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Motivations and examples

Dimer models

planar graph G

8

dimer configuration: perfect matching



Motivations and examples

Several techniques to study these models
o Kasteleyn theory:
e partition function: determinant of the Kasteleyn matrix K
o correlations: minors of K1
@ Non intersecting paths

o Lindstrom-Gessel-Viennot
e orthogonal polynomials
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Plane partitions

Dimers on the hexagonal lattice: tilings
with rhombi

3D interpretation: piles of cubes in the
corner of a room.

Partition function: McMahon's formula
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Plane partitions: limit shape and correlations

Limit shape:
Cerf-Kenyon (2001)
Correlations:
Okounkov—Reshetikhin
(2003)
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Plane partitions

Idea: cut the plane partition in vertical slices:

|
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Plane partitions

Idea: cut the plane partition in vertical slices:

interlacing partitions: u < A

AL 2y 2 Ag > g >
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Plane partitions

Transfer matrices with nice algebraic properties
Correlations:

P(particles at positions (¢, hy), ... (t,,, h,,)) = detK ((t;, h;), (t;,h;))
where

K((t,h), (¢',1")) = [zhw*h/]m Vzw

O(w,t’) z—w
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Aztec diamond

dimers on the square lattice: dominos ]

Aztec diamond of size n = 3:

flip accessibility:
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Aztec diamond

dimers on the square lattice: dominos ]
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flip accessibility:
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Aztec diamond: partition function

7L(n+1)

@ Number of tilings of size n: 27z

@ Refined partition function: if N(7") miniminal number of flips
to reach T' from the horizontal configuration

n
q>:ZqN H1+q2]1n3+1
T Jj=1

(Elkies Kuperberg Larsen Propp)
@ Stanley

flips on diag i
Z(Qi)Zqui pron el = H (1+d25-1"025-1)
T

1<i<j<n
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Aztec diamond

Aztec diamond: limit shape

@ encode tiling with non intersecting paths

@ position of the highest path, Krawtchouk ensemble
(Johansson)

e derivation of the arctic circle theorem (Jockusch Propp Shore)

e fluctuations aroung the limit shape: Airy process (Johansson)
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Aztec diamond: correlations

o Correlations between dominos is given by determinants of
submatrices of K~ (inverse Kasteleyn matrix)

@ In general difficult to compute exactly

@ explicit expression for the inverse Kasteleyn matrix (Chhita,
Young 2013). No constructive proof.



Pyramid partitions

minimal tiling
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Pyramid partitions

@ partition function (Szendrdi, Kenyon, Young)

Z(q) _ H (1 + q2i—1)2'i—1

2i)\21%
i>1 (1_(] )

e limit shape (Kenyon-Okounkov):

@ local statistics of dominos?
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Our goal:

e unified framework to study these three examples (and many
more)
@ transfer matrix approach to solve these models

e encode dimer configuration as particles

o correlations of particles <+ (co)interlacing partitions (Schur
process)

e correlations of dimers

@ explain the formula obtained by Chhita and Young

@ study typical behaviour of such large structures



Rail Yard Graphs

Elementary Rail Yard Graphs

4 elementary graphs.

(o)
o
(o]
(o]

A

"o DNNNNNNNNN

Can be glued together along columns.



Rail Yard Graphs

Rail Yard Graphs

Rail yard graphs: sequence of glued elementary graphs.

O o
L & B L & %
Ry Ly R Ry L R
21 2r+1

Structure encoded by a word in L+ /L — /R + /R—.



Rail Yard Graphs

o If only L are used, faces of degree 6: hexagonal lattice

o If alternate L, and R_, faces of degree 4 or degree 8 with
vertices of degree 2:



Rail Yard Graphs

o If only L are used, faces of degree 6: hexagonal lattice

o If alternate L, and R_, faces of degree 4 or degree 8 with
vertices of degree 2: square lattice



Rail Yard Graphs

Steep dimers on Rail Yard Graphs

boundary conditions: vacuum

@ vertices with negative ordinate on the left, and positive
ordinate of the right are left unmatched.

@ the other vertices on the boundary are covered by a dimer.

O Qe Qo . Qe - Q.- Q)

O im0 O () —) - O
R I R R L R
-1 2r+1

steep configurations: on each column, finite number of diagonal
dimers.
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Connection to tilings

@ Only L + /L—: plane partitions / skew plane partitions
(Okounkov-Reshetikhin, Borodin,...)

@ Alternance L 4+ /R+: steep domino tilings (considered by
Bouttier, Chapuy, Corteel)
ex: L4+/R-/L+/R- corresponds to the Aztec diamond

O=M - O==lll - O=lll - - Ol Ol - Ooeelll-- O=elll-- Oeelll




Rail Yard Graphs

From dimers to Maya diagrams and partitions

From dimers, construct particle configurations {e, o}
(Maya diagrams) on columns of odd vertices:

R
@ Put e if vertex matched to the left. O
@ Put o if vertex matched to the right.

For graphs L+, L—: plane partitions
@ dimer configurations < interlacing e particles. —o
@ number of diagonal edges: total displacement of e

particules

@ given two Maya diagrams, number of compatible dimer o ::

configurations is 1 if e particles interlaced, 0 otherwise.



Rail Yard Graphs

Transfer matrix

State of odd columns encoded by vectors |\) of a Hilbert space.
Transfer operators:

Ty (2)|A) =Y alt=Ruy, Ty () =) gkl

=X =X

Localisation operators: 1, 1, create, annihilate particles at
position k. 1,17, projector on diagrams with a particle at site £.
Commutation relations: T'; , (z), [z _(y), ¥(2) = 3, 42"
satisfy nice commutation relations:

1
1—2zy
1
1—xz

FL+<y>FL7<$> = FLf(l‘)FL+(9>

FL+(Z/)‘I’(Z> = ‘I’(Z>FL+(3/)
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Partition function

Case of plane partitions:

Z(q) = (0|Tp (qm=1/2) T, (¢*/?) Ty _(¢*/2) T, (q"1/2)]0)

m n
m mn
HH z+g 1 _ qitji—1

Apply as many times as necessary the commutation relation
Ip /T




Rail Yard Graphs
oeo

Graphs R+ and R-

Exchange the role of white/black, left/right.

Now o particles are interlacing (the corresponding partitions are
cointerlacing).

Two new operators I'_(x),I' g, (y).

Pri(ly (z) = A +zy)Tp (). (y)
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Partition function

Theorem

Let G is a rail yard graph, encoded by a = a; ---a,, and
b=0by-b,, a; €{L,R}, b, € {+,—}. Let z = (zq,...,2,) the
weights per diagonal dimer on each elementary graph. The
partition function of the steep dimer configurations on G is

Z(a,b,z) = H B g = Ly, ifa; # q;
g Yo oY )) T J -
* *J (1—=z,zx.)"t, ifa;=a
1<i<j<n ] ) i — Uy
b;=+,b,——

a; # aj:

/ zij = (1 + zzj)




Rail Yard Graphs
°
Correlations for particles

Computing particle probabilities:

P(e particles at (t1,hq),..., (tg, hy)) =
1
7~ O (2q) Ty, ) V5, o Yp, W5, 10)
D c— to—t,

ty

View 1, ~as some coefficient extraction from W(z;) and again
J . .
make use of commutation relations.
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Correlations for dimers

@ Map from dimers to particles is local

@ Reconstructing the dimer configuration from the Maya
diagrams not local.

@ Easy case: dimers in the simple columns

iy, Z

Equivalent to localisation of particles.
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Correlations for dimers

Dimers in double column: position not (locally) related to presence
of particles. But:

o] o '

o Lo :a—w;
i

RS

~

:Z Uil ryt)y

Bijection between configurations inside a “slice” by rerouting
dimers around central vertices.
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Correlations for dimers

Let

-1
Hm<i/2:R+<1 +2,2) Hm>i/2:L7(1 —Z,,7 )
Hm<i/2:L+<1 - :L‘mZ> HW’L<’L'/2:R7(1 + xm2_1>

F;(z) =

Define the matrix C,, 5 indexed by vertices of G (rows are odd
vertices/columns are even vertices)

k —k;g] Fiaz) Vew

Cap = [#Fow Fyg(w) z —w

The probability that edges (e, ..., e,,), with e; = (w,;,b;) belong

7 71

to the random configuration, is

(product of the weights) x detC’bi,wj

C'is an inverse of the Kasteleyn matrix on G.



Conclusion

Applications

@ In the particular case of the Aztec diamond:

e gives a constructive derivation of the formula for the inverse
Kasteleyn matrix found by Chhita and Young

e yet another derivation of the arctic circle theorem,
fluctuations...



Conclusion

Applications

@ In the particular case of the Aztec diamond:

e gives a constructive derivation of the formula for the inverse
Kasteleyn matrix found by Chhita and Young

e yet another derivation of the arctic circle theorem,
fluctuations...

e Mixtures of hexagonal/square lattice

@ Special case of interest: pyramid partitions
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