Spectral theory for the g-Boson particle system
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A physicist's guide to solving the Kardar-Parisi-Zhang equation
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1. Think of the Cole-Hopft transform instead: Z- eV solves the SHE
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2. Look at the moments (z(tx)-Z(tx)> . They are solutions of the
quantuw\ delta Bose gas evolutiom [Kardar '8 7], [Molchanov '8 7].
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3. Use Bethe ansatz to solve it [Lleb—Lmlger '63], [McGuire '64],
[Yang '67-638].
4. Reconstruct the solution using the known moments:

The replica trick.



Possible mathematician's interpretation. Be wise - discretize!

1. Start with a good discrete system that formally converges to
KPZ. This should give a solution that we ought to care about.

2. Find “moments' that would solve an integrable autonomous

system of equations.

3. Reduce it to a direct sum of 1d eq's + boundary cond's and

use Bethe ansatz to solve it, for arbitrary initial conditions.

4. Reconstruct the solution using the known “moments' and take

the limit to KPZ/SHE.
We can do 1-3 for two systems, g-TASEP and ASEP.

So far we can do 4 only for very special initial conditions.



q-TASEP [B-Corwin '11]

Patricles jump by one to the right. T R A
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where “gap' is the number of empty spots ahead.

Theorem [B-Corwin '11], [B-C-Sasamoto '12], |B-C-Gorin-Shakirov '13]
For the q-TASEP with step initial data {x,(c)=-n} g
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The original proof involved Macdonald processes. A simpler one?



q-Boson stochastic particle system [Sasamoto-Wadati ‘98]
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Proposition [B-Corwin-Sasamoto '12] For a q-TASEP with finitely many
particles on the right, { (i) [E[ﬂ 4" ") is the umque solution of

T ﬁ(‘c,n) = H‘F (¢, 1) : —f(o) )= lE[ I q/InJ(OHV\J

q-TASEP and g-Boson particle system are dual with respect to f.
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q-TASEP gaps also evolve as a qg-Boson particle system.
Solving g-Boson system means finding q-TASEP g-moments.



Coordinate integrability of the g-Boson system
The generator of k free (distant) particles is
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Proposition [B-Corwin-Sasamoto '12] If w:Z<R,— C satisfies the free
evolution equation j,c w=<u and boundary Condltlons then its restriction

to {n,»..2n,} satisfies the g-Boson system evolution equation d‘i U= Hu
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Algebraic integrability of the g-Boson system

[Sasamoto-Wadati 'a8] showed that periodic H is the image of a

q-Boson Hamiltonian Jon algebro -
M
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and that H arises from the monodromy matrix of a quantum

integrable system with trigometric R-matrix, same as in XXZ/ASEP.

Actually, ASEP has a parallel story.



The ASEP story (briefly)
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The dual of ASEP is another ASEP [Scb\utz '‘a7], which is also integrable in
both coordinate and algebraic sense. [Tracy-Widom '08+] used Bethe ansatz
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approach to study ASEP's transition probabilities.



PT-invariance
To be able to solve g-Boson system (thus g-TASEP) for general

initial conditions, we want to diagonalize H.

[t is not self-adjoint, but PT-invariance (under joint space

reflection and time inversion) effectively replaces self-adjointness:

Let m be an invariant product measure J
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Coordinate Bethe ansatz [Bethe '31]
(Algebraic) e:gemfumctloms for a sum of 1d opemtors
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No quantization of spectrum (Bethe equations) in infinite volume.



Left and right eigenfunctions

For g-Boson gen. (Hf)®)=2>_(1-47)($(1, ..)-{®) that reduces to
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Direct and inverse Fourier type transforms
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Contour deformations

Inverse transform: ﬂ -. t’/k—» N -
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Plancherel isomorphism theorem

k
Theorem |[B-Corwin-Petrov-Sasamoto '13] On spaces W . and €,
operators J- and !/ are mutual inverses of each other.
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This diagonalizes the generator of the g-Boson stochastic system
and proves completeness of the Bethe ansatz for it.



