Spectral properties of random Markov matrices

P. Caputo, with C. Bordenave and D. Chafai, and D. Piras

Hong Kong - Jan 6-9, 2015

Outline

A natural model for a random Markov matrix: stochastic matrix K with random entries

$$
K_{i, j}=\frac{U_{i, j}}{\sum_{k} U_{i, k}} \quad U_{i, j} \geqslant 0 \quad \text { i.i.d. }
$$

Outline

A natural model for a random Markov matrix: stochastic matrix K with random entries

$$
K_{i, j}=\frac{U_{i, j}}{\sum_{k} U_{i, k}} \quad U_{i, j} \geqslant 0 \quad \text { i.i.d. }
$$

Reversible case: $U_{i, j}=U_{j, i}$ (random conductances)
Non-reversible case: $U_{i, j}$ i.i.d. (weighted oriented graph)
Bulk behavior: convergence of empirical spectral density of K

1. Finite second moment: semi-circular law, circular law
2. Heavy tails: $\mathbb{P}\left(U_{i, j}>t\right) \sim t^{-\alpha}, \alpha \in(0,2)$, new invariance principles

Random reversible stochastic matrix

$G=(V, E)$: complete graph over n vertices with self-loops $V=\{1, \ldots, n\}, E=\{\{i, j\}, i, j \in V\}$.
Random network (G, \mathbf{U}):

$$
\mathbf{U}=\left(U_{i j}\right)_{1 \leqslant i \leqslant j \leqslant n}
$$

i.i.d. RV's with law \mathcal{L} on $[0, \infty)$.

Symmetry (undirected graph): $U_{j i}=U_{i j}, j>i$.
Random walk on (G, \mathbf{U}):

$$
K_{i j}=\frac{U_{i j}}{\rho_{i}}, \quad \rho_{i}=\sum_{j=1}^{n} U_{i j}
$$

K is a reversible stochastic matrix: $\rho_{i} K_{i j}=\rho_{j} K_{j i}$.

Eigenvalues of K

K is a.s. irreducible and aperiodic with eigenvalues:

$$
-1<\lambda_{n} \leqslant \lambda_{n-1} \leqslant \cdots \leqslant \lambda_{2}<\lambda_{1}=1
$$

Empirical spectral distribution (ESD):

$$
\mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}} .
$$

Moments: $p_{\ell}(i)$ return probability at i after ℓ steps

$$
\int_{-1}^{1} x^{\ell} \mu_{K}(d x)=\frac{1}{n} \operatorname{Tr}\left(K^{\ell}\right)=\frac{1}{n} \sum_{i=1}^{n} p_{\ell}(i)
$$

Convergence of ESD μ_{K} (after scaling if necessary) ?

Finite variance, reversible case

Suppose $\mathbb{E}\left[U_{i j}^{2}\right]<\infty$,
$\mathbb{E}\left[U_{i j}\right]=1$ (no loss of generality), $\sigma^{2}=\mathbb{E}\left[\left(U_{i j}-1\right)^{2}\right]$.
Theorem
If $\sigma^{2} \in(0, \infty)$, then almost surely

$$
\mu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{w} \mathcal{W}_{2 \sigma},
$$

where $\mathcal{W}_{2 \sigma}$ is Wigner's Semi-circle law:

$$
\mathcal{W}_{2 \sigma}(d x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-x^{2}} 1_{[-2 \sigma, 2 \sigma]}(x) d x
$$

Finite variance, reversible case

Suppose $\mathbb{E}\left[U_{i j}^{2}\right]<\infty$,
$\mathbb{E}\left[U_{i j}\right]=1$ (no loss of generality), $\sigma^{2}=\mathbb{E}\left[\left(U_{i j}-1\right)^{2}\right]$.
Theorem
If $\sigma^{2} \in(0, \infty)$, then almost surely

$$
\mu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{\stackrel{w}{\longrightarrow}} \mathcal{W}_{2 \sigma},
$$

where $\mathcal{W}_{2 \sigma}$ is Wigner's Semi-circle law:

$$
\mathcal{W}_{2 \sigma}(d x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-x^{2}} 1_{[-2 \sigma, 2 \sigma]}(x) d x
$$

Idea of proof (perturbation argument):
Uniform strong LLN: $\rho_{i} \sim n \mathbb{E}\left[U_{i j}\right]=n, K_{i j} \sim n^{-1} U_{i j}$.

$$
\delta_{n}:=\max _{i=1, \ldots, n}\left|\rho_{i} / n-1\right|=o(1), \text { a.s. }(n \rightarrow \infty)
$$

Heavy tails

For $\alpha>0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{i j} \in \mathcal{H}_{\alpha}$, if

$$
\begin{aligned}
G(t) & =\mathbb{P}\left(U_{i j}>t\right)=L(t) t^{-\alpha} \\
\lim _{t \rightarrow \infty} \frac{L(x t)}{L(t)} & =1, x>0 .
\end{aligned}
$$

$\alpha \in(0,2) \Rightarrow \mathbb{E}\left[U_{i j}^{2}\right]=\infty, U_{i j}$ in domain of attract. of α-stable law.

