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Quantum states and von Neumann measurements

a state of a quantum system – a unit element |ψ〉 of a Hilbert
space H
in this talk: N-level systems – H = HN ' CN

a non-degenerate von Neumann measurement:
N possible outcomes a1, . . . ,aN ,
an orthonormal basis |e1〉, . . . , |eN〉 ∈ HN .
the probability of getting answer ai for a system in state |ψ〉 is
pi = |〈ψ|ei〉|2.
sometimes we will identify |ei〉’s with columns of a unitary matrix.

In principle all unitary matrices can be realised in experiments
(Reck, Zeilinger, Bernstein, Bertani, 1994)
If a1, . . . ,aN ∈ R then one associates with the measurement a
Hermitian operator (observable) A =

∑N
i=1 ai |ei〉〈ei |. We then

have
mean output: 〈A〉ψ = 〈ψ|A|ψ〉
standard deviation: (∆ψ(A))2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.
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Heisenberg Uncertainty Principle

mean output: 〈A〉ψ = 〈ψ|A|ψ〉
standard deviation: (∆ψ(A))2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.

Theorem (Heisenberg UP)
For any two Hermitian operators A,B on H and any state |ψ〉

∆2
ψ(A)∆2

ψ(B) ≥ 1
4

∣∣∣〈ψ|[A,B]|ψ〉
∣∣∣2,

where [A,B] = AB − BA.

In particular if [A,B] = cId then

inf
ψ

∆2
ψ(A)∆2

ψ(B) ≥ 1
4
|c|2,

First for position and momentum operators on L2(R) (Heisenberg)
Depends on A,B rather then just on the measurement basis, the
outputs have to be numerical
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Entropic uncertainty principle

A natural way to quantify uncertainty corresponding to a random
variable is Shannon’s entropy

Definition
Shannon’s entropy of a probability vector p = (p1, . . . ,pN) is defined as

H(p) =
N∑

i=1

−pi ln pi .

H(p) ≥ 0 (H(p) = 0 only if p = δi - no uncertainty),
Jensen’s ineq. =⇒ H(p) ≤ ln N (equality only for the uniform
distr. – greatest uncertainty),

Question: For two basis |e1〉, . . . , |eN〉 and |v1〉, . . . , |vN〉 can we
find conditions guaranteeing that

min
ψ

(
H(pψ) + H(qψ)

)
is large where pψ = (|〈ψ|ei〉|2)N

i=1, qψ = (|〈ψ|vi〉|2)N
i=1?
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Some history – continuous case

The use of Shannon’s entropy (of probability densities) was
postulated first independently by Hirschmann and Everett (1957)
who conjectured an uncertainty principle for the position and
momentum operators.
The proof was provided by Białynicki-Birula and Mycielski and by
Beckner in 1975 (both based on Beckner’s results for the Fourier
transform)
The entropic version of Heisenberg’s principle for position and
momentum is known to imply the version with standard deviations.



Back to finite dim.: Deutsch, Maasen-Uffink & Coles-Piani ineq.

Question: For two bases |e1〉, . . . , |eN〉 and |v1〉, . . . , |vN〉. Find lower
bounds on

min
ψ

(
H(pψ) + H(qψ)

)
,

where p = (|〈ψ|ei〉|2)N
i=1, q = (|〈ψ|vi〉|2)N

i=1?

U = [Uij ]
N
i,j=1 := [〈ei |vj〉]Ni,j=1, c := max

i,j
|Uij |.

Deutsch (1983): minψ
(

H(pψ) + H(qψ)
)
≥ −2 ln 1+c

2

Maasen-Uffink (1988): minψ
(

H(pψ) + H(qψ)
)
≥ − ln c2

Coles-Piani (2014):
minψ

(
H(pψ) + H(qψ)

)
≥ − ln c2 + (1− c) ln(c/c2), where c2 –

second largest element of U.
This is optimal for mutually unbiased bases (|〈ei |vj〉|2 = 1

N for all
i , j , e.g. standard and Fourier bases):

min
ψ

(
H(pψ) + H(qψ)

)
≥ ln N.
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More than two measurements

One can also consider a larger number of measurements, given
by unitaries U(1), . . . ,U(L). If for i = 1, . . . ,L, the probability
vectors p(ψ,i) = (p(i)

1 , . . . ,p(i)
N ) are given by p(i)

j = |〈ψ|U(i)|ej〉|2,
what can be said about

min
ψ

1
L

L∑
i=1

H(p(ψ,i))?

The best possible lower bound is L−1
L ln N.

Taking pairwise mutually unbiased bases we get via
Maasen-Uffink’s bound:

min
ψ

1
L

L∑
i=1

H(p(ψ,i)) ≥ 1
2

ln N.

This turns out to be optimal for MUB’s if L ≤
√

N + 1, N = P2l , P -
prime (Ballester-Wehner 2007).
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Pairwise MUB’s:

min
ψ

1
L

L∑
i=1

H(p(ψ,i)) ≥ 1
2

ln N.

Optimal for MUB’s if L ≤
√

N + 1.

For L = N + 1 MUB’s (maximal possible), then

min
ψ

1
L

L∑
i=1

H(p(ψ,i)) ≥ ln(N + 1)− 1.

Ivanovic (1992), Sanchez-Ruiz (1993).
For L > 2 but small wrt. N, random constructions only: Hayden et
al. (2004). If U1, . . . ,UL are random unitary matrices and
L ≥ (ln N)4, then with high probability as N →∞

min
ψ

1
L

L∑
i=1

H(p(ψ,i)) ≥ ln N −O(1) =
L− 1

L
ln N −O(1).
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Method of proof: H is roughly ln N Lipschitz→ concentration of
measure, ε-nets and union bounds.

Question

Can you do it for smaller L? Motivation:
L = 2 – optimal deterministic constructions known, but what’s the
behaviour for generic bases?
2 < L� N – no deterministic constructions. Proof of existence by
probabilistic methods.
L = 2 – check optimality of known uncertainty relations on generic
data.
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Theorem (Latała, Puchała, Życzkowski, A. (2014))
Let U be an N × N random unitary matrix. With probability converging
to one as N →∞ for any two basis (|ei〉)N

i=1, (|vi〉)N
i=1, such that

U = [〈ei |vj〉]Ni,j=1

ln N − C0 ≥ min
ψ

(
H(pψ) + H(qψ)

)
≥ ln N − C1,

for any C0 < 1− γ ' 0.42 and C1 ' 3.49.

Theorem (Latała, Puchała, Życzkowski, A. (2014))
In the setting with L measurements, if the bases are given by i.i.d.
random unitary matrices, then with probability converging to one
(uniformly in L ≥ 2) as N →∞,

min
ψ

1
L

L∑
i=1

H(p(ψ,i)) ≥ L− 1
L

ln N − C2,

where C2 is a universal constant.
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Recall the Maasen-Uffink bound:

min
ψ

(
H(pψ) + H(qψ)

)
≥ − ln c2,

where c = max |Uij |.

For a random unitary matrix c '
√

2 ln N
N (Jiang).

Therefore the Maasen-Uffink ineq. gives

min
ψ

(
H(pψ) + H(qψ)

)
≥ ln N − ln ln N − ln 2.

and therefore is suboptimal for generic data.
One can also show that the Coles-Piani ineq. gives on generic
matrices a bound not better than

min
ψ

(
H(pψ) + H(qψ)

)
≥ ln N − ln ln N − 1

2
ln 2.
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)
≥ ln N − ln ln N − 1

2
ln 2.



Main tool. Majorization and Schur concavity

Definition
If p = (p1, . . . ,pn), q = (q1, . . . ,qn) are two non-negative vectors than
we say that p is majorized by q (p ≺ q) if

k∑
i=1

p↓i ≤
k∑

i=1

q↓i , k = 1, . . . ,n,

with equality for k = n, where x↓1 ≥ . . . ≥ x↓n is the non-increasing
rearrangement of the coordinates of x.
We say that a function F : [0,∞)n → R is Schur concave if f (p) ≥ f (q),
whenever p ≺ q.

Theorem (Schur)
A differentiable function F is Schur concave iff it is permutation
invariant and for all x, (x1 − x2)(∂F (x)

∂x1
− ∂F (x)

∂x2
) ≤ 0.



Corollary: F (x) = −
∑

i xi ln xi is Schur concave. In particular if p ≺ q,
then H(p) ≥ H(q).

Majorization entropic uncertainty relations

For the unitary matrix U = [〈ei |vj〉]Ni,j=1 and set s0 = 0 and for k ≥ 1,

sk = max{‖A‖ : A is an n ×m submatrix of U , n + m = k + 1}.

Theorem (Rudnicki, Puchała, Życzkowski (2014))

For any two bases (|ei〉)N
i=1 and (|vi〉)N

i=1 and any state |ψ〉, Let
x1, . . . , x2N be the coordinates of pψ ⊕ qψ. Then for all k,

x↓1 + . . .+ x↓k ≤ 1 + sk−1.

As a consequence pψ ⊕ qψ ≺ (1, s1, s2 − s1, . . . , sN−1 − sN−2) and
minψ(H(pψ) + H(qψ)) ≥ −

∑
i(si − si−1) ln(si − si−1).

