
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Highly degenerated diffusion

The Brownian noise is concentrated on a single coordinate: slow
regularization,

”etLopt - ILLH2 < Ce max o (S)t

with an horrible C.

Theorem (Guillin, M. 2016)

One can construct (A, D) € Z(S) with \/ T{AT A) < 4d? "r‘]flﬁ‘;((?; and

1

(t—to)La,p stoL—s,;
le y tomino(S)

e—(t—to) max o (S) )

—pll <

The bound is optimal for t;* = max o(S), which yields

He(t_tO)LA’DetoL_S”— “ < maxa(S) 1—tmaxo(S)

min o(S)

V.
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The kinetic case

{ dXt = Ytdt

dY:y = —vSXidt— LYidt+2dB;

Choice for the variance v ? If X is an eigenvalue of S,

ro= % <1i\/1—4)\y3)

. — 0 I
are eigenvalues of A = (—VS _}/,)
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The kinetic case

dXt = Ytdt
dY:y = —vSXidt— LYidt+2dB;

Choice for the variance v ? If X is an eigenvalue of S,

ro= % <1i\/1—4)\y3)

are eigenvalues of A = ( 0 ! )

-vS -1
= p(A) ~ L and (A) ~ v?>mina(S)
P S 20 P =0
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The kinetic case

dXt = Ytdt
dY:y = —vSXidt— LYidt+2dB;

Choice for the variance v ? If X is an eigenvalue of S,

PR (1+V1-2n3)
2v
. 0 /
are eigenvalues of A = S 1y
= p(A) ~ L and  p(A) ~ v*ming(S)
v—oo QU v—0

The truth lies in the middle... If S = A/, the optimal rate is ()/2)3,

1 1
A2)3 > A\ & A< —~07
(A/2) 7
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Conclusions

Non-reversible sampling :
@ Not exhaustive presentation.
@ Empirically, it seems to work, sometimes.

@ Theoretically, we are sometimes able to prove that it is not less
efficient than reversible processes.

@ Not always theoretical means to compare dynamics or tune parameters

@ ... except for some toy models (uniform law, Gaussian, dimension 1)
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On the other hand, we hadn't better result for reversible processes, to
start with.

Inertia and short-term memory: compatible with long-term memory
(non Markov) or global (particles) strategies.

Thanks for your attention!
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