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Background

Consider the framework of a large dimensional dynamic k-factor model
with lag q

Rt =

q∑
i=0

ΛiFt−i + et , t = 1, ...,T

Λi : n × k non-random matrices with full rank

Ft : k × 1 iid standard complex random vector

et : n × 1 iid complex, mean zero, variance σ2, independent of Ft

a information-plus-noise type model
(Dozier & Silverstein, 2007a, b; Bai & Silverstein, 2012)

n,T →∞, with n
T → c > 0

k , q small and fixed but unknown
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Motivation

Under this high dimensional setting, an important statistical problem is
to estimate k and q (Bai & Ng, 2002; Harding, 2012).
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Notations

For fixed τ , define

Φn(τ) =
1

2T

T∑
j=1

(RjR
∗
j+τ + Rj+τR∗j )

=
1

2T

{
Λ
(
F0F

′
τ + FτF

′
0

)
Λ′
}

+

1

2T

{(
E0F

′
τΛ′ + ΛFτE′0

)
+
(

EτF
′
0Λ′ + ΛF0E′τ

)}
+

1

2T

(
E0E′τ + EτE′0

)
,

Mn(τ) =
1

2T

T∑
j=1

(eje
∗
j+τ + ej+τe∗j )

=
1

2T

(
E0E′τ + EτE′0

)
.
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Notations

Here,

Λ = (Λ0,Λ1, · · · ,Λq)n×k(q+1),

Fτ =


FT+τ FT+τ−1 · · · Fτ+1

FT+τ−1 FT+τ−2 · · · Fτ
...

...
...

...
FT+τ−q FT+τ−1−q · · · Fτ+1−q


k(q+1)×T

,

Eτ = (eT+τ , eT+τ−1, · · · , eτ+1)n×T .
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Case τ = 0

Fact 1:

Mn(0) =
1

T

T∑
j=1

eje
∗
j

a standard sample covariance matrix

the LSD is MP law (Marčenko and Pastur, 1967) with density

fc(x) =
1

2πcx

√
(bc − x)(x − ac), x ∈ [ac , bc ]

and a point mass 1− 1/c at the origin if c > 1.
Here c = limn→∞

n
T , ac = (1−

√
c)2 and bc = (1 +

√
c)2.
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Case τ = 0

Fact 2:

Recall Λ = (Λ0,Λ1, · · · ,Λq)n×k(q+1)

⇒ CovRt = σ2I + ΛΛ∗ ∼
(
σ2I + Λ∗Λ 0

0 σ2I

)
a spiked population model (Johnstone, 2001; Baik & Silverstein,
2006; Bai & Yao, 2008) with population eigenvalue
λ1 ≥ λ2 ≥ · · · ≥ λk(q+1) > σ2 = · · · = σ2.

when Λ∗Λ is “not small”, sample eigenvalue
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k(q+1) > (σ2bc) ≥ λ̂k(q+1)+1 · · · ≥ λ̂n.

⇒ Can estimate k(q + 1) by counting the number of eigenvalues > σ2bc .
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So, what remains ...

is to estimate k and q separately.

To do so, we need to investigate the case for at least one τ ≥ 1.
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Main Result

Theorem 1 (Jin et al. (2014))

Assume:

(a) τ ≥ 1 is a fixed integer.

(b) ek = (ε1k , · · · , εnk)′, k = 1, 2, ...,T + τ , are n dimensional
vectors of independent standard complex components with
sup1≤i≤n,1≤t≤T+τ E|εit |2+δ ≤ M <∞ for some δ ∈ (0, 2], and for
any η > 0,

1

η2+δnT

n∑
i=1

T+τ∑
t=1

E(|εit |2+δI (|εit | ≥ ηT 1/(2+δ))) = o(1). (1)

(c) n/(T + τ)→ c > 0 as n,T →∞.

