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Introduction Universality Log-correlated Gaussian field The eigenvector moment flow

Wigner’s universality idea (1956). Perhaps I am
too courageous when I try to guess the distribution of the
distances between successive levels (of energies of heavy
nuclei). Theoretically, the situation is quite simple if one
attacks the problem in a simpleminded fashion. The
question is simply what are the distances of the
characteristic values of a symmetric matrix with random
coefficients.

Gaussian Orthogonal Ensemble :
(a) Invariance by H 7→ U∗HU , U ∈ O(N).
(b) Independence of the Hi,j ’s, i ≤ j.
The entries are Gaussian and the spectral density is
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ZN
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|λi − λj |βe−β N
4

∑
i λ
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i

with β = 1. Semicircle law as N → ∞. Eigenstates Haar-distributed.
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Fundamental belief in universality : the macroscopic statistics (like the
equilibrium measure) depend on the models, but the microscopic statistics
are independent of the details of the systems except the symmetries.

• GOE : Hamiltonians of systems with time reversal invariance

• GUE : no time reversal symmetry (e.g. application of a magnetic field)

• GSE : time reversal but no rotational symmetry

Correlation functions. For a point process χ =
∑
δλi :

ρ
(N)
k (x1, . . . , xk) = lim

ε→0
ε−k P (χ(xi, xi + ε) = 1, 1 ≤ i ≤ k) .

For deterministic systems, P is an averaging over the energy level in the
semiclassical limit.

Gaudin, Dyson, Mehta : for any E ∈ (−2, 2) then (β = 2 for example)

ρ
(N)
k

(
E +

u1
Nϱ(x)

, . . . , E +
uk

Nϱ(x)

)
−→
N→∞

det
k×k

sin(π(ui − uj))

π(ui − uj)
.
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Wigner matrix : symmetric, Hermitian (or symplectic), entries have
variance 1/N , some large moment is finite.

The Wigner-Dyson-Mehta conjecture. Correlation functions of
symmetric Wigner matrices (resp. Hermitian, symplectic) converge to the
limiting GOE (resp. GUE, GSE).

Recently universality was proved under various forms.
Fixed (averaged) energy universality. For any k ≥ 1, smooth F : Rk → R,
for arbitrarily small ε and s = N−1+ε,

lim
N→∞

1

ϱ(E)k

∫ E+s

E

dx

s

∫
dvF (v)ρ

(N)
k

(
x+

v

Nϱ(E)

)
dv =

∫
dvF (v)ρ

(GOE)
k (v)
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Johansson (2001) Hermitian class, fixed E,
Gaussian divisible entries

Erdős Schlein Péché Ramirez Yau (2009) Hermitian class, fixed E
Entries with density

Tao Vu (2009) Hermitian class, fixed E
Entries with 3rd moment=0

Erdős Schlein Yau (2010) Any class, averaged E

Key input for all recent results : rigidity of eigenvalues (Erdős Schlein
Yau) : |λk − γk| ≤ N−1+ε in the bulk. Optimal rigidity ?

Jimbo, Miwa, Mori, Sato & condition number of ±1 matrices ?

Related developments : gaps universality by Erdős Yau (2012).

The gaps are much more stable statistics than the fixed energy ones :

⟨λi, λj⟩ ∼ N−2 log
N

1 + |i− j|
, almost crystal. ⟨λi+1−λiλj+1−λj⟩ ∼

N−2

1 + |i− j|2
.
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Theorem (B., Erdős, Yau, Yin, 2014).

(i) Fixed energy universality : for Wigner matrices from all symmetry
classes.

(ii) Optimal fluctuations : Log-correlated Gaussian field.

The Dyson Brownian Motion (DBM, dHt =
dBt√
N

− 1
2Htdt) is an essential

interpolation tool, as in the Erdős Schlein Yau approach to universality,
summarized as :

H0

↕
H̃0

(DBM)−→ H̃t

(DBM)−→ : for t = N−1+ε, the eigenvaues of H̃t satisfy averaged universality.

↕ : Density argument. For any t≪ 1, there exists H̃0 s.t. the resolvents of

H0 and H̃t have the same statistics on the microscopic scale.

