Order Determination of Large Dimensional Dynamic Factor Model

Z. D. Bai

baizd@nenu.edu.cn
School of Math. \& Stat.

Joint work with
Baisuo Jin, Chen Wang, Krishnan K. Nair and Matthew Harding
2015 Hong Kong Workshop on Random Matrix

Jan. 09, 2015

Outline

(1) Introduction
(2) Limiting Spectral Distribution
(3) Strong Limit of Extreme Eigenvalues
(4) Application

Background

Consider the framework of a large dimensional dynamic k-factor model with lag q

$$
\mathbf{R}_{t}=\sum_{i=0}^{q} \boldsymbol{\Lambda}_{i} \mathbf{F}_{t-i}+\mathbf{e}_{t}, \quad t=1, \ldots, T
$$

- $\boldsymbol{\Lambda}_{i}: n \times k$ non-random matrices with full rank
- $\mathbf{F}_{t}: k \times 1$ iid standard complex random vector
- $\mathbf{e}_{t}: n \times 1$ iid complex, mean zero, variance σ^{2}, independent of \mathbf{F}_{t}
- a information-plus-noise type model
(Dozier \& Silverstein, 2007a, b; Bai \& Silverstein, 2012)
- $n, T \rightarrow \infty$, with $\frac{n}{T} \rightarrow c>0$
- k, q small and fixed but unknown

Motivation

Under this high dimensional setting, an important statistical problem is to estimate k and q (Bai \& Ng, 2002; Harding, 2012).

Notations

For fixed τ, define

$$
\begin{aligned}
\boldsymbol{\Phi}_{n}(\tau)= & \frac{1}{2 T} \sum_{j=1}^{T}\left(\mathbf{R}_{j} \mathbf{R}_{j+\tau}^{*}+\mathbf{R}_{j+\tau} \mathbf{R}_{j}^{*}\right) \\
= & \frac{1}{2 T}\left\{\boldsymbol{\Lambda}\left(\mathbf{F}_{0} \mathbf{F}_{\tau}^{\prime}+\mathbf{F}_{\tau} \mathbf{F}_{0}^{\prime}\right) \boldsymbol{\Lambda}^{\prime}\right\}+ \\
& \frac{1}{2 T}\left\{\left(\mathbf{E}_{0} \mathbf{F}_{\tau}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{\tau} \mathbf{E}_{0}^{\prime}\right)+\left(\mathbf{E}_{\tau} \mathbf{F}_{0}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{0} \mathbf{E}_{\tau}^{\prime}\right)\right\}+ \\
& \frac{1}{2 T}\left(\mathbf{E}_{0} \mathbf{E}_{\tau}^{\prime}+\mathbf{E}_{\tau} \mathbf{E}_{0}^{\prime}\right)
\end{aligned}
$$

Notations

For fixed τ, define

$$
\begin{aligned}
\boldsymbol{\Phi}_{n}(\tau)= & \frac{1}{2 T} \sum_{j=1}^{T}\left(\mathbf{R}_{j} \mathbf{R}_{j+\tau}^{*}+\mathbf{R}_{j+\tau} \mathbf{R}_{j}^{*}\right) \\
= & \frac{1}{2 T}\left\{\boldsymbol{\Lambda}\left(\mathbf{F}_{0} \mathbf{F}_{\tau}^{\prime}+\mathbf{F}_{\tau} \mathbf{F}_{0}^{\prime}\right) \boldsymbol{\Lambda}^{\prime}\right\}+ \\
& \frac{1}{2 T}\left\{\left(\mathbf{E}_{0} \mathbf{F}_{\tau}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{\tau} \mathbf{E}_{0}^{\prime}\right)+\left(\mathbf{E}_{\tau} \mathbf{F}_{0}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{0} \mathbf{E}_{\tau}^{\prime}\right)\right\}+ \\
& \frac{1}{2 T}\left(\mathbf{E}_{0} \mathbf{E}_{\tau}^{\prime}+\mathbf{E}_{\tau} \mathbf{E}_{0}^{\prime}\right), \\
\mathbf{M}_{n}(\tau)= & \frac{1}{2 T} \sum_{j=1}^{T}\left(\mathbf{e}_{j} \mathbf{e}_{j+\tau}^{*}+\mathbf{e}_{j+\tau} \mathbf{e}_{j}^{*}\right) \\
= & \frac{1}{2 T}\left(\mathbf{E}_{0} \mathbf{E}_{\tau}^{\prime}+\mathbf{E}_{\tau} \mathbf{E}_{0}^{\prime}\right)
\end{aligned}
$$

Notations

Here,

$$
\begin{aligned}
\boldsymbol{\Lambda} & =\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)}, \\
\mathbf{F}_{\tau} & =\left(\begin{array}{cccc}
\mathbf{F}_{T+\tau} & \mathbf{F}_{T+\tau-1} & \cdots & \mathbf{F}_{\tau+1} \\
\mathbf{F}_{T+\tau-1} & \mathbf{F}_{T+\tau-2} & \cdots & \mathbf{F}_{\tau} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{F}_{T+\tau-q} & \mathbf{F}_{T+\tau-1-q} & \cdots & \mathbf{F}_{\tau+1-q}
\end{array}\right)_{k(q+1) \times T}, \\
\mathbf{E}_{\tau} & =\left(\mathbf{e}_{T+\tau}, \mathbf{e}_{T+\tau-1}, \cdots, \mathbf{e}_{\tau+1}\right)_{n \times T} .
\end{aligned}
$$

Case $\tau=0$

Fact 1:

$$
\mathbf{M}_{n}(0)=\frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_{j} \mathbf{e}_{j}^{*}
$$

Case $\tau=0$

Fact 1:

$$
\mathbf{M}_{n}(0)=\frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_{j} \mathbf{e}_{j}^{*}
$$

- a standard sample covariance matrix

Case $\tau=0$

Fact 1:

$$
\mathbf{M}_{n}(0)=\frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_{j} \mathbf{e}_{j}^{*}
$$

- a standard sample covariance matrix
- the LSD is MP law (Marčenko and Pastur, 1967) with density

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(b_{c}-x\right)\left(x-a_{c}\right)}, x \in\left[a_{c}, b_{c}\right]
$$

and a point mass $1-1 / c$ at the origin if $c>1$. Here $c=\lim _{n \rightarrow \infty} \frac{n}{T}, a_{c}=(1-\sqrt{c})^{2}$ and $b_{c}=(1+\sqrt{c})^{2}$.

Case $\tau=0$

Fact 1:

$$
\mathbf{M}_{n}(0)=\frac{1}{T} \sum_{j=1}^{T} \mathbf{e}_{j} \mathbf{e}_{j}^{*}
$$

- a standard sample covariance matrix
- the LSD is MP law (Marčenko and Pastur, 1967) with density

$$
f_{c}(x)=\frac{1}{2 \pi c x} \sqrt{\left(b_{c}-x\right)\left(x-a_{c}\right)}, x \in\left[a_{c}, b_{c}\right]
$$

and a point mass $1-1 / c$ at the origin if $c>1$. Here $c=\lim _{n \rightarrow \infty} \frac{n}{T}, a_{c}=(1-\sqrt{c})^{2}$ and $b_{c}=(1+\sqrt{c})^{2}$.

Case $\tau=0$

Fact 2:

$$
\text { Recall } \boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)}
$$

Case $\tau=0$

Fact 2:

$$
\begin{gathered}
\text { Recall } \boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)} \\
\Rightarrow \operatorname{Cov} \mathbf{R}_{t}=\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{*} \sim\left(\begin{array}{cc}
\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda} & \mathbf{0} \\
\mathbf{0} & \sigma^{2} \mathbf{I}
\end{array}\right)
\end{gathered}
$$

Case $\tau=0$

Fact 2:

$$
\begin{gathered}
\text { Recall } \boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)} \\
\Rightarrow \operatorname{Cov} \mathbf{R}_{t}=\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{*} \sim\left(\begin{array}{cc}
\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda} & \mathbf{0} \\
\mathbf{0} & \sigma^{2} \mathbf{I}
\end{array}\right)
\end{gathered}
$$

- a spiked population model (Johnstone, 2001; Baik \& Silverstein, 2006; Bai \& Yao, 2008) with population eigenvalue $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k(q+1)}>\sigma^{2}=\cdots=\sigma^{2}$.

Case $\tau=0$

Fact 2:

$$
\begin{gathered}
\text { Recall } \boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)} \\
\Rightarrow \operatorname{Cov} \mathbf{R}_{t}=\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{*} \sim\left(\begin{array}{cc}
\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda} & \mathbf{0} \\
\mathbf{0} & \sigma^{2} \mathbf{I}
\end{array}\right)
\end{gathered}
$$

- a spiked population model (Johnstone, 2001; Baik \& Silverstein, 2006; Bai \& Yao, 2008) with population eigenvalue $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k(q+1)}>\sigma^{2}=\cdots=\sigma^{2}$.
- when $\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda}$ is "not small", sample eigenvalue $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \cdots \geq \hat{\lambda}_{k(q+1)}>\left(\sigma^{2} b_{c}\right) \geq \hat{\lambda}_{k(q+1)+1} \cdots \geq \hat{\lambda}_{n}$.

Case $\tau=0$

Fact 2:

$$
\begin{gathered}
\text { Recall } \boldsymbol{\Lambda}=\left(\boldsymbol{\Lambda}_{0}, \boldsymbol{\Lambda}_{1}, \cdots, \boldsymbol{\Lambda}_{q}\right)_{n \times k(q+1)} \\
\Rightarrow \operatorname{Cov}_{t}=\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{*} \sim\left(\begin{array}{cc}
\sigma^{2} \mathbf{I}+\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda} & \mathbf{0} \\
\mathbf{0} & \sigma^{2} \mathbf{I}
\end{array}\right)
\end{gathered}
$$

- a spiked population model (Johnstone, 2001; Baik \& Silverstein, 2006; Bai \& Yao, 2008) with population eigenvalue

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k(q+1)}>\sigma^{2}=\cdots=\sigma^{2}
$$

- when $\boldsymbol{\Lambda}^{*} \boldsymbol{\Lambda}$ is "not small", sample eigenvalue $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \cdots \geq \hat{\lambda}_{k(q+1)}>\left(\sigma^{2} b_{c}\right) \geq \hat{\lambda}_{k(q+1)+1} \cdots \geq \hat{\lambda}_{n}$.
\Rightarrow Can estimate $k(q+1)$ by counting the number of eigenvalues $>\sigma^{2} b_{c}$.

So, what remains ...

is to estimate k and q separately.

So, what remains ...

is to estimate k and q separately.

To do so, we need to investigate the case for at least one $\tau \geq 1$.

Outline

(1) Introduction

(2) Limiting Spectral Distribution

3 Strong Limit of Extreme Eigenvalues

(4) Application

Main Result

Theorem 1 (Jin et al. (2014))

Assume:

- (a) $\tau \geq 1$ is a fixed integer.
- (b) $\mathbf{e}_{k}=\left(\varepsilon_{1 k}, \cdots, \varepsilon_{n k}\right)^{\prime}, k=1,2, \ldots, T+\tau$, are n dimensional vectors of independent standard complex components with $\sup _{1 \leq i \leq n, 1 \leq t \leq T+\tau} \mathrm{E}\left|\varepsilon_{i t}\right|^{2+\delta} \leq M<\infty$ for some $\delta \in(0,2]$, and for any $\eta>0$,

$$
\begin{equation*}
\frac{1}{\eta^{2+\delta} n T} \sum_{i=1}^{n} \sum_{t=1}^{T+\tau} \mathrm{E}\left(\left|\varepsilon_{i t}\right|^{2+\delta} I\left(\left|\varepsilon_{i t}\right| \geq \eta T^{1 /(2+\delta)}\right)\right)=o(1) \tag{1}
\end{equation*}
$$

- (c) $n /(T+\tau) \rightarrow c>0$ as $n, T \rightarrow \infty$.
- (d) $\mathbf{M}_{n}=\sum_{k=1}^{T}\left(\gamma_{k} \gamma_{k+\tau}^{*}+\gamma_{k+\tau} \gamma_{k}^{*}\right)$, where $\gamma_{k}=\frac{1}{\sqrt{2 T}} \mathbf{e}_{k}$.

Main Result

Theorem 1 (Jin et al. (2014)) (cont'd)

Then as $n, T \rightarrow \infty, F^{\mathrm{M}_{n}} \xrightarrow{D} F_{\tau}$ a.s. and F_{τ} has a density function

$$
\phi_{c}(x)=\frac{1}{2 c \pi} \sqrt{\frac{y_{0}^{2}}{1+y_{0}}-\left(\frac{1-c}{x}+\frac{1}{\sqrt{1+y_{0}}}\right)^{2}},|x| \leq d_{c}
$$

where

$$
d_{c}=\left\{\begin{array}{cl}
\frac{(1-c) \sqrt{1+y_{1}}}{y_{1}-1}, & c \neq 1 \\
2, & c=1
\end{array}\right.
$$

y_{0} is the largest real root of the equation:
$y^{3}-\frac{(1-c)^{2}-x^{2}}{x^{2}} y^{2}-\frac{4}{x^{2}} y-\frac{4}{x^{2}}=0$;
and y_{1} is the only real root of the equation:
$\left((1-c)^{2}-1\right) y^{3}+y^{2}+y-1=0$
such that $y_{1}>1$ if $c<1$ and $y_{1} \in(0,1)$ if $c>1$.
Further, if $c>1$, then F_{τ} has a point mass $1-1 / c$ at the origin.

Main Result

Figure 1: $\phi_{c}(x)$ with $c=0.2$ (black), 0.5 (blue) and 0.7 (red).

Figure 2 : $\phi_{c}(x)$ with $c=1.5$ (black), 2 (blue) and 2.5 (red). The area under each curve is $1 / c$.

Outline

(1) Introduction

(2) Limiting Spectral Distribution

(3) Strong Limit of Extreme Eigenvalues
(4) Application

Motivation

Once the LSD of $\mathbf{M}_{n}(\tau)$ is derived, it is observed that the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau>q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ from $\tau=0,1,2, \cdots, q$, $q+1, \cdots$.

Motivation

Once the LSD of $\mathbf{M}_{n}(\tau)$ is derived, it is observed that the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau>q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ from $\tau=0,1,2, \cdots, q$, $q+1, \cdots$.

It is worth noting that for this method to work, we require that with probability 1 , there is no eigenvalues outside the the support of the LSD of $\mathbf{M}_{n}(\tau)$ so that if an eigenvalue of $\boldsymbol{\Phi}_{n}(\tau)$ goes out of the support of the LSD of $\mathbf{M}_{n}(\tau)$, it must come from the information part.

Motivation

Once the LSD of $\mathbf{M}_{n}(\tau)$ is derived, it is observed that the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau>q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ that lie outside the support of the LSD of $\mathbf{M}_{n}(\tau)$ from $\tau=0,1,2, \cdots, q$, $q+1, \cdots$.

It is worth noting that for this method to work, we require that with probability 1 , there is no eigenvalues outside the the support of the LSD of $\mathbf{M}_{n}(\tau)$ so that if an eigenvalue of $\boldsymbol{\Phi}_{n}(\tau)$ goes out of the support of the LSD of $\mathbf{M}_{n}(\tau)$, it must come from the information part.

This motivates us to establish the limits of the largest and smallest eigenvalues of $\mathbf{M}_{n}(\tau)$, after showing that with probability 1 no eigenvalues exist outside the support of the LSD of $\mathbf{M}_{n}(\tau)$.

Main Results

Theorem 2

Assume:

- (a) $\tau \geq 1$ is a fixed integer.
- (b) $\mathbf{e}_{k}=\left(\varepsilon_{1 k}, \cdots, \varepsilon_{n k}\right)^{\prime}, k=1,2, \ldots, T+\tau$, are n-vectors of independent standard complex components with $\sup _{i, t} \mathrm{E}\left|\varepsilon_{i t}\right|^{4} \leq M$ for some $M>0$.
- (c) There exist $K>0$ and a random variable X with finite fourth order moment such that, for any $x>0$, for all n, T $\frac{1}{n T} \sum_{i=1}^{n} \sum_{t=1}^{T+\tau} \mathrm{P}\left(\left|\varepsilon_{i t}\right|>x\right) \leq K \mathrm{P}(|X|>x)$.
- (d) $c_{n} \equiv n / T \rightarrow c>0$ as $n \rightarrow \infty$.
- (e) $\mathbf{M}_{n}=\sum_{k=1}^{T}\left(\gamma_{k} \gamma_{k+\tau}^{*}+\gamma_{k+\tau} \gamma_{k}^{*}\right)$, where $\gamma_{k}=\frac{1}{\sqrt{2 T}} \mathbf{e}_{k}$.
- (f) The interval $[\mathrm{a}, \mathrm{b}]$ lies outside the support of F_{τ}.

Then $\mathrm{P}\left(\right.$ no eigenvalues of \mathbf{M}_{n} appear in $[a, b]$ for all large n$)=1$.

Main Results

Theorem 3

Assuming conditions (a)-(e) in Theorem 2 hold, we have

$$
\lim _{n \rightarrow \infty} \lambda_{\min }\left(\mathbf{M}_{n}\right)=-d_{c} \quad \text { a.s. } \quad \text { and } \quad \lim _{n \rightarrow \infty} \lambda_{\max }\left(\mathbf{M}_{n}\right)=d_{c} \quad \text { a.s. }
$$

Here, $-d_{c}$ and d_{c} are the left and right boundary points of the support of the LSD of \mathbf{M}_{n}, as defined in Theorem 1.

Simulation

Figure 3: $\phi_{c}(x)$ and plot of sample eigenvalues with $\tau=1, c=0.2$ ($n=200, T=1000$).

Figure 4: $\phi_{c}(x)$ and plot of sample eigenvalues with $\tau=1, c=2.5$

$$
(n=2500, T=1000) .
$$

Outline

(1) Introduction

(2) Limiting Spectral Distribution

(3) Strong Limit of Extreme Eigenvalues
(4) Application

Estimation of k and q

Estimation of k and q

Recall that $k(q+1)$ can be estimated by counting the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(0)$.

Estimation of k and q

Recall that $k(q+1)$ can be estimated by counting the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(0)$.

For $\tau \geq 1$, we have

$$
\begin{aligned}
\boldsymbol{\Phi}_{n}(\tau)= & \frac{1}{2 T}\left\{\boldsymbol{\Lambda}\left(\mathbf{F}_{0} \mathbf{F}_{\tau}^{\prime}+\mathbf{F}_{\tau} \mathbf{F}_{0}^{\prime}\right) \boldsymbol{\Lambda}^{\prime}\right\}+ \\
& \frac{1}{2 T}\left\{\left(\mathbf{E}_{0} \mathbf{F}_{\tau}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{\tau} \mathbf{E}_{0}^{\prime}\right)+\left(\mathbf{E}_{\tau} \mathbf{F}_{0}^{\prime} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Lambda} \mathbf{F}_{0} \mathbf{E}_{\tau}^{\prime}\right)\right\}+ \\
& \mathbf{M}_{n}
\end{aligned}
$$

Estimation of k and q

Estimation of k and q

Define $\mathbf{B}_{1}=\mathbf{\Lambda Q}$ and $\mathbf{B}=\left(\mathbf{B}_{1} \vdots \mathbf{B}_{2}\right)$ is an $n \times n$ orthogonal matrix, where $\mathbf{Q}=\left(\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Lambda}\right)^{-1 / 2}$.

Estimation of k and q

Define $\mathbf{B}_{1}=\mathbf{\Lambda} \mathbf{Q}$ and $\mathbf{B}=\left(\mathbf{B}_{1} \vdots \mathbf{B}_{2}\right)$ is an $n \times n$ orthogonal matrix, where $\mathbf{Q}=\left(\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Lambda}\right)^{-1 / 2}$.

Then, $\mathbf{B}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}=\left(\begin{array}{ll}\mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} & \mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2} \\ \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} & \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}\end{array}\right)$.

Estimation of k and q

Define $\mathbf{B}_{1}=\mathbf{\Lambda} \mathbf{Q}$ and $\mathbf{B}=\left(\mathbf{B}_{1} \vdots \mathbf{B}_{2}\right)$ is an $n \times n$ orthogonal matrix, where $\mathbf{Q}=\left(\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Lambda}\right)^{-1 / 2}$.

Then, $\mathbf{B}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}=\left(\begin{array}{ll}\mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} & \mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2} \\ \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} & \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}\end{array}\right)$.
Note that $\mathbf{B}_{2} \boldsymbol{\Lambda}=0$, we have

$$
\begin{aligned}
& \mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} \sim \mathbf{Q A}_{\tau} \mathbf{Q}+\mathbf{B}_{1}^{\prime} \mathbf{M}_{n} \mathbf{B}_{1} \\
& \mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}=\mathbf{B}_{1}^{\prime} \mathbf{M}_{n} \mathbf{B}_{2}+\frac{1}{2 T} \mathbf{Q}\left(\mathbf{F}_{0} \mathbf{E}_{\tau}^{*}+\mathbf{F}_{\tau} \mathbf{E}_{0}^{*}\right) \mathbf{B}_{2} \\
& \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1}=\mathbf{B}_{2}^{\prime} \mathbf{M}_{n} \mathbf{B}_{1}+\frac{1}{2 T} \mathbf{B}_{2}^{\prime}\left(\mathbf{E}_{0} \mathbf{F}_{\tau}^{*}+\mathbf{E}_{\tau} \mathbf{F}_{0}^{*}\right) \mathbf{Q} \\
& \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}=\mathbf{B}_{2}^{\prime} \mathbf{M}_{n} \mathbf{B}_{2} .
\end{aligned}
$$

where $\left(\mathbf{A}_{\tau}\right)_{k(q+1) \times k(q+1)}$ is the matrix with 1's on upper and lower $k \tau$ diagonals and 0's elsewhere.

Estimation of k and q

If ℓ is a root of $\boldsymbol{\Phi}_{n}(\tau)$ but not a root of $\mathbf{B}_{2}^{\prime} \mathbf{M}_{n} \mathbf{B}_{2}$, then

$$
0=\left|\begin{array}{cc}
\mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1}-\ell \mathbf{l} & \mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2} \\
\mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1} & \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}-\ell \mathbf{I}
\end{array}\right|
$$

Since $\left|\mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}-\ell \mathbf{I}\right|=\left|\mathbf{B}_{2}^{\prime} \mathbf{M}_{n} \mathbf{B}_{2}-\ell \mathbf{I}\right| \neq 0$, we have

$$
\left|\mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1}-\ell \mathbf{I}-\mathbf{B}_{1}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{2}\left(\mathbf{B}_{2}^{\prime} \mathbf{M}_{n} \mathbf{B}_{2}-\ell \mathbf{I}\right)^{-1} \mathbf{B}_{2}^{\prime} \boldsymbol{\Phi}_{n}(\tau) \mathbf{B}_{1}\right|=0
$$

After certain simplification, the equation above can be shown equivalent to

$$
\left|\mathbf{A}_{\tau}-\left(\ell+\frac{c m(\ell)}{1-c^{2} m^{2}(\ell)+\sqrt{\left.1-c^{2} m^{2}(\ell)\right)}}\right) \mathbf{Q}^{-2}-\frac{c m(\ell)}{2 \sqrt{1-c^{2} m^{2}(\ell)}} \mathbf{I}_{k \times(q+1)}\right|
$$

Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of \mathbf{Q}^{2}) and spikes (solutions of the equation in ℓ).

Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of \mathbf{Q}^{2}) and spikes (solutions of the equation in ℓ).

However, if the matrices \mathbf{A}_{τ} and \mathbf{Q}^{2} are commutative, the transition phenomenon becomes clear, that is, there is a common orthogonal matrix \mathbf{O} to simultaneously diagonalize the two matrices, i.e., we have $\mathbf{A}_{\tau}=\mathbf{O} \mathbf{D}_{\tau} \mathbf{O}^{\prime}$ and $\mathbf{Q}^{2}=\mathbf{O} \mathbf{D}_{\lambda} \mathbf{O}^{\prime}$, where $\mathbf{D}_{\tau}=\operatorname{diag}\left[a_{1}, \cdots, a_{k(q+1)}\right]$ and $\mathbf{D}_{\lambda}=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{k(q+1)}\right]$.

Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of \mathbf{Q}^{2}) and spikes (solutions of the equation in ℓ).

However, if the matrices \mathbf{A}_{τ} and \mathbf{Q}^{2} are commutative, the transition phenomenon becomes clear, that is, there is a common orthogonal matrix \mathbf{O} to simultaneously diagonalize the two matrices, i.e., we have $\mathbf{A}_{\tau}=\mathbf{O} \mathbf{D}_{\tau} \mathbf{O}^{\prime}$ and $\mathbf{Q}^{2}=\mathbf{O} \mathbf{D}_{\lambda} \mathbf{O}^{\prime}$, where $\mathbf{D}_{\tau}=\operatorname{diag}\left[a_{1}, \cdots, a_{k(q+1)}\right]$ and $\mathbf{D}_{\lambda}=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{k(q+1)}\right]$.

Then, the equation becomes

$$
\begin{gathered}
a_{j}-\left(\ell+\frac{c m(\ell)}{1-c^{2} m^{2}(\ell)+\sqrt{\left.1-c^{2} m^{2}(\ell)\right)}}\right) \lambda_{j}^{-1}-\frac{c m(\ell)}{2 \sqrt{1-c^{2} m^{2}(\ell)}}=0, \\
j=1,2 \cdots, k(q+1) .
\end{gathered}
$$

Estimation of k and q

Case 1. If $a_{j} \geq 0$ and $g(d(c))>a_{j}$, then the equation $a_{j}=g(\ell)$ doesn't have a solution in the interval $(d(c), \infty)$ because $g(\ell)$ is increasing and continuous, where

$$
g(\ell)=\left(\ell+\frac{c m(\ell)}{1-c^{2} m^{2}(\ell)+\sqrt{\left.1-c^{2} m^{2}(\ell)\right)}}\right) \lambda_{j}^{-1}+\frac{c m(\ell)}{2 \sqrt{1-c^{2} m^{2}(\ell)}} .
$$

On the interval $(-\infty,-d(c))$ it does not have solution either because $g(\ell)<g(-d(c))=-g(d(c))<0$. Thus, the equation $a_{j}=g(\ell)$ does not have any solution.

Estimation of k and q

Case 1. If $a_{j} \geq 0$ and $g(d(c))>a_{j}$, then the equation $a_{j}=g(\ell)$ doesn't have a solution in the interval $(d(c), \infty)$ because $g(\ell)$ is increasing and continuous, where

$$
g(\ell)=\left(\ell+\frac{c m(\ell)}{1-c^{2} m^{2}(\ell)+\sqrt{\left.1-c^{2} m^{2}(\ell)\right)}}\right) \lambda_{j}^{-1}+\frac{c m(\ell)}{2 \sqrt{1-c^{2} m^{2}(\ell)}} .
$$

On the interval $(-\infty,-d(c))$ it does not have solution either because $g(\ell)<g(-d(c))=-g(d(c))<0$. Thus, the equation $a_{j}=g(\ell)$ does not have any solution.

Case 2. If $a_{j} \geq 0$ and $a_{j} \geq g(d(c))>0$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty,-d(c))$ it does not have solution either because $a_{j} \geq 0$ and $g(\ell) \leq g(-d(c))<0$. Thus, the equation $a_{j}=g(\ell)$ has only one solution.

Estimation of k and q

Case 3. If $a_{j} \geq 0$ and $a_{j}>-g(d(c)) \geq 0$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty,-d(c))$ it does not have any solution because $a_{j}>g(-d(c)) \geq g(\ell)$ when $\ell<-d(c)$.

Estimation of k and q

Case 3. If $a_{j} \geq 0$ and $a_{j}>-g(d(c)) \geq 0$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty,-d(c))$ it does not have any solution because $a_{j}>g(-d(c)) \geq g(\ell)$ when $\ell<-d(c)$.

Case 4. If $-g(d(c)) \geq a_{j} \geq g(d(c))$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty,-d(c))$. Especially when $a_{j}=0$, the case is true.

Estimation of k and q

Case 3. If $a_{j} \geq 0$ and $a_{j}>-g(d(c)) \geq 0$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty,-d(c))$ it does not have any solution because $a_{j}>g(-d(c)) \geq g(\ell)$ when $\ell<-d(c)$.

Case 4. If $-g(d(c)) \geq a_{j} \geq g(d(c))$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty,-d(c))$. Especially when $a_{j}=0$, the case is true.

Similarly, we may discuss the cases when $a_{j} \leq 0$.

Estimation of k and q

Case 3. If $a_{j} \geq 0$ and $a_{j}>-g(d(c)) \geq 0$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty,-d(c))$ it does not have any solution because $a_{j}>g(-d(c)) \geq g(\ell)$ when $\ell<-d(c)$.

Case 4. If $-g(d(c)) \geq a_{j} \geq g(d(c))$, then the equation $a_{j}=g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty,-d(c))$. Especially when $a_{j}=0$, the case is true.

Similarly, we may discuss the cases when $a_{j} \leq 0$.
Since $m(d(c))<0$, we have $g(d(c))<0$ provided that λ_{j} is large enough. Thus, case 1 doesn't happen in general.

Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow\left\{\begin{array}{l}
k(q+1), \quad \tau=0 \\
2 k(q+1)-h(\tau), \quad 1 \leq \tau \leq q \\
2 k(q+1), \quad \tau>q
\end{array}\right.
$$

where $h(\tau)=2 . \#\left\{j, g(d(c))>\left|a_{j}\right|\right\}+{ }^{\#}\left\{j,\left|a_{j}\right|>|g(d(c))|>0\right\}$.

Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow\left\{\begin{array}{l}
k(q+1), \quad \tau=0 \\
2 k(q+1)-h(\tau), \quad 1 \leq \tau \leq q \\
2 k(q+1), \quad \tau>q
\end{array}\right.
$$

where $h(\tau)=2 . \#\left\{j, g(d(c))>\left|a_{j}\right|\right\}+{ }^{\#}\left\{j,\left|a_{j}\right|>|g(d(c))|>0\right\}$.

- Generally, the first case doesn't happen, unless λ_{j} is very small.

Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow\left\{\begin{array}{l}
k(q+1), \quad \tau=0 \\
2 k(q+1)-h(\tau), \quad 1 \leq \tau \leq q \\
2 k(q+1), \quad \tau>q
\end{array}\right.
$$

where $h(\tau)=2 . \#\left\{j, g(d(c))>\left|a_{j}\right|\right\}+{ }^{\#}\left\{j,\left|a_{j}\right|>|g(d(c))|>0\right\}$.

- Generally, the first case doesn't happen, unless λ_{j} is very small.
- Transition threshold:

$$
\lambda_{0}(c)=-\frac{2 \sqrt{1-c^{2} m^{2}(d(c))}\left(d(c)+\frac{c m(d(c))}{\left(1-c^{2} m^{2}(d(c))\right)+\sqrt{1-c^{2} m^{2}(d(c))}}\right)}{c m(d(c))}
$$

Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow\left\{\begin{array}{l}
k(q+1), \quad \tau=0 \\
2 k(q+1)-h(\tau), \quad 1 \leq \tau \leq q \\
2 k(q+1), \quad \tau>q
\end{array}\right.
$$

where $h(\tau)=2 . \#\left\{j, g(d(c))>\left|a_{j}\right|\right\}+{ }^{\#}\left\{j,\left|a_{j}\right|>|g(d(c))|>0\right\}$.

- Generally, the first case doesn't happen, unless λ_{j} is very small.
- Transition threshold:

$$
\lambda_{0}(c)=-\frac{2 \sqrt{1-c^{2} m^{2}(d(c))}\left(d(c)+\frac{c m(d(c))}{\left(1-c^{2} m^{2}(d(c))\right)+\sqrt{1-c^{2} m^{2}(d(c))}}\right)}{c m(d(c))}
$$

- That is, when $\lambda_{j}>\lambda_{0}(c)$, then $g_{j}(d(c))<0$.

Estimation of k and q

Algorithm

- Count the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(0), \widehat{k(q+1)}$.
- For $\tau=1,2, \cdots$, count the number of spiked eigenvalues of $\boldsymbol{\Phi}_{n}(\tau)$ and stop at the smallest lag $\widehat{q+1}$, at which the number jumps to $2 k(\overline{q+1})$.
- Set $\hat{k}=\frac{k\left(\frac{q+1)}{q+1}\right.}{}$ and $\hat{q}=\widehat{q+1}-1$.

Simulation

Figure 5: Sample eigenvalues plots for a factor model with no factors with $n=450, T=500, k=0, q=0$ and $\sigma_{\varepsilon}^{2}=1$.

Simulation

Figure 6: Sample eigenvalues plots for a factor model with $n=450, T=500$, $k=2, q=0$ and $\sigma_{\varepsilon}^{2}=1$.

Simulation

Figure 7: Sample eigenvalues plots for a factor model with $n=450, T=500$, $k=2, q=1$ and $\sigma_{\varepsilon}^{2}=1$.

Simulation

$\tau=0$	$\tau=1$	$\tau=2$	$\tau=3$	$\tau=4$	$\tau=5$
10.4834	13.2847	9.6398	4.5707	4.1978	4.3652
10.1067	12.8983	9.3054	4.5100	3.7982	4.2543
9.5428	10.5731	8.9893	3.7854	3.5023	3.6568
8.1918	9.7048	8.8115	3.4964	3.2956	3.2796
7.8733	2.7132	3.0196	3.4424	2.9948	3.2131
7.6733	2.2934	2.8472	3.2752	2.8658	3.0014
1.8057	2.0844	2.7571	3.1088	2.8206	2.9009
1.7851	1.9410	2.7238	2.4418	2.6166	2.7364
1.7475	1.7971	1.8099	2.4222	2.6032	2.5338
1.7273	1.7096	1.7313	2.3283	2.4414	2.1618
1.7090	1.7068	1.7232	2.1798	2.3751	2.1310
1.6787	1.6803	1.6998	2.0149	2.1294	1.9938
1.6619	1.6418	1.6874	1.8028	1.7561	1.7109

Table 1: Absolute values of the largest eigenvalues of $\boldsymbol{\Phi}_{n}$ at various lags, for $c=0.9, b_{c}=(1+\sqrt{c})^{2}=3.7974, d_{c}=1.8573$.

Thank you!

