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Aim of this talk:

To show how free probability theory sheds light on spectral
properties of deformed matricial models and provides A UNIFIED
UNDERSTANDING of various phenomena



Notations

B = B* € My(C)
AM(B) > Xa(B) > --- > An(B),

of these eigenvalues:

O (B)

”MZ

dp(x)

Z—X

p probability measure on C, z € C\ supp(u), gu(z) = /



free probability theory

M the set of probability measures supported on the real line
M : the set of probability measures supported on [0; +o0].
Free probability theory defines:

@ a binary operation on M :the free additive convolution p B v
for pr and v in M,

@ binary operations on M™ : the free multiplicative convolution
p X v and the free rectangular convolution with ratio ¢ €]0; 1]
pHBe v, for pand v in MT,
(cf Voiculescu, Maassen, Bercovici-Voiculescu, and
Benaych-Georges)



free probability theory

For several matricial models where Ay and By are independent
N x N Hermitian random matrices

(for instance when L(By) = L(UnBnUy) for any deterministic
unitary matrix ( “unitarily invariant™)),

free probability provides a good understanding of thelasymrl)totic
global behaviour of the spectrum of Ay + By and A2 ByAZ,
(Ay > 0,By > 0)

HAy+By —>N—s+oo Ma B pip

1 —7N—+oo Ha X b

L3 goal
AZBNA2

where fiay =N 1o00 Ha and pBy N 400 Hb-

Pionnering work 90" of D. Voiculescu extended by several authors



free probability theory

For several matricial models where Ay and By are independent
rectangular n x N random matrices such that n/N — ¢ €]0; 1],
rectangular free convolution provides a good understanding of the
asymptotic global behaviour of the singular values of Ay + By :

1 -
- Z 0s — vy He vp.

n .
s sing. val. of Ay+By

1 1 -
(where . Z 0s — Vs, . Z ds = Up)

s sing. val. of Ay s sing. val. of By

(cf work of Benaych-Georges when By is invariant, in law, under
multiplication, on the right and on the left, by any unitary matrix:
“biunitarily invariant”)



free probability theory

Additive free subordination property

For a probability measure 7 on R, z € C\R, g,(z) = [ dz%(xx).

Theorem (D.Voiculescu (93), P. Biane (98))

Let i and v be two probability measures on R, there exists a
unique analytic map w,,,, : C* — C* such that

Vz € (CJr,gMEEh/(Z) = gu(w,tt7u(z))7

Vz € CT,Swy,(z) > Sz and limyry oo w”,"iy('y) =1
Wy, Is called the additive subordination map of B v with respect

to v. )




free probability theory

Multiplicative free subordination property

tz
V. (z) = / dr(t) = ;gT(—) -1,
for complex values of z such that % is not in the support of 7.

Theorem (Biane (98))

Let T # 69 and v # &g be two probability measures on [0; +oc.
There exists a unique analytic map ., defined on C \ [0; 400
such that

VzeC \ [0, —|—OO[, WV|Z’T(Z) = WV(FT,V(Z))
and
VzeCYl, Fu(z) €CY, Fru(2) = Fru(2), arg(Fru(2)) > arg(2).

F- . is called the multiplicative subordination map of T M v with
respect to v/




free probability theory

Rectangular free subordination property

7 probability measure on R™; ¢ €]0; 1].
2,
M) = [ T dr(e), HO(E) i 2 (M (2) + 1) (M(2) + 1)
L1

Theorem (Belinschi& Benaych-Georges& Guionnet (2008))

Assume that T is H. infinitely divisible. Then there exist two
unique meromorphic functions w1, wp on C\ RT so that

H (wi(2)) = HEO(wa(2)) = H (2),

wj(Z) = wj(z) and limypo wj(x) =0, j € {1;2}.




Standard matricial models

Standard models

e Wigner matrices

1
Xy = —— Wy

VN

(Wn)ii, V2Re((Wn)ij)i<j, V2Im((Wh)jj)i<j are i.id, with
distribution . with variance ¢ and mean zero.

If 1 = N(0,02), Wy = WS is a G.U.E-matrix.
@ Wishart matrices 1
Xy = —ByBy
b N
By is a N x p(N) matrix, (Bn)uy = Zuy + iYuy Zuv, Yo,

u=1,....,N,v=1,...,p(N) are i.i.d, with distribution
with variance % and mean zero.

If w=N(0,%), Xy is a L.U.E matrix.



Standard matricial models

Convergence of the spectral measure

Theorem ( Wigner (50"))
N

LWy ::NZcSAi(%)—husc a.s when N — +o0

d:U’SC = V —x? 1[ 20 20']
U

dx 27r
Theorem (Marchenko-Pastur (1967))

Ich::%—>C>OWhenN—>oo,

Keysy — pmp a.s when N — +oo
P

d,UMP
o V(b—x)(x—a 1[ab]

27rcx

g=(l=/e) b=l Ja) .and,uc(O)zl—%ifc>1.