Back to the g-Boson particle system

Corollary The (unique) solution of the g-Boson evolution equation
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The computation of T4, can still be difficult. It is, however,
automatic if £,-TJG6=>FL -FIG-G.
In the case of q-TASEP's step initial condition
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Half-equilibrium initial condition
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For g-TASEP, we define SEL RIS A RIS A =
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Large time asymptotics of g-TASEP and KPZ in [B-Corwin-Ferrari '12].
Extension to equilibrium:[lmamura-Sasamoto '12] via replica, [BCF-Veto '14]



Other systems

1. A very similar story takes place for ASEP/XXZ in infinite volume
[B-Corwin-Petrov-Sasamoto '14]. Analogous results are
contained in [Babbitt-Thomas '77] for SSEP/XXX, [Babbitt-

Gutkin 'a0], yet complete proofs seem to be inaccessible.

2. Our Plancherel theorem nontrivially degenerates to two different
discrete versions of the delta Bose gas (one of them was treated
by [Van Diejen '04], [Macdonald '71]), and further down to the
standard continuous delta Bose gas (where we recover results of
[Yang '68], [Oxford '74], [Heckman-Opdam ' 7]).

Different degenerations require different form of J !



Degenerations of wave functions
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Noncommutative harmonic analysis
Plancherel theorems often ride on top of noncommutative

harmonic analysis statements via imposing additional symmetry.

A classical example [Frobenius, 1896] Let K be a finite group.
Its double G=KxK acts on L= (K) by left and right argument shifts:
((8,M° F)(x)= F(«g‘x&)

Decomposition on irreducibles has the form

F(K)=£D eI
Jie Tre(k)
For functions that are inv. wrt conjugation this gives Plancherel:
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Harmonic analysis on symmetric spaces

For a Lie group G and. its subgroup K, G acts in L*(G/K). Plancherel
theorem for K-inv functions captures the decomposition on irreps

of G and diagonalizes K-invariant part of the Laplacian on G/K.

G=SO(3), K=SO(2), G/K=S*
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For real semi-simple G and maximal compact K, this is the celebrated
theory of [Gelfand-Naimark, 1946+] and [Harish-Chandra, 194 7+].



In the case of the continuous delta Bose gas, H=1(A+ > 8(=-x)),
the Plancherel theorem rides on top of harmonic analysis for the
degenerate (or graded) Hecke algebra of type A, that is generated

n
by permutations and {3z, subject to relations
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Restricting the harmonic analysis to symmetric functions gives the

Plancherel theorem [Heckman-Opdam 'a7].



e One of the discretizations of the delta Bose gas that we obtain,

for which the wave functions are the Hall-Littlewood polynomials,

is connected to the harmonic analysis on G/K, where
G=GL(n,F), K=GL(n,O)

- is a non-archimedean local field (like @, or E(¥)),

(D is its ring of integers ( /., or IF [[+]]), 9= /3 [Macdonald '71]
e The other discretization cowesloomds to H Z V * % Sn e
that arises from moments of the semi- _discrete Browvuam polymer.
First in this case, and later in the g-case, [Takeyama '12, '14]
constructed a representation of a rational twist of the affine

Hecke algebra, but so far there is no harmonic analysis.



Mysterious connection to Macdonald polynomials

Macdonald polynomials I, (., 2n) e Q) [x,, ., 1I*™ labelled
by partitions A= (D202 .22 0) form a basis in symmetric

polynomials in N variables over QQ(q,t). They diagomalize
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Mysterious connection to Macdonald polynomials
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solves the evolution equation of the g-Boson system % ‘? (t.7) =(H{2)(Jc, n)
where H is the generator.
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How does this relate to Plancherel theory?



Summary

e The wish to analyze q-TASEP for arbitrary initial conditions
lead to new Plancherel theory of Bethe type.

o [ts degenerations include that for quantum delta Bose gas, and
q-TASEP moments do not suffer from intermittency, thus can
be used for rigorous replica like computations.

e Similar Plancherel theory exists for ASEP.

e The connection to Macdonald processes is apparent but remains
somewhat mysterious.

* More work needed to turn the algebraic advances into new

analytic results.