(d) Mn =
∑T

k=1(γkγ
∗
k+τ + γk+τγ

∗
k), where γk = 1√

2T
ek .
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Main Result

Theorem 1 (Jin et al. (2014)) (cont’d)

Then as n,T →∞, FMn
D→ Fτ a.s. and Fτ has a density function

φc(x) = 1
2cπ

√
y2
0

1+y0
− (1−cx + 1√

1+y0
)2, |x | ≤ dc ,

where

dc =

{
(1−c)

√
1+y1

y1−1 , c 6= 1,

2, c = 1,

y0 is the largest real root of the equation:

y3 − (1−c)2−x2
x2

y2 − 4
x2
y − 4

x2
= 0;

and y1 is the only real root of the equation:
((1− c)2 − 1)y3 + y2 + y − 1 = 0
such that y1 > 1 if c < 1 and y1 ∈ (0, 1) if c > 1.
Further, if c > 1, then Fτ has a point mass 1− 1/c at the origin.
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Main Result

Figure 1 : φc(x) with c = 0.2
(black), 0.5 (blue) and 0.7 (red).

Figure 2 : φc(x) with c = 1.5 (black),
2 (blue) and 2.5 (red). The area under
each curve is 1/c .
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Motivation

Once the LSD of Mn(τ) is derived, it is observed that the number of
eigenvalues of Φn(τ) that lie outside the support of the LSD of Mn(τ) at
lags 1 ≤ τ ≤ q is different from that at lags τ > q. Thus, the estimates of
k and q can be separated by counting the number of eigenvalues of Φn(τ)
that lie outside the support of the LSD of Mn(τ) from τ = 0, 1, 2, · · · , q,
q + 1, · · · .

It is worth noting that for this method to work, we require that with
probability 1, there is no eigenvalues outside the the support of the LSD of
Mn(τ) so that if an eigenvalue of Φn(τ) goes out of the support of the
LSD of Mn(τ), it must come from the information part.

This motivates us to establish the limits of the largest and smallest
eigenvalues of Mn(τ), after showing that with probability 1 no eigenvalues
exist outside the support of the LSD of Mn(τ).

Z. D. Bai (NENU) Order Determination of DFM Jan. 09, 2015 15 / 32



Motivation

Once the LSD of Mn(τ) is derived, it is observed that the number of
eigenvalues of Φn(τ) that lie outside the support of the LSD of Mn(τ) at
lags 1 ≤ τ ≤ q is different from that at lags τ > q. Thus, the estimates of
k and q can be separated by counting the number of eigenvalues of Φn(τ)
that lie outside the support of the LSD of Mn(τ) from τ = 0, 1, 2, · · · , q,
q + 1, · · · .

It is worth noting that for this method to work, we require that with
probability 1, there is no eigenvalues outside the the support of the LSD of
Mn(τ) so that if an eigenvalue of Φn(τ) goes out of the support of the
LSD of Mn(τ), it must come from the information part.

This motivates us to establish the limits of the largest and smallest
eigenvalues of Mn(τ), after showing that with probability 1 no eigenvalues
exist outside the support of the LSD of Mn(τ).

Z. D. Bai (NENU) Order Determination of DFM Jan. 09, 2015 15 / 32



Motivation

Once the LSD of Mn(τ) is derived, it is observed that the number of
eigenvalues of Φn(τ) that lie outside the support of the LSD of Mn(τ) at
lags 1 ≤ τ ≤ q is different from that at lags τ > q. Thus, the estimates of
k and q can be separated by counting the number of eigenvalues of Φn(τ)
that lie outside the support of the LSD of Mn(τ) from τ = 0, 1, 2, · · · , q,
q + 1, · · · .

It is worth noting that for this method to work, we require that with
probability 1, there is no eigenvalues outside the the support of the LSD of
Mn(τ) so that if an eigenvalue of Φn(τ) goes out of the support of the
LSD of Mn(τ), it must come from the information part.

This motivates us to establish the limits of the largest and smallest
eigenvalues of Mn(τ), after showing that with probability 1 no eigenvalues
exist outside the support of the LSD of Mn(τ).

Z. D. Bai (NENU) Order Determination of DFM Jan. 09, 2015 15 / 32



Main Results

Theorem 2

Assume:

(a) τ ≥ 1 is a fixed integer.

(b) ek = (ε1k , · · · , εnk)′, k = 1, 2, ...,T + τ , are n-vectors of
independent standard complex components with supi ,t E|εit |4 ≤ M
for some M > 0.

(c) There exist K > 0 and a random variable X with finite fourth
order moment such that, for any x > 0, for all n,T
1
nT

∑n
i=1

∑T+τ
t=1 P(|εit | > x) ≤ KP(|X | > x).

(d) cn ≡ n/T → c > 0 as n→∞.