Standard matricial models

No outlier

Theorem (Bai-Yin 1988)
If [ x*du(x) < 400, then

W, W
Al(—N) — 20 and )\N(—N) — —20 a.s when N — +oo0.

VN VN

Theorem (Geman 1980, Bai-Yin-Krishnaiah 1988,

Bai-Silverstein-Yin 1988)
If [ x*du(x) < +o0,

By B

A1 ( ) = (1++/c)? a.s when N — +cc.

BnBj
p

)‘min(N,p)( ) — (1 - ﬁ)z a.s when N — +o0.




Deformed models

Deformed models

Ay is a deterministic matrix such that supy ||An|| < occ.
@ Deformed Wigner matrices Wy is a Wigner matrix and Ay is
an Hermitian matrix such that p1a, —n— o0 v Weakly.
Wi
My = N + An
@ Sample covariance matrices Ay is a non negative definite
matrix such that pia, —N— oo v weakly.

My = Ayt ENBN

N|=

An2.

@ Information-Plus-Noise type matrices, N < p(N), Ay is such
that HAN A%, — N—stoo V weakly.



Deformed models

Convergence of spectral measures

e Deformed Wigner matrices [ip1, —N—s4o00 aw Weakly.
Pastur (72), Anderson& Guionnet&Zeitouni (2010)

e Sample covariance matrices [ip,, —N—4o0 [1Sem Weakly.
Marchenko&Pastur (67) Grenander&Silverstein(77), Wachter
(78), Krishnaiah&Y.Q.Yin (83), Y.Q.Yin (86), Bai&Silverstein
(95), Silverstein (95).

e Information-Plus-Noise type matrices jin, —N—s 400 [ipn Weakly.
Dozier&Silverstein (2007), Hachem&Loubaton&Najim (2007),
Xie (2012)



Deformed models

Convergence of spectral measures

e Deformed Wigner matrices fipg, —N—s4oo ftaw Weakly.

1
vze Ct =
zE ) gﬂdw(z) /Z—UngdW(Z)—t

e Sample covariance matrices /ipg, —N—s+oo [iScm Weakly.

1
+ —
VzeC", gu.(2)= / Py nguscm(z))du(t).

e Information-Plus-Noise type matrices 1y, —N—+4o0 fhipn Weakly.

1
/ ey ) Pa— — s L)

o 1*Cg,ulp,, (2)

du(t).

VzeCT, g,“pn(z) =

HdW, [Sems [ipn are deterministic, in general non explicit. They
are universal (do not depend on the distribution of the entries of

Wy or By) and only depend on Ay through the limiting spectral
measure v.



Deformed models

Free probabilistic interpretation

e Deformed Wigner matrices

KMy —>N—s+oo Hdw weakly, gy = psc H v
e Sample covariance matrices

UMy —>N—+oo Hsem Weakly, jisem = ppmp X v
e Information-Plus-Noise type matrices

LMy — Nes+o00 [ipn Weakly, fujn = (v/iimp Be vv)2.



Deformed models

Equations satisfied by the limiting Stieltjes transforms
<= Free Subordination properties

e Deformed Wigner matrices

1
VzeCh, gum(z) = /

Z— O-zgliscEEV(Z) -t

dv(t) = gu(Wpee  (2))-

wl‘sm”(z) =Z— 0-2g;L55EEV(Z)-

e Sample covariance matrices
1

Vze Ch vl(z) =
A4S y  8umpX (Z) / z — t(]_ —Cc+ CZg,u,MP&V(Z))

1 1
- WILMPX]V <Z> = WV(FMIVIPJ’ <Z>)

V()= [ Eoar = e 0) -1

1-—tz
).

du(t).

[ =

F/LMF’vV(Z) =z—- + Cg/l//\/]p&l/

—~ N
N |



Deformed models

Equations satisfied by the limiting Stieltjes transforms
<= Free Subordination properties

e Information-Plus-Noise type matrices

tipn = (Vimp B Vv)?

1
VzeCT, g n(z):/
Eip (1- Cgmpn(z))z - ﬁm(z) —(1-c¢)

@ (1Y _ 1
CORCICNC)
1

du(t).




Deformed models

Deep Studies of the limiting spectral measures

Support, density, behaviour of the density near its zeroes....
e Deformed Wigner matrices gy = fisc H v
P. Biane (1997)
e Sample covariance matrices fisem = ppp X v
Choi&Silverstein (1995)
e Information-Plus-Noise type matrices 1o, = (//tmp Be V)2
Dozier&Silverstein (2007)



Deformed models

Characterization of the complement of the supports

(P.Biane 1997):

1
O :={u € R\ support 1/,/
u

R\ support psc Bv = h,_ . (0).

