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Corners of random matrices and GFF

Theorem  As       
Unscaled fluctuations
Gaussian (massless)
Free Field on        with
zero boundary conditions

Gaussianity follows from (more general) results of [Guionnet '02]

GFF structure for GUE follows from [B-Ferrari, 2008], for GUE/GOE type 
Wigner matrices GFF fluctuations are proved in [B, 2010]       Why GFF?



spectra height 
function

liquid region 

      



   2d Gaussian Free Field
2d GFF (with zero boundary conditions) on a domain 
is a (conformally invariant) random generalized function:

where
with zero boundary conditions,      is the corresp. 
eigenvalue, and        are i.i.d. standard Gaussians.
Other definitions:
GFF is a Gaussian process on     with Green's function of the Laplacian 
as the covariance kernel  

are the eigenfunctions of on

1d analog: Brownian Bridge

      



Uniform lozenge tilings and GFF

Theorem  As mesh goes to zero,       
Fluctuations of height
Gaussian Free Field on        with
zero boundary conditions

[Kenyon '01+] conjectured for general lattices/domains, proved for 
lozenge tilings without facets in the limit shape. 



Proved by [Petrov '12] for polygons of specific form.

larger liquid  
region

      



From tilings to spectra

[Okounkov-Reshetikhin '06]:
GUE corners process should
arise near every tangency point 
of the limit shape.

Explanation: The limit of the 
tiling measure must be Gibbs
(uniform, given boundary conditions), [Olshanski-Vershik '96]
classifed all such, among them only GUE corners fit the bill.

The Gibbs property was used by [Gorin '13] to prove convergence of the 6-vertex 
model with domain wall boundary conditions to the GUE corners process.

      



Another explantion: semi-classical limit

Branching of irreps of unitary groups is encoded by lozenge tilings.
In terms of characters (Schur polynomials):

where      interlaces     :                                . 
Branching all the way down U(N)    U(N-1)    . . .    U(2)   U(1)

An example:

Large representations of Lie group behave as group-invariant measures on 
(dual to) the Lie algebra. Hence, tilings converge to random matrices.

      



Markov evolution of random matrices and GFF

For GOE/GUE, consider 
Dyson Brownian Motion:
Each matrix element    
executes 1d stationary 
Ornstein-Uhlenbeck process. 

Theorem [B '10] Under the same identification of the liquid region with the  
upper half-plane at each time moment, the height fluctuations converge to  
a 3d generalized Gaussian process with the covariance kernel on

Conceptual 
meaning?

      



Markov evolution of random tilings and GFF
We focus on the simplest nontrivial example, which is a limit of 
uniform lozenge tilings of hexagons (can also be done for hexagons):

The resulting random tiling of a sector in the plane can be 
stochastically grown starting from a frozen configuration,
with t serving as time. 
      



An integrable random growth model [B-Ferrari '08]

Consider the `empty' initial condition

Place particles in centers of `vertical' lozenges.

      



An integrable random growth model 

Consider the `empty' initial condition

Imagine that particles have weights that decrease upwards.

      



An integrable random growth model 

Each particle jumps to the right independently with rate 1. 
It is blocked by heavier particles and it pushes lighter particles.

In 3d, this can be viewed as adding directed columns

Column deposition - Animation

      



An integrable random growth model 

Each particle jumps to the right independently with rate 1. 
It is blocked by heavier particles and it pushes lighter particles.

Left-most particles form TASEP

Right-most particles form PushTASEP

Large time (diffusive) limit of the evolution of n particles on

the n-th horizontal level is Dyson’s Brownian motion for GUE

      



Large time behaviour

In the hydrodynamic scaling, a deterministic•

limit shape arises. It is described by                .
The models belong to the anisotropic KPZ•

universality class associated with the (formal) 
equation
One-point fluctuations in the bulk are Gaussian  
with log(t) variance (predicted in [Wolf '91])

•

Unscaled multi-point fluctuations at fixed time
are described by 2d GFF.

•

What about time dependent fluctuation structure?
      



Space-time fluctuations
To see fixed time GFF, one constructs 
the map      that sends 3d space-time
to     . Its level curves are the
characteristics of the hydrodynamic
equation                  .

Slow decorrelation conjecture
claims that along characteristics fluctuations vary much slower. It agrees 
with established fluctuations on space-like surfaces [B-Ferrari '08]. It is 
also supported by numerics and results for (1+1)d KPZ models. 

If true, it would imply that the fluctuations are different from 
Dyson Brownian Motion (despite agreeing on space-like surfaces).