(e) Mn =
∑T

k=1(γkγ
∗
k+τ + γk+τγ

∗
k), where γk = 1√

2T
ek .

(f) The interval [a,b] lies outside the support of Fτ .

Then P (no eigenvalues of Mn appear in [a, b] for all large n) = 1.
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Main Results

Theorem 3

Assuming conditions (a)–(e) in Theorem 2 hold, we have

lim
n→∞

λmin(Mn) = −dc a.s. and lim
n→∞

λmax(Mn) = dc a.s.

Here, −dc and dc are the left and right boundary points of the support of
the LSD of Mn, as defined in Theorem 1.
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Simulation
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Figure 3 : φc(x) and plot of sample
eigenvalues with τ = 1, c = 0.2
(n = 200,T = 1000).
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Figure 4 : φc(x) and plot of sample
eigenvalues with τ = 1, c = 2.5
(n = 2500,T = 1000).
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Estimation of k and q

Recall that k(q + 1) can be estimated by counting the number of spiked
eigenvalues of Φn(0).

For τ ≥ 1, we have

Φn(τ) =
1

2T

{
Λ
(
F0F

′
τ + FτF

′
0

)
Λ′
}

+

1

2T

{(
E0F

′
τΛ′ + ΛFτE′0

)
+
(

EτF
′
0Λ′ + ΛF0E′τ

)}
+

Mn,
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Estimation of k and q

Define B1 = ΛQ and B = (B1
...B2) is an n × n orthogonal matrix, where

Q = (Λ′Λ)−1/2.

Then, B′Φn(τ)B =

(
B′1Φn(τ)B1 B′1Φn(τ)B2

B′2Φn(τ)B1 B′2Φn(τ)B2

)
.

Note that B2Λ = 0, we have

B′1Φn(τ)B1 ∼ QAτQ + B′1MnB1

B′1Φn(τ)B2 = B′1MnB2 +
1

2T
Q(F0E∗τ + FτE∗0)B2

B′2Φn(τ)B1 = B′2MnB1 +
1

2T
B′2(E0F∗τ + EτF∗0)Q

B′2Φn(τ)B2 = B′2MnB2.

where (Aτ )k(q+1)×k(q+1) is the matrix with 1’s on upper and lower kτ
diagonals and 0’s elsewhere.
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Estimation of k and q

If ` is a root of Φn(τ) but not a root of B′2MnB2, then

0 =

∣∣∣∣B′1Φn(τ)B1 − `I B′1Φn(τ)B2

B′2Φn(τ)B1 B′2Φn(τ)B2 − `I

∣∣∣∣
Since |B′2Φn(τ)B2 − `I| = |B′2MnB2 − `I| 6= 0, we have∣∣B′1Φn(τ)B1 − `I− B′1Φn(τ)B2(B′2MnB2 − `I)−1B′2Φn(τ)B1

∣∣ = 0

After certain simplification, the equation above can be shown equivalent to

∣∣Aτ −
(
`+

cm(`)

1− c2m2(`) +
√

1− c2m2(`))

)
Q−2 − cm(`)

2
√

1− c2m2(`)
Ik×(q+1)

∣∣ = 0.

Z. D. Bai (NENU) Order Determination of DFM Jan. 09, 2015 22 / 32



Estimation of k and q

The above equation is the key relation between signals and the observed
spikes.

Generally, it is not easy to identify the point-wise transaction rule between
the signals (eigenvalues of Q2) and spikes (solutions of the equation in `).

However, if the matrices Aτ and Q2 are commutative, the transition
phenomenon becomes clear, that is, there is a common orthogonal matrix
O to simultaneously diagonalize the two matrices, i.e., we have
Aτ = ODτO′ and Q2 = ODλO′, where Dτ = diag[a1, · · · , ak(q+1)] and
Dλ = diag[λ1, · · · , λk(q+1)].

Then, the equation becomes

aj −
(
`+ cm(`)

1−c2m2(`)+
√

1−c2m2(`))

)
λ−1j −

cm(`)

2
√

1−c2m2(`)
= 0,

j = 1, 2 · · · , k(q + 1).
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Estimation of k and q

Case 1. If aj ≥ 0 and g(d(c)) > aj , then the equation aj = g(`) doesn’t
have a solution in the interval (d(c),∞) because g(`) is increasing and
continuous, where

g(`) =
(
`+

cm(`)

1− c2m2(`) +
√

1− c2m2(`))

)
λ−1j +

cm(`)

2
√

1− c2m2(`)
.