Puor i 2 2+ 0°g,(2).
Wuscy
R\ support pusc Br «— O,

Msc,V
The additive subordination map w,,. ,(2) = z — 02gy..m.(2)

h,.... globally strictly increasing on O.



Deformed models

e Deformed Wigner

Wuscy

R\ support puse Hry «— O C R\ support v,
1

0 €01, ¢1(0)="0+0%g(0).

eSample covariance matrices

1
X775
FHMPJ’(I/X)

R\ {support ppp XvU{0}} — O, C R\ support v,
$2
0Oy ¢2(6) =0+ cﬁf ritdy(t).

elnformation-Plus-Noise type model

1
Q;LMP,V(l/X)

R\ (Vimp B Vv)? 2 O3 C R\ support v,
®3

X

0 €03, ¢3(0) = 0(1+ cgn(0))* + (1 — c)(1+ cgu(0))



Spiked models, localization of outliers

Spiked models, localization of outliers



Deformed models
0O®0000000

Spiked models, localization of outliers

Seminal works on spiked models

1
Spiked finite rank deformation : My = —— GUE(c?) + Ay

VN
AN:diag( 0,...,0 ,91,...,91,...,9J,...,9J)
—— N——— ——
N—r times k; times k; times

r: fixed, independent of N.

Ap : a deterministic Hermitian matrix of fixed finite rank r with r
non-null eigenvalues ( ) 61 > --- > 0, independent of NV, the
ki independent of N.



Deformed models
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Spiked models, localization of outliers

Seminal works on spiked models

1
Spiked finite rank deformation: My = WGUE(az) + Apn

AN:diag( 0,...,0 ,91,...,91,...,9J,...,9J)
—— N———
N—r times k; times k; times
r: fixed, independent of N.
Ap : a deterministic Hermitian matrix of fixed finite rank r with r

non-null eigenvalues ( ) 61 > --- > 0, independent of NV, the
k; independent of N.

= Convergence of the spectral measure jip, = % Z,N:l Oxi(My)
towards the semi-circular distribution pisc.



Deformed models
00®000000

Spiked models, localization of outliers

Theorem ( Péché 2006)

e If0; <o, Mi(My) — 20
e If0, > o, )\1(MN) — Po, with Po; = 01 + %12'




Deformed models
00®000000

Spiked models, localization of outliers

Theorem ( Péché 2006)

e If0; <o, Mi(My) — 20
e If0, > o, )\1(MN) — Po, with Po; = 01 + %12'

| | |
2

—20 20 po, =01+ 5 (61> 0)

Actually if for some i, |0;| > o then exactly k; eigenvalues of My
converge towards py, 1= 6; + %% €] — oo; —20[U]20; +o0].



Deformed models
000®00000

Spiked models, localization of outliers

When Ay has finite rank, analog B.B.P phase transition phenomena

proved for
(In + An)Y2Bu(In + An)'/? ;
Ay + By I+ Ay > 0 (An + Bn)(An + Bw)
By = GUE Péché (2006)
By = L.U.E .. .
Baik&Ben Arous&Péché By Ginibre matrix
(2005) Loubaton&Vallet
By = Wigner (2011)
Féral&Péché (2007) .
By = Wish
C.&Donati-Martin&Féral (2009) | M S”v'zrsign (2006)
Pizzo&Renfrew&Soshnikov (2013),
Knowles&Yin (2014)




Deformed models
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Spiked models, localization of outliers

When Ay has finite rank, analog B.B.P phase transition phenomena

proved for
(In + An)'2Bu(In + An)*/? ;
An + By Iv+ Ay >0 (AN + BN)(AN + BN)
By = GUE Péché (2006)
By = L.U.E .. .
B
Baik&Ben Arous&Péchs | OV Cinibre matrix
(2005) Loubaton&Vallet
By = Wigner (2011)
Féral&Péché (2007) .
By = Wishart
C.&Donati-Martin& Féral (2009) N 'S ar.
, : Baik&Silverstein (2006)
Pizzo& Renfrew& Soshnikov (2013),
Knowles&Yin (2014)

By unitarily invariant By unitarily invariant By biunitarily invari
g, — " By 7 N—s+o00 M HByB}, —7?N—+oo M
By 77 N=o0 By >0 without outlier
without outlier without outlier B h-G &R

enaych-Georges&Ra
B h-G & Rao(2010
enaych-Georges&Rao( ) Benavch-Georces& Rac(2010)  (2010)



Deformed models
000080000

Spiked models, localization of outliers

Free subordination properties shed light on these phenomena and
provide a UNIFIED UNDERSTANDING, allowing to extend them
to non-finite rank deformations.



Deformed models
00000e000

Spiked models, localization of outliers

Apn Hermitian deterministic.pua, —n—s+o00 ¥ compactly supported.
The eigenvalues of Ay:

@ N — r (r fixed) eigenvalues §;(N) such that

r’%%_gl; dist(Bi(N), supp(¥)) —n—soc 0

e a finite number J of fixed (independent of N) eigenvalues
(SPIKES) 61 > ... >0, Vi=1,...,J, 6; & supp(v),

each 0; having a fixed multiplicity k;, > ; kj =r.



Deformed models
000000000

Spiked models, localization of outliers

Forlarge N, the B (N) areinside
[

an ¢ neighborhood of the support of 2

SPECTRUM OF AN



Deformed models
000000080

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

gumv(2) = gu(wyuw(2))



Deformed models
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Spiked models, localization of outliers

Naive intuition for general additive deformed models:

gumv(2) = gu(wyuw(2))
My = Bn + AN iy = 15 BAy = Vs vy — pB .

Biunty, (2) = By, (Wp(2))



Deformed models
000000080

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

8(2) = 8u(wpn(2))
My = By + An: By — 1 Ay = Vs vy — B v
Biunty, (2) = By, (Wp(2))
If p ¢ support pH v is a solution of w,, ,(p) = ; for some
ief{l,...,J},
p & support p B v BUT gy, (p) = g, (wu,u(p)) explodes!



Deformed models
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Spiked models, localization of outliers

Naive intuition for general additive deformed models:

8(2) = 8u(wpn(2))
My = By + An: By — 1 Ay = Vs vy — B v
Biunty, (2) = By, (Wp(2))
If p ¢ support pH v is a solution of w,, ,(p) = ; for some
ief{l,...,J},
p & support p B v BUT gy, (p) = g, (wu,u(p)) explodes!

Conjecture:
= The spikes 0;'s of the perturbation Ay that may generate outliers
in the spectrum of My belong to w, , (R \ support p B v)



Deformed models
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Spiked models, localization of outliers

Naive intuition for general additive deformed models:

8(2) = 8u(wpn(2))
My = By + An: By — 1 Ay = Vs vy — B v
Biunty, (2) = By, (Wp(2))
If p ¢ support pH v is a solution of w,, ,(p) = ; for some
ief{l,...,J},
p & support p B v BUT gy, (p) = g, (wu,u(p)) explodes!

Conjecture:

= The spikes 0;'s of the perturbation Ay that may generate outliers
in the spectrum of My belong to w, , (R \ support p B v)

= for large N, the 6;'s such that the equation

W (p) = 0

has solutions p outside support p H v generate eigenvalues of My
in a neighborhood of each of these p...



Deformed models
00000000e

Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:

Wy v (R\support pscHr) = {u € R\support v, / (—x7 < 2

Wysc v

scy
R\ support pusc Bv «— O,  hy ,:z—z+ 0'2g1/(2).



Deformed models
00000000e

Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:
1
Wyee o (R\support psHr) = {u € R\support v, / mdu(x) < ﬁ}
w v
Ly
R\ support pse Bv «— O, hu,,:z+ z+0%g,(2).
Whsc,v

Previous conjecture becomes:
— If [ ﬁdu(x) < % 0; generates outliers in a neigborhood

of p=0; + 0°g,(0;) € R\ support s Bv.



Deformed models
00000000e

Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:
1
Wyee o (R\support psHr) = {u € R\support v, / mdu(x) < ﬁ}
w v
Ly
R\ support pse Bv «— O, hu,,:z+ z+0%g,(2).
Whsc,v

Previous conjecture becomes:
— If [ ﬁdu(x) < % 0; generates outliers in a neigborhood

of p=0; + 0°g,(0;) € R\ support s Bv.

When Ay has finite rank, v = &g, this condition corresponds to
2
|0i| > o and then p = 0; + - .




General spiked deformed models

General spiked deformed models

Solving the problem of outliers
consists in solving an equation
involving the free subordination
function and the spikes of the
perturbation



General spiked deformed models
My = Ay + By
HAy —?N—s4o00 V
HBy —* N—s+oo H
6 € Spect(Ay)

0 multiplicity k;

0 ¢ supp(v)

My = AL ByAL>
HANAL P N—+oo V
HByBj, ~?N—+oo M
0 € Spect(An)

0 multiplicity k;
6 > 0,0 ¢ supp(v)

Deformed models
ceoo

My = (An + Bn)(An + Bn)*
HAyAY, 7 N—+oo V
KByBj, —?N—+oo
6 € Spect(AyAy)
0 multiplicity k;
6 > 0,6 ¢ supp(v)

KMy —N—s+oo BV

LMy —N—s+oo XV

UMy —?N—oo (\//j . ﬁ)2

g(2)= [ 22 (V) =1e(D) -1 HP= a0+ (- oe(d)
guEEu(Z) = gr/(wu,u(z)) wu&u(z) = \Uu(F,u,zz(Z)) HE/C%EECW(Z) = H\(}Z(Qu,u(z))

k; outliers of My
in the neighborhood
of each p s.t

wup(p) =0

k; outliers of My
in the neighborhood

of each p s.t
1 —0

Fu-,u(l//’)

k; outliers of My
in the neighborhood

of each p s.t
1 —0

Qu-r/(l//’)



Deformed models
00®0cC

General spiked deformed models

When Ay has full rank, such results are proved for

/2 /2
An + By (A,Z\) Fu(Aw) (An + Bn)(An + By)
n>0
. By = Wishart By i.i.d matrix
By = Wigner . . .
C.&D-M.&F &F. (2011) Rao'&Sllversteln (2010) Ap diagonal
Bai& Yao(2012) C. (2013)
By = UnDpn Uy, By = UnDpn Uy,
Uy Haar, Dy deterministic| U Haar, Dy > 0 deterministic
KDy 7 N—+oo K KUDy 7 N—+o00 I
B.&B.&C.&F. (2012) B.&B.&C.&F. (2014)

(C.&D-M.&F.&F.=C.&Donati-Martin& Féral&Février)

(B.&B.&C.&F.= Belinschi&Bercovici& C.&Février)



Deformed models
000ecC

General spiked deformed models

FOR ALL DEFORMED MODELS IN THE PREVIOUS ARRAY,
if 0; has multiplicity k; in the spectrum of the deformation, then
for each p which is a solution of the corresponding subordination
equation (for instance in the additive case w,,,(p) = 6;), almost
surely, for all large N, there are exactly k; eigenvalues of My in a
neighborhood of p.




Deformed models
0000

General spiked deformed models

For matricial models in the first row of the previous array, given
one spike 6 there is at most one solution p for the corresponding
equation and everything is explicit:
e Deformed Wigner Whscy
R\ support pse Hry «— O C R\ support v,
1

001, p=0¢1(0) =0+ g, (0). J
eSample covariance matrices 1
F}LMP,V(I/X)
R\ {support ppp X v U{0}} — O, C R\ support v,
2
0€0r p=a(0) =0+ c [ Fdu(t). J

eInformation-Plus-Noise type model

1
X = a7
QNMP,V(I/X)

R\ (vimp R /v)? :> O3 C R\ support v,
®3

0€0s, p=d3(0)=0(1+cg(0)+(1-c)(l+cg(0)) ]




Deformed models
0000c¢

General spiked deformed models

BUT

CONCERNING SOME MODELS OF THE LAST ROW OF THE
PREVIOUS ARRAY (deformations of unitarily invariant matrices),
the restriction to the real line of some subordination maps may be
many-to-one so that for one 6;, there may exist several distinct p
solving the corresponding subordination equation.

= For such models, a single spiked eigenvalue of Ay may
generate several outliers of M.




Deformed models

General spiked deformed models

Example: Deformed GUE

8w (2) = 8u(wi) (2))
(1)

Whiee,v IS injective on R\ support psc B v

walsz,y(p) = 10 has 1 solution

1/1 1 1 1
p=10+ - (210_1+210_1)~10,05.




Deformed models

General spiked deformed models

N=1000




Deformed models

General spiked deformed models

Example

1

We .= GUE(N — 1, —————), Uy Haar matrix independent from we
4(N —1)
we (0)> .
My = + Undiag(=1,...,—1,1,... 1)U;

Nl
Nl

This is not a spiked deformed GUE model and now, the spike
0 = 10 is associated to the matrix approximating the semicircular

g,uscEEV(z) = gl/(wi(iz,l/(z)) = ngc (wl(/?z,sc(z))
wl(,,lsz,,, is injective on R\ support usc B v but wl(,i)tsc may be many

to one. w;(/i)m(p) = 10 has 2 solutions p; and p>.



Deformed models

General spiked deformed models




Deformed models
0000c¢

General spiked deformed models

More funny...(Belinschi&Bercovici&C.&Février (2014))
My = UnBnUyn+An, Uy Haar unitary,  Ap, By deterministic diagonal

:LLBN _> M’ /’LAN % v

0 ¢ supp(v), with multiplicity k in the spectrum of Ay
a ¢ supp(p), with multiplicity / in the spectrum of By

whereas the other eigenvalues are uniformly close to the limiting
supports.

gz (2) = 8u(w(1(2)) = gu(w7)(2)).
If there exists p € R \ supp(u B v) such that

Wl(/?;)t(/’) =«
wM(p) =0

then for all large N, there are k + | outliers of My in a
neighborhood of p.