Heavy tails

For $\alpha>0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{i j} \in \mathcal{H}_{\alpha}$, if

$$
\begin{aligned}
G(t) & =\mathbb{P}\left(U_{i j}>t\right)=L(t) t^{-\alpha} \\
\lim _{t \rightarrow \infty} \frac{L(x t)}{L(t)} & =1, x>0 .
\end{aligned}
$$

$\alpha \in(0,2) \Rightarrow \mathbb{E}\left[U_{i j}^{2}\right]=\infty, U_{i j}$ in domain of attract. of α-stable law.
Scaling: $a_{n}=n^{1 / \alpha} \ell(n)$, with $\ell(n)$ slowly varying,

$$
n G\left(a_{n} t\right) \rightarrow t^{-\alpha} \quad \text { as } \quad n \rightarrow \infty
$$

Example: $X=\operatorname{Unif}[0,1]$ then $X^{-1 / \alpha} \in \mathcal{H}_{\alpha}$, with $a_{n}=n^{1 / \alpha}$.

Heavy tails

For $\alpha>0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{i j} \in \mathcal{H}_{\alpha}$, if

$$
\begin{aligned}
G(t) & =\mathbb{P}\left(U_{i j}>t\right)=L(t) t^{-\alpha} \\
\lim _{t \rightarrow \infty} \frac{L(x t)}{L(t)} & =1, x>0 .
\end{aligned}
$$

$\alpha \in(0,2) \Rightarrow \mathbb{E}\left[U_{i j}^{2}\right]=\infty, U_{i j}$ in domain of attract. of α-stable law.
Scaling: $a_{n}=n^{1 / \alpha} \ell(n)$, with $\ell(n)$ slowly varying,

$$
n G\left(a_{n} t\right) \rightarrow t^{-\alpha} \quad \text { as } \quad n \rightarrow \infty
$$

Example: $X=\operatorname{Unif}[0,1]$ then $X^{-1 / \alpha} \in \mathcal{H}_{\alpha}$, with $a_{n}=n^{1 / \alpha}$.
Recall:
$a_{n}^{-1}\left(\right.$ order statistics of n i.i.d. RV s in $\left.\mathcal{H}_{\alpha}\right) \sim\left(\Gamma_{1}^{-1 / \alpha}, \ldots, \Gamma_{n}^{-1 / \alpha}\right)$ where $\Gamma_{k}=\sum_{i=1}^{k} E_{i}$, and E_{i} are i.i.d. $\operatorname{Esp}(1)$, i.e. $P P P\left(\alpha x^{-\alpha-1}\right)$.

Heavy tails: i.i.d. case

Symmetric i.i.d. matrix $A=\left(A_{i j}\right)$, with $\left|A_{i j}\right| \in \mathcal{H}_{\alpha}, \alpha \in(0,2)$, with $\lim _{t \rightarrow \infty} \frac{\mathbb{P}\left(A_{i, j}>t\right)}{\mathbb{P}\left(\left|A_{i, j}\right|>t\right)}=\theta \in[0,1]$.
Theorem
For $\alpha \in(0,2)$, there exists a symmetric probability μ_{α} on \mathbb{R} depending only on α such that, a.s.

$$
\mu_{a_{n}^{-1} A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(a_{n}^{-1} A\right)} \xrightarrow[n \rightarrow \infty]{w} \mu_{\alpha}
$$

Moreover μ_{α} is a.c. with bounded density and $\mu_{\alpha}([t, \infty)) \sim \frac{1}{2} t^{-\alpha}$.
Bouchaud-Cizeau (PRE 1994), Zakharevich (CMP 2006), Ben Arous-Guionnet (CMP 2008). Belinschi-Dembo-Guionnet (CMP 2009). Resolvent method (Stieltjes transform).

Our approach gives an alternative proof.

Heavy tails: Markov matrix

Stochastic matrix $K_{i j}=U_{i j} / \rho_{i}$, with $U_{i j} \in \mathcal{H}_{\alpha} . \mu_{\alpha}$ as above.
Theorem
Suppose $\alpha \in[1,2)$. Then, a.s.

$$
\mu_{\kappa_{n}} K=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(\kappa_{n} K\right)} \xrightarrow[n \rightarrow \infty]{w} \mu_{\alpha} .
$$

where $\kappa_{n}=n w_{n} a_{n}^{-1}, w_{n}=\mathbb{E}\left[U_{i j} \chi\left(U_{i j} \leqslant a_{n}\right)\right]$.
Theorem
Suppose $\alpha \in(0,1)$. Then, there exists a probability measure $\widetilde{\mu}_{\alpha}$ on $[-1,1]$ depending only on α such that, a.s.

$$
\mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)} \xrightarrow[n \rightarrow \infty]{w} \widetilde{\mu}_{\alpha}
$$

Scaling, $\alpha \in(0,2)$:

$$
a_{n}^{-1}\left(\rho_{i}-n w_{n}\right) \xrightarrow[n \rightarrow \infty]{d} s_{\alpha} \quad \alpha \text {-stable }
$$

$\alpha \in(1,2): w_{n} \rightarrow \mathbb{E}\left[U_{i j}\right]=1$ and $\rho_{i} / n \rightarrow 1$ a.s. $\kappa_{n} K \sim n a_{n}^{-1} K \sim a_{n}^{-1} A, \quad$ where A has i.i.d. entries.