  

      



The tiling analog of the Dyson Brownian Motion is a Quantum Random 
Walk on U(N) [Biane '90], that consists in tensoring with a fixed 
representation of a unitary group. It is non-Markovian on full tilings, 
but its fluctuations should coincide with DBM [Kuan, in progress].

The random matrix limit of the Markov dynamics 
on tilings described above is Warren's process
[Warren '05], proved by [Gorin-Shkolnikov '12].
It consists of a triangular array of 1d BMs with 
the level N ones reflecting off those on level (N-1).  
Its fluctuations should be as for tiling dynamics.   

      



Submatrices of random matrices and GFF

Theorem [B '10] Under the same map of spectra of GOE/GUE/Wigner 
submatrices to the height function on    , its fluctuations converge to a
generalized Gaussian process with the covariance kernel on

Conceptual 
meaning?

Consider sequences 
of distinct natural numbers. 
Define

The tiling analog is harder to see but it is very natural.

      



A commutative C*-algebra with a state (positive linear functional)
can be viewed as          for an abstract probability space         . 
For representations of U(N), Gelfand-Tsetlin subalgebra generated 
by centers of          ,                                               , with 
trace is realized as poly functions on corresponding uniform tilings. 

U(N)    U(N-1)    . . .    U(2)   U(1) 

Given a sequence                  
take Gelfand-Tsetlin algebra of 
For different sequences, they form a 
noncommutative probability space, but in the global scaling the 
limit is the same as for random matrices [B-Bufetov '12]. 
This can be viewed as a step towards fluctuation theory for representations.

      



General beta random matrices (log-gas) and GFF

We focus on the general beta Jacobi ensembles

The Laguerre/Wishart and Hermite/Gaussian cases can be 
obtained via straightforward limit transitions. 

What is the 2d object (corners process)?
(Tridiagonal general beta matrix models do not help.)

      



General beta Jacobi corners process

There exists a natural construction of 2d extension.

Motivation: 1. Dixon-Anderson two-level Selberg type integrals.
2. Extrapolating off radial parts of Haar/Gaussian measures on  
symmetric spaces (e.g. eigenvalues of  XX*/(XX*+YY*)).              

      



height 
function

liquid region 

Theorem [B-Gorin '13] As          , the fluctuations of the height function 
converge to the GFF on       with zero boundary conditions.

      



Related results for general beta ensembles

[Johansson '98] proved single level CLT for the Hermite/Gaussian 
and much more general convex potentials.

•

[Spohn '98] found GFF in the limit of the circular Dyson 
Brownian Motion. 

•

[Israelsson '01], [Bender '08], [Anderson-Guionnet-Zeitouni '10]
proved multi-time CLT for DBM on the real line (GFF not ID'd).

•

[Dumitriu-Paquette '12] proved single level CLT in our setting.•

[Edelman '13+] conjecturally has a (not tridiagonal) matrix model•

for our corner processes.

Our approach originates from Macdonald processes [B-Corwin '11].

      



Macdonald polynomials

   Hall-Littlewood poly's

   Jack polynomials
Eigenfunctions for Calogero-Sutherland
  Spherical functions for Riemannian  

q-Whittaker poly's
q-deformed quantum Toda lattice
Representations of

Whittaker functions
Eigenfunctions for quantum Toda lattice
Representations of GL(n,R) 

            Schur polynomials
Characters of symmetric and unitary groups

Monomial symmetric poly's
(simplest symmetric poly's)

Spherical functions for p-adic GL(n)

Eigenfunctions for Ruijsenaars-Macdonald system
Representations of Double Affine Hecke Algebras

symmetric spaces over R, C, H

      



Macdonald processes
Ruijsenaars-Macdonald system
Representations of Double Affine Hecke Algebras

Hall-Littlewood processes
Random matrices over finite fields
Spherical functions for p-adic groups

General
Random matrices over 
Calogero-Sutherland, Jack polynomials
Spherical functions for Riem. symm. sp.

RMT 

q-Whittaker processes
q-TASEP, 2d dynamics
q-deformed quantum Toda lattice
Representations of

Whittaker processes
Directed polymers and their hierarchies
Quantum Toda lattice, repr. of

             Schur processes
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE
  Characters of symmetric, unitary groups

Kingman partition structures
Cycles of random permutations
Poisson-Dirichlet distributions

      



Summary

The two-dimensional Gaussian Free Field appears to be a 
universal and unifying object for global fluctuations of spectra 
of random matrices and random tilings, `explaining' previously 
known single level 1d Gaussian processes.



Natural probabilitistic extensions lead to Gaussian processes on 
larger spaces, with extra coordinates being time and/or 
different flags/commutative subalgebras. Those appear to be 
universal as well, but their conceptual understanding is missing. 

•

      