Deformed models
Eigenvectors associated to outliers

k=1 When N goes to infinity,

J

V eigenvector associated to Gj=)\p(AN)

A

¢ eigenvector associated
to )\m(MN) in]p-0;p +9[




Deformed models
Eigenvectors associated to outliers

if My = Xy + Apn

wy, ,(p)
where «(p) =

pFuv(1/p) _ Al 1/2

Flju(l/P) If MN = AN XNAN
This result is proved
e for Xy + Ay when Xy is a Wigner matrix [C. 2011] and when
the distribution of Xy is unitarily invariant [Benaych-Georges&Rao
(2010) Belinschi&Bercovici& C.& Février (2014)]
o for A}V/2XNA}V/2 when Xy is a Wishart matrix [C. 2011] and when

the distribution of Xy is unitarily invariant [Benaych-Georges&Rao
(2010) Belinschi&Bercovici& C.& Février (2014)]

(for information-plus-noise type models, results of
Benaych-Georges-Rao (2012) dealing with finite rank
perturbations)



Deformed models

Eigenvectors associated to outliers

“Deterministic fundamental measure”

Deformed Wigner matrices
Wy: a Wigner matrix , Ay: Hermitian deterministic.

W
MNZT%—FAN

The deterministic measure
KAy B pesc

plays a central role in the study of the spectrum.
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Eigenvectors associated to outliers

“Deterministic fundamental measure”

Deformed Wigner matrices
Wy: a Wigner matrix , Ay: Hermitian deterministic.

W
MNZT%—FAN

The deterministic measure
KAy B pesc

plays a central role in the study of the spectrum.

@ “No eigenvalue outside the support of this measure”



Deformed models

Eigenvectors associated to outliers

“Deterministic fundamental measure”

Deformed Wigner matrices
Wy: a Wigner matrix , Ay: Hermitian deterministic.

W
MNZT%—FAN

The deterministic measure
KAy B pesc

plays a central role in the study of the spectrum.

@ “No eigenvalue outside the support of this measure”

@ “Exact separation phenomenon” involving this measure



Deformed models

Eigenvectors associated to outliers

“Deterministic fundamental measure”

Deformed Wigner matrices
Wy: a Wigner matrix , Ay: Hermitian deterministic.

W
MNZT%—FAN

The deterministic measure
KAy B pesc

plays a central role in the study of the spectrum.

@ “No eigenvalue outside the support of this measure”
@ “Exact separation phenomenon” involving this measure

@ Universality of the fluctuations at some edges of the support
of this measure



Deformed models

Exact separation phenomenon

Exact separation phenomenon for deformed Wigner model

wn(z) =z— U2gusc53uAN (2) (the subordination map of pisc B p1a, W.r.t a,)
Then, almost surely, for large N,

[a,b] C R\ support (usc B pa,) «— [wn(a),wn(b)]
gap in Spect(Mpy) <— gap in Spect(An)

| | | | -
[ [ [

w
Aiv1(An)  wi(a) wn(b)  N(Aw) -
N-I eigenv‘airlues of Ay | eigenvalues of Ay
| | | |
x x x x
Api(My)  a b M(Mpy) -

N-I eigenvalues of My | eigenvalues of My



Deformed models

Exact separation phenomenon

Exact separation phenomena

involving the additive, multiplicative, rectangular subordination
maps

@ Deformed Wigner matrices
C.&Donati-Martin&Féral&Février (2011)

@ Sample Covariance matrices
Bai&Silverstein (1999)

@ Information-Plus-Noise type models
Loubaton&Vallet (2011) C. (2014)



FLUCTUATIONS AT EDGES



Deformed models
Fluctuations at edges

o2

My = GUE(N, N) + Ay, Ay = diag(ﬂl, ey Bn—r, 01, ... ,9J)

pay — v, v compactly supported.

o max " dist(B:(N),supp(v)) — N0 0
e a finite number J of fixed (independent of N) eigenvalues
(SPIKES) 601 > ... >0, Vi=1,...,J, 0; & supp(v),

each ¢; having a fixed multiplicity k;.