What makes the Hermitian universality easier ? The
(DBM)−→ step is

replaced by HCIZ formula : correlation functions of H̃t are explicit only for
β = 2.
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A few facts about the general proof of fixed energy universality.

(i) A game coupling 3 Dyson Brownian Motions.

(ii) Homogenization allows to obtain microscopic statistics from
mesoscopic ones.

(iii) Need of a second order type of Hilbert transform. Emergence of new
explicit kernels for any Bernstein-Szegő measure. These include
Wigner, Marchenko-Pastur, Kesten-McKay.

(iv) The relaxing time of DBM depends on the Fourier support of the test

function : the step
(DBM)−→ becomes the following.

F̃ (λ,∆) =

N∑
i1,...,ik=1

F
(
{N(λij − E) + ∆, 1 ≤ j ≤ k}

)
Theorem. If suppF̂ ⊂ B(0, 1/

√
τ), then for t = N−τ ,

E F̃ (λt, 0) = E F̃ (λ(GOE), 0).
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First step : coupling 3 DBM. Let x(0) be the eigenvalues of H̃0 and
y(0), z(0) those of two indepndent GOE.

dxi/dyi/dzi =

√
2

N
dBi(t) +

1

N

∑
j ̸=i

1

xi/yi/zi − xj/yj/zj
− 1

2
xi/yi/zi

 dt

Let δℓ(t) = et/2(xℓ(t)− yℓ(t)). Then we get the parabolic equation

∂tδℓ(t) =
∑
k ̸=ℓ

Bkℓ(t) (δk(t)− δℓ(t)) ,

where Bkℓ(t) =
1

N(xk(t)−xℓ(t))(yk(t)−yℓ(t))
> 0. By the de Giorgi-Nash-Moser

method (+Caffarelli-Chan-Vasseur+Erdős-Yau), this PDE is
Hölder-continuous for t > N−1+ε, i.e. δℓ(t) = δℓ+1(t) + O(N−1−ε), i.e. gap
universality.

This is not enough for fixed energy universality.
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Second step : homogenization. The continuum-space analogue of our
parabolic equation is

∂tft(x) = (Kft)(x) :=
∫ 2

−2

ft(y)− ft(x)

(x− y)2
ϱ(y)dy.

K is some type of second order Hilbert transform.

Theorem. Let f0 be a smooth continuous-space extension of δ(0) :
f0(γℓ) = δℓ(0). Then for any small τ > 0 (t = N−τ ) thre exists ε > 0 such
that

δℓ(t) =
(
etKf0

)
ℓ
+O(N−1−ε).

Proof. Key inputs are the rigidity of the eigenvalues and optimal Wegner
estimates (for level-repulsion).
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Third step : the continuous-space kernel.

1. For the translation invariant equation

∂tgt(x) =

∫
R

gt(y)− gt(x)

(x− y)2
dy,

the fundamental solution is the Poisson kernel pt(x, y) =
ct

t+(x−y)2 .

2. For us, t will be close to 1, so the edge curvture cannot be neglected.
Fortunately, K can be fully diagonalized and (x = 2 cos θ, y = 2 cosϕ)

kt(x, y) =
ct

|ei(θ+ϕ) − e−t/2|2|ei(θ−ϕ) − e−t/2|2
.

Called the Mehler kernel by Biane in free probability context. Here it
appears as a second-order Hilbert transform fundamental solution.

3. Explicit kernels can be obtained for all Bernstein-Szegő measures,

ϱ(x) =
cα,β(1− x2)1/2

(α2 + (1− β2)) + 2α(1 + β)x+ 4βx2
.
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Fourth step : microscopic from mesoscopic. Homogenization yields

δℓ(t) =

∫
kt(x, y)f0(y)ϱ(y)dy +O(N−1−ε)

The LHS is microscopic-type of statistics, the RHS is mesoscopic. This
yields, up to negligible error,

Nxℓ(t) = Nyℓ(t)−Ψt(y0) + Ψt(x0),

where Ψt(x0) =
∑
h(Nτ (xi(0)− E)) for some smooth h. We wanted to

prove
E F̃ (xt, 0) = E F̃ (zt, 0) + o(1).