Remark: This is not directly comparable with the Maasen-Uffink
bound.



Random unitaries. Norms of submatrices

Lemma (Latała, Puchała, Życzkowski, A.)
Let U be an N × N random unitary matrix and

U(n,m) = max{‖A‖ : A is an n ×m submatrix of U}

Then for all m,n and all ε ∈ [0,1/3]

E‖U(n,m)‖ ≤

1
1− 2ε− ε2

√
2

2N − 1

(
m ln

eN
m

+ n ln
eN
n

+ 2(n + m) ln(1 +
2
ε

)

)1/2

.

The method of proof is completely standard, just the union bound and
concentration of measure on the sphere (however now we deal with
1-Lipschitz functions). Note that for fixed n,m (indep. of N) it gives

U(n,m) ≤ (1 + oP(1))

√
n + m

N
ln N as N →∞.



Asymptotic uncertainty relation for two measurements

As a consequence with probability tending to one as N →∞, for all
1 ≤ k ≤ N − 1,

sk ≤ mk :=

√
4.18

k + 1
N

(
1 + ln

(
2N

k + 1

))
.

This bound is clearly suboptimal for large k (as the rhs exceeds one),
but it suffices for proving the uncertainty principle for random unitaries
by slightly tedious but straightforward calculations:

mk −mk−1 ≤ 1
N

√
4.18 ln 2N

i

2
√

i
N ln 2eN

i

=: ri .

N0 = max{i :
∑i

k=1 rk < 1}, R = (r1, . . . , rN0 ,1− rN0)

We have pψ ⊕ qψ ≺ (1)⊕ R, so H(pψ) + H(qψ) ≥ H(R).
We estimate H(R) ≥ ln N − 3.49.

Many measurements: similar ideas
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Random unitaries. Norms of submatrices

Recall that

U(n,m) = max{‖A‖ : A is an n ×m submatrix of U}

It is not difficult to obtain lower and upper bounds on U(n,m) which
differ by an absolute constant:

1
C

√
n
N

ln
(eN

n

)
+

m
N

ln
(eN

m

)
≤ U(n,m) ≤ C

√
n
N

ln
(eN

n

)
+

m
N

ln
(eN

m

)
with probability tending to one as N →∞. On the other hand we saw
that for n,m independent on N,

U(n,m) ≤ (1 + oP(1))

√
n + m

N
ln N as N →∞.

Question: What is the precise behaviour of U(n,m) for large N?
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Lower bounds on norms of submatrices

Theorem (Latała, Puchała, Życzkowski, A. (2014))
If n,m are fixed (independent of N), then for every ε > 0 with pr.
tending to one,

(1− ε)

√
n + m

N
ln N ≤ U(n,m) ≤ (1 + ε)

√
n + m

N
ln N.

Theorem (Latała, Puchała, Życzkowski, A. (2014))
For all ε > 0, with pr. tending to one, for all n = 1, . . .N,

(1− ε)

√
n + 1

N

(
1 + ln

(N
n

))
≤ U(n,1) ≤ (1 + ε)

√
n + 1

N

(
1 + ln

(N
n

))
.
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A few words about the proof of the lower bounds

For the case of fixed n,m we use a result by Jiang on coupling of
U and a complex Ginibre matrix and then some simple
combinatorics. It turns out that in this case the maximum spectral
norm of a submatrix is roughly the same as the maximum
Hilbert-Schmidt norm.
For the case of n × 1 submatrices we split into

n < n0 – reduces to fixed size submatrices

n > n0 – enough to look at subvectors of a single column (call it X )
only. But X ∼ Unif (SN−1

C ) an we look at√√√√ n∑
i=1

(|Xi |2)↓.

It is known that (|Xi |2)N
i=1 is distributed uniformly on the simplex, so

expectation reduces to calculating barycenters.
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Final comments

The main message: Random unitaries satisfy with high
probability almost optimal entropic uncertainty relations for an
arbitrary number of measurements. The analysis of this
phenomenon becomes quite easy if one uses majorization and
Schur concavity.

For random measurements

ln N − C0 ≥ Emin
ψ

(
H(pψ) + H(qψ)

)
≥ ln N − C1,

Question: Does there exist a limit

lim
N→∞

(
ln N − Emin

ψ

(
H(pψ) + H(qψ)

))
?

How to construct explicit matrices satisfying almost optimal
entropic uncertainty relations for L > 2?
What is the precise behaviour of maximum norms of submatrices
of an N × N random unitary matrix beyond the cases of fixed size
or n × 1 submatrices?
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Thank you