Deformed models
Fluctuations at edges

Assumption: Yu € support(v), f = X)2 > 02
Example, p density of usc Hrv

[ | [ :

do
“merging point” ds
AN

p(x) ~ Cldy — x|2 p(x) ~ Clds —x|>  p(x) ~ C|ds — x| (Biane 97)
For € small enough, for all large N,
Aldi(N) left edge of pa, B pisc in ]di — € di + €]
Aldo(N) “merging point” of pa, B pisc in |do — € do + €]

Jld3(N) right edge of pa, B psc in ]dz —€; d3 + €]



Deformed models
Fluctuations at edges

| | ]
da(N)

A(N) “merging point” ds(N)
T T T
Deformed GUE  Tracy-Widom Pearcey Tracy-Widom

C.&Péché (2014)  at scale N3  atscale Ni at scale N>



Deformed models
Fluctuations at edges

[ | g

dr(N
i (N) . BN d3(N)
merging point
T T T
Deformed GUE  Tracy-Widom Pearcey Tracy-Widom
C.&Péché (2014)  at scale N3  at scale N+ at scale V3
W+D
Lee&Schnelli (2014) Tracy-Widom Tracy-Widom
W-+A at scale N3

at scale N%»
Knowles&Yin (2014)



Deformed models
Fluctuations at edges

[ i ] g

dr(N
amy o, 2N ds(N)
merging point
T T T
Deformed GUE  Tracy-Widom Pearcey Tracy-Widom
C.&Péché (2014)  at scale N3  at scale N+ at scale N3
W+D
Lee&Schnelli (2014) Tracy-Widom Tracy-Widom
W-+A at scale N3 at scale N3

Knowles&Yin (2014)

= Universality of the fluctuations around the edges d;(N) of pa, B fsc

Considering fluctuations around d; (instead of d;(NN)) may imply

making assumption on the rate of convergence of 8ua,, towards g,.
Scherbina (2011)



Deformed models
Fluctuations at edges

Previous works of Brezin&Hikami (1998),
Aptekarev& Bleher&Kuijilars (2004), (2005), Adleré Cafasso& Van
Moerbeke (2007), (2011) when pia, = v is a finite combination of
Dirac Delta masses.




Deformed models

Fluctuations at edges

Fluctuation of outliers

2

g .
MN = GUE(Nvﬁ) +AN7 AN = dlag(ﬁla'- . 7/3N7r7917"' 79J)

ta, — v, v compactly supported.

o max )" dist(B;(N), supp(r)) = n—so0 0
e a finite number J of fixed (independent of N) eigenvalues

(SPIKES) 61 > ... >0, Vi=1,...,J, 6; & supp(v),
each 0, having a f|xed muItlpI|C|ty k;.

Let 6; be such that [ (dV(X)Z <1 and pg, = hy, . (0;). Then, for
€ > 0 small enough, for all large N, supp(fsc B 114, ) has a unique
connected component [L;j(N); D;(N)] inside |pp. — €; po, + €[.

Moreover, the k; outliers of My close to py, fluctuate at rate VN
LI(N)‘ED:'(N)

around as the eigenvalues of a k; x k; GUE.




Deformed models

Fluctuations at edges

Some remarks

Analog results at soft edges for Sample covariance matrices by
Hachem&Hardy&Najim (2014), Lee&Schnelli (2014),
Bao&Pan& Zhou (2014) and for outliers of Sample covariance
matrices by Bai& Yao (2012)




Deformed models

Fluctuations at edges

Some remarks

Remark

Analog results at soft edges for Sample covariance matrices by
Hachem&Hardy&Najim (2014), Lee&Schnelli (2014),
Bao&Pan& Zhou (2014) and for outliers of Sample covariance
matrices by Bai& Yao (2012)

RENEILS

| A

According to previous studies dealing with finite rank
perturbations, universality of fluctuations of outliers of deformed
Wigner models is not expected in full generality.

A\




Deformed models

Fluctuations at edges

Example




Deformed models

Fluctuations at edges

Example

R\ support psc Bv = h,, (O), hypp 12—z + Uzgl,(z)

1 1
O :={u € R\ support 1/,/(u_)<)2d1/(x) < ﬁ}

€O := support v U {u € R\ support v, [ ﬁdu(x) > %}
={ueR, [ ﬁdu(x) > %}

Each connected component of O contains at least one connected
component of support v




Deformed models

Fluctuations at edges

Example

R\ support psc Bv = h,, (O), hy 1z z+ o2g,,(z)

1 1
de(X) < ﬁ}
€O := support v U {u € R\ support v, [ ﬁdu(x) > %}
={ueR, [ ﬁdu(x) > %}

€O support v

O = {u € R\ support 1/,/

—l
—
—

—

11 [

u ap b1 dn bQ: Vi up as b3 Vo



Deformed models

Fluctuations at edges

Example

R\ support psc Bv = h,, (O), hyp 12— z+ a2g,,(z)

€O := support v U {u € R\ support v, f( 2du(x) > %}
—{ueRf( 2du() 02}

€O support v

—h
—
-
—
Y

L] [
u ai bl an by = %1 ur as b3 Vo

h (2 24 0%g,(2).

Msc,V
support puse Hrv

f ] f ]
h)uSC1V(u1) h#sc,”(vl) hPLsoV(uz) hNSC7V(V2)



Fluctuations at edges

Example

1sc B v is absolutely continuous. p: density of usc H v

<O
f ] f —
up =V u» %)
support pse By
{ ] f —
hHSC7V(u]—) h#sc, (V]_) h,usc;V(u2) hNSC7V(V2)
T T N /!

1 the singularity of p 1
P(x) ~ Cld; = x]2 may change! p(x) ~ Cldi = x|2

Deformed models




Deformed models
Fluctuations at edges

Example investigated by Lee &Schnelli (2013) :
dv(x) = Z7H 1+ x)?(1 - X)bf(x)l[_m] (x)dx

where a < 1,b > 1, f is a strictly positive C1-function and Z is a
normalization constant.

/(1_1X)2d”(x) = 0'18
‘O = support v U {u € R\ support v, / %
hyew 2= 2z+ J2g,,(z)
Vo > o9, €O = [uy; V] with

Us < =1 <1< vy, support pBv = [h, ,(Us); e (Vo)
1
p(X) ~ C(hﬂscjl’(vo') - X)2



Deformed models
Fluctuations at edges

Example investigated by Lee &Schnelli (2013) :
dv(x) = Z7H 1+ x)?(1 - X)bf(x)l[_m] (x)dx

where a < 1,b > 1, f is a strictly positive C1-function and Z is a
normalization constant.

1 1
(X)) =
] s 7
1
€O = support v U {u € R\ support 1/,/
u

h,U«sc,l/ rz—z+ O'2g1,(2)

Vo > o9, €O = [uy; V] with
Us < =1 <1< vy, support pBv = [h, ,(Us); e (Vo)
1
p(X) ~ C(hﬂscjl’(vo') - X)2

Vo < og, ‘O = [us; 1], us < =1, support pBv = [h, ., (Us); e (1)]
— p(X) ~ C(hllsc«,V(]‘) - X)b



Deformed models

Fluctuations at edges

Letting the perturbation Ay be random ...
Lee &Schnelli (2014)

W

7%+diag(v1, co V), Vioidd ~ du(x) = Zil(1—|—X)a(1—x)bf(x)1[,1’1](x)dx
a<l,b>1,f>0 Cl-function.

o defined by [ ﬁdu(x) = L, support pusc Br = [d;; df

Jg’
oVo > oo, p(x) ~ C(dS — X)%
df(N): upper right edge of support psc B pa,,

N2/3(A\y(Mp) — dF (N)) 2 Tw,



Deformed models

Fluctuations at edges

Letting the perturbation Ay be random ...
Lee &Schnelli (2014)

1%
7%+diag(v1, co V), Vioidd ~ du(x) = Zil(1—|—X)a(1—x)bf(x)1[,1’1](x)dx
a<l,b>1,f>0 Cl-function.
o defined by [ ﬁdu(x) = L, support pusc Br = [d;; df
90
oVo > oo, p(x) ~ C(dS — X)%
df(N): upper right edge of support psc B pa,,

N2/3(A\y (M) — dif (N)) 25 TW,

[

VN(dF(N) — dF) 2 N(0, a(o, v))

g



Deformed models

Fluctuations at edges

Letting the perturbation Ay be random ...
Lee &Schnelli (2014)

1%
7%+diag(v1, co V), Vioidd ~ du(x) = Zil(1—|—X)a(1—x)bf(x)1[,1’1](x)dx
a<l,b>1,f>0 Cl-function.
o defined by [ ﬁdu(x) = L, support pusc Br = [d;; df
90
oVo > oo, p(x) ~ C(dS — X)%
df(N): upper right edge of support psc B pa,,

N2/3(A\y (M) — dif (N)) 25 TW,

[

VN(dF(N) — dF) 2 N(0, a(o,v)

g

)}:> VNOL(My) - dF) B N (0,a(0,1))



Deformed models

Fluctuations at edges

Letting the perturbation Ay be random ...
Lee &Schnelli (2014)

W

7%+diag(v1, co V), Vioidd ~ du(x) = Zil(1—|—X)a(1—x)bf(x)1[,1’1](x)dx
a<l,b>1,f>0 Cl-function.

o defined by [ ﬁdu(x) = L, support pusc Br = [d;; df

a5’
o¥o > a9, p(x) ~ C(dj — x)2.
df(N): upper right edge of support psc B pa,,

N2/3(A\y (M) — dif (N)) 25 TW, b o
V(4 (N) - df gN(O,a(U,V))}:> VNQ (M) = d77) = N(0,a(,))

)
oVo < 09, p(x) ~ C(dF — x)P
N5 (A (My) — df) 25 Gpia(s)

as N goes to infinity, where Gp1(s) = (1 — exp((%)bﬂ))l[o +oo[(5)
(Weibull distribution with parameters b+ 1 and ¢ .= c(v,0)).
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