We reduced it to

E F̃ (yt,−Ψt(y0) + Ψt(x0)) = E F̃ (yt,Ψt(y0) + Ψt(z0)) + o(1).

where Ψt(y0), Ψt(x0) and Ψt(z0) are mesoscopic observables and
independent.
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Fifth step and conclusion : CLT for GOE beyond the natural
scale. Do Ψt(x0) and Ψt(y0) have the same distribution ? No, their
variance depend on their fourth moment.

A stronger result holds : E F̃ (yt,−Ψt(y0) + c) does not depend on the
constant c.

We know that E F̃ (yt,−Ψt(y0) + Ψt(z0) + c) = E F̃ (yt,−Ψt(y0) + Ψt(z0))
for all c (why ?).

Exercise : let X be a random variable. If E g(X + c) = 0 for all c, is it true
that g ≡ 0 ?

Not always. But true if X is Gaussian (by Fourier).

Lemma. E
(
eiλΨt(z(0))

)
= e−

λ2

2 τ logN +O(N−1/100).

The proof uses algebraic ideas of Johansson and rigidity of β-ensembles.

By Parseval, proof when the support of F̂ has size 1/
√
τ . This is why DBM

needs to be run till time almost 1.
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What is the optimal rigidity of eigenvalues ?

Theorem (Gustavsson, O’Rourke). Let λ be the ordered eigenvalues of
a Gaussian ensemble, k0 a bulk index and ki+1 ∼ ki +Nθi , 0 < θi < 1.
Then the nornalized eigenvalues fluctuations

Xi =
λki − γki√

logN
N

√
β(4− γ2ki

)

converge to a Gaussian vector with vovariance

Λij = 1−max{θk, i ≤ k < j}.

In particlar, λi − γi has fluctuations
√
logN
N .

Proof : determinantal point processes a la Costin-Lebowitz (GUE) +
decimation relations (GOE, GSE).
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One application of the homogenization/coupling : the same
log-correlated Gaussian limit for any Wigner matrix.

Sketch. By homogenization we have

N(xℓ(t)− γℓ)√
logN

=
N(yℓ(t)− γℓ)√

logN
+

Ψt(y(0))√
logN

− Ψt(x(0))√
logN

.

The fluctuations of Ψt(y(0)) are of order
√
τ logN . The fluctuations of

Ψt(x(0)) are of the same order
√
τ logN . Take arbitrarily small τ and the

result follows.
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Matrix models : eigenstates statistics

Delocalization. For any uk, eigenvector of a generalized Wigner matrix,

sup
α

|uk(α)| ≤ (logN)CN− 1
2

for large enough N (Erdős, Schlein, Yau, Yin). Relies on the analysis of
G(z) = (H − z)−1. Delocalization for non-Hermitian random matrices by
Rudelson-Vershynin, with another technique.

Microscopic scale : normality.

(i) The entries (
√
Nuk(α))α converge to i.i.d. Gaussian provided that the

first 4 moments of Hij ’s match the Gaussian ones (Knowles-Yin,
Tao-Vu, 2011).

(ii) For any q ∈ RN ,
√
N⟨q, uk⟩ converges to a Gaussian if the first 5

moments match the Gaussian ones (Tao-Vu, 2011).

The proof relies on resolvent expansion, moment matching, comparison
with GOE/GUE.
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Theorem (B., Yau (2013)).

(1) (i) and (ii) hold for generalized Wigner matrices.

(2) Probabilistic version of QUE, at any scale. For any (N -dependent)
I ⊂ J1, NK, k and (fixed) δ,

P

(
N

|I|

∣∣∣∣∣∑
α∈I

|uk(α)|2 −
1

N

∣∣∣∣∣ > δ

)
≤ C

(
N−ε + |I|−1

)
.

Remark. Rudnick&Sarnak’s QUE conjecture : for any negatively curved
compact Riemannian manifold M, the eigenstates become equidistributed :∫

A

|ψk(x)|2µ(dx) −→
k→∞

∫
A

µ(dx).
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The Dyson vector flow

Coupled eigenvalues/eigenvectors dynamics when the entrie of H are
Brownian motions :

dλk =
dBkk√
N

+

 1

N

∑
ℓ̸=k

1

λk − λℓ

 dt

duk =
1√
N

∑
ℓ ̸=k

dBkℓ

λk − λℓ
uℓ −

1

2N

∑
ℓ̸=k

dt

(λk − λℓ)2
uk

Let ckℓ =
1
N

1
(λk−λℓ)2

. If all ckℓ’s were equal, U = (u1, . . . , uN ) would be the

Brownian motion on the unitary group.

Such eigenvector flows were discovered by Norris, Rogers, Williams
(Brownian motion on GLN ), Bru (real Wishart), Anderson, Guionnet,
Zeitouni (symmetric and Hermitian).
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Relaxation of the Dyson vector flow : first try

Conditionally on the trajectory (λi(t), 1 ≤ i ≤ N)t≥0, the Dyson vector
flow has generator

L =
∑
k<ℓ

ckℓ(t)(uk · ∂uℓ
− uℓ · ∂uk

)2“ = ∆”

where ∆ is the Laplace-Beltrami for the metric g defined by

⟨Eα, Eβ⟩(g) =
2

cij
1α=β , α = (i, j).

If Ricci(g) ≥ c > 0, the relaxation time is at most 1/c (Bakry, Émery). Here,

Ricci
(g)
Id (Eα, Eα)

⟨Eα, Eα⟩g
=

1

N

∑
k ̸∈{i,j}

1

(λi − λk)(λk − λj)
.

Not even positive, and time-dependent metric. No general relaxation
theory taking initial conditions into account.
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A random walk in a dynamic random environment

Definition of the (real)
eigenvector moment flow.

The eigenvalues trajectory is a
parameter (ci,j(t) =

1
N

1
(λi(t)−λj(t))2

).

Configuration η of n points onJ1, NK. Number of particles at x : ηx.
Configuration obtained by moving a
particle from i to j : ηij .
Dynamics given by ∂tf = B(t)f
where

B(t)f(η)

=
∑
i ̸=j

cij(t)2ηi(1+2ηj)
(
f(ηi,j)− f(η)

)
1 2 i N

6
N(λi−λ2)2

18
N(λi−λi+1)2

30
N(λi−λN−3)2
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Properties of the eigenvector moment flow

Let zk =
√
N⟨q, uk⟩, random and time dependent. For a configuration η

with jk points at ik, let

ft,λ(η) = E

(∏
k

z2jkik
| λ

)
/E

(∏
k

N 2jk
ik

)
.

Fact 1 : ∂tft,λ(η) = B(t)ft,λ(η).

QUE+Normality of the eigenvectors hold, it is equivalent to fast relaxation
to equilibrium of the eigenvector moment flow.
This PDE analysis is made possible thanks to an explicit reversible
measure for B

Fact 2 :

• GOE : π(η) =
∏N

x=1 ϕ(ηx) where ϕ(k) =
∏k

i=1

(
1− 1

2k

)
• GUE : π is uniform
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Relaxation to equilibrium

Goal : for t≫ N−1, supη⊂bulk |fλ,t(η)− 1| ≤ N−ε.

Key tool : a maximum principle. If St = supη(ft(η)− 1) is always
obtained for a configuration supported in the bulk, then

S′
t ≤ −N1−εSt +N1−ε.

The bulk condition does not hold. Development of a local maximum
principle.

Proof of the maximum inequality.
For n = 1, if St = supk(ft(k)− 1) = ft(k0)− 1, then for any η > 0

S′
t =

1

N

∑
k ̸=k0

ft(k)− ft(k0)

(λk − λk0)
2

≤
∑
k ̸=k0

E
(
uk(t)

2 | λ
)
− ft(k0)

(λk − λk0)
2 + η2

≤ 1

η
E(Im⟨q,G(λk0 + iη)q⟩ | λ)− ft(k0)

1

Nη
ImTrG(λk0 + iη)

One concludes by the local semicirle law for η = N−1+ε.
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