On the interval (−∞,−d(c)) it does not have solution either because
g(`) < g(−d(c)) = −g(d(c)) < 0. Thus, the equation aj = g(`) does not
have any solution.

Case 2. If aj ≥ 0 and aj ≥ g(d(c)) > 0, then the equation aj = g(`) has a
solution in the interval (d(c),∞), and on the interval (−∞,−d(c)) it
does not have solution either because aj ≥ 0 and g(`) ≤ g(−d(c)) < 0.
Thus, the equation aj = g(`) has only one solution.
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Estimation of k and q

Case 3. If aj ≥ 0 and aj > −g(d(c)) ≥ 0, then the equation aj = g(`) has
a solution in the interval (d(c),∞), and on the interval (−∞,−d(c)) it
does not have any solution because aj > g(−d(c)) ≥ g(`) when
` < −d(c).

Case 4. If −g(d(c)) ≥ aj ≥ g(d(c)), then the equation aj = g(`) has a
solution in the interval (d(c),∞) and another solution on the interval
(−∞,−d(c)). Especially when aj = 0, the case is true.

Similarly, we may discuss the cases when aj ≤ 0.

Since m(d(c)) < 0, we have g(d(c)) < 0 provided that λj is large enough.
Thus, case 1 doesn’t happen in general.
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Estimation of k and q

Therefore, the number of spiked eigenvalues of Φn(τ) satisfies

p̂(τ)→


k(q + 1), τ = 0
2k(q + 1)− h(τ), 1 ≤ τ ≤ q
2k(q + 1), τ > q.

where h(τ) = 2 ·# {j , g(d(c)) > |aj |}+# {j , |aj | > |g(d(c))| > 0}.

Generally, the first case doesn’t happen, unless λj is very small.

Transition threshold:

λ0(c) = −
2
√

1− c2m2(d(c))
(
d(c) + cm(d(c))

(1−c2m2(d(c)))+
√

1−c2m2(d(c))

)
cm(d(c))

That is, when λj > λ0(c), then gj(d(c)) < 0.
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Estimation of k and q

Algorithm

Count the number of spiked eigenvalues of Φn(0), ̂k(q + 1).

For τ = 1, 2, · · · , count the number of spiked eigenvalues of Φn(τ)

and stop at the smallest lag q̂ + 1, at which the number jumps to

2 ̂k(q + 1).

Set k̂ =
̂k(q+1)

q̂+1
and q̂ = q̂ + 1− 1.
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Simulation

Figure 5 : Sample eigenvalues plots for a factor model with no factors with
n = 450, T = 500, k = 0, q = 0 and σ2

ε = 1.
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Simulation

Figure 6 : Sample eigenvalues plots for a factor model with n = 450, T = 500,
k = 2, q = 0 and σ2

ε = 1.
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Simulation

Figure 7 : Sample eigenvalues plots for a factor model with n = 450, T = 500,
k = 2, q = 1 and σ2

ε = 1.
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Simulation

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

10.4834 13.2847 9.6398 4.5707 4.1978 4.3652
10.1067 12.8983 9.3054 4.5100 3.7982 4.2543
9.5428 10.5731 8.9893 3.7854 3.5023 3.6568
8.1918 9.7048 8.8115 3.4964 3.2956 3.2796
7.8733 2.7132 3.0196 3.4424 2.9948 3.2131
7.6733 2.2934 2.8472 3.2752 2.8658 3.0014
1.8057 2.0844 2.7571 3.1088 2.8206 2.9009
1.7851 1.9410 2.7238 2.4418 2.6166 2.7364
1.7475 1.7971 1.8099 2.4222 2.6032 2.5338
1.7273 1.7096 1.7313 2.3283 2.4414 2.1618
1.7090 1.7068 1.7232 2.1798 2.3751 2.1310
1.6787 1.6803 1.6998 2.0149 2.1294 1.9938
1.6619 1.6418 1.6874 1.8028 1.7561 1.7109

Table 1 : Absolute values of the largest eigenvalues of Φn at various lags, for
c = 0.9, bc = (1 +

√
c)2 = 3.7974, dc = 1.8573.
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Thank you!
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