Scaling, $\alpha \in(0,2)$:

$$
a_{n}^{-1}\left(\rho_{i}-n w_{n}\right) \xrightarrow[n \rightarrow \infty]{d} s_{\alpha} \quad \alpha \text {-stable }
$$

$\alpha \in(1,2): w_{n} \rightarrow \mathbb{E}\left[U_{i j}\right]=1$ and $\rho_{i} / n \rightarrow 1$ a.s.
$\kappa_{n} K \sim n a_{n}^{-1} K \sim a_{n}^{-1} A, \quad$ where A has i.i.d. entries.
$\alpha=1$, then $\rho_{i} / n w_{n} \rightarrow 1$ in probability
[example: $U=(U n i f[0,1])^{-1}$, then $\kappa_{n}=w_{n}=\log n$]

$$
\kappa_{n} K=n w_{n} a_{n}^{-1} K \sim a_{n}^{-1} A, \quad A \text { i.i.d. entries. }
$$

Scaling, $\alpha \in(0,2)$:

$$
a_{n}^{-1}\left(\rho_{i}-n w_{n}\right) \xrightarrow[n \rightarrow \infty]{d} s_{\alpha} \quad \alpha \text {-stable }
$$

$\alpha \in(1,2): w_{n} \rightarrow \mathbb{E}\left[U_{i j}\right]=1$ and $\rho_{i} / n \rightarrow 1$ a.s.
$\kappa_{n} K \sim n a_{n}^{-1} K \sim a_{n}^{-1} A, \quad$ where A has i.i.d. entries.
$\alpha=1$, then $\rho_{i} / n w_{n} \rightarrow 1$ in probability
[example: $U=(U n i f[0,1])^{-1}$, then $\kappa_{n}=w_{n}=\log n$]

$$
\kappa_{n} K=n w_{n} a_{n}^{-1} K \sim a_{n}^{-1} A, \quad A \text { i.i.d. entries. }
$$

$\alpha \in(0,1)$, then $a_{n}^{-1} \rho_{i} \xrightarrow[n \rightarrow \infty]{d} s_{\alpha}^{+}$
each row of K converges to Poisson-Dirichlet $(\alpha): \Gamma_{k}=\sum_{i=1}^{k} E_{i}$

$$
Z=\left(\sum_{n=1}^{\infty} \Gamma_{n}^{-\frac{1}{\alpha}}\right)^{-1}\left(\Gamma_{1}^{-\frac{1}{\alpha}}, \Gamma_{2}^{-\frac{1}{\alpha}}, \ldots\right)
$$

Some ideas of the proof

Start with symmetric i.i.d. matrix $A_{i j}=U_{i j}$ as a weighted graph:
Convergence of resolvents from

> local convergence of graphs
[Bordenave, Lelarge]
Objective method (Aldous-Steele '04)
Limiting graph is a random infinite rooted tree ($\mathcal{T}_{\alpha} ; 0$):
Recall that a_{n}^{-1} (order stat. of row 1$) \sim P P P\left(\alpha x^{-\alpha-1}\right)$
This convergence can be extended to local convergence to the Poisson weighted infinite tree PWIT (Aldous '92)

Define $\operatorname{PWIT}\left(m_{\alpha}\right)=\mathcal{T}_{\alpha}$, for

$$
m_{\alpha}(d x)=\alpha x^{-1-\alpha} d x, \quad \text { on }(0, \infty)
$$

Start from the root o, with \mathbb{N} offsprings. Each edge (o, k) is given a mark ξ_{k} where $\xi_{1}>\xi_{2}>\cdots$ is a realization of $\operatorname{PPP}\left(m_{\alpha}\right)$. The distance of offspring k from o is defined by ξ_{k}^{-1}. Repeat this independently at each offspring to obtain an infinite ∞-ary tree with Poissonian marks (PWIT).

Define PWIT $\left(m_{\alpha}\right)=\mathcal{T}_{\alpha}$, for

$$
m_{\alpha}(d x)=\alpha x^{-1-\alpha} d x, \quad \text { on }(0, \infty)
$$

Start from the root o, with \mathbb{N} offsprings. Each edge (o, k) is given a mark ξ_{k} where $\xi_{1}>\xi_{2}>\cdots$ is a realization of $\operatorname{PPP}\left(m_{\alpha}\right)$. The distance of offspring k from o is defined by ξ_{k}^{-1}. Repeat this independently at each offspring to obtain an infinite ∞-ary tree with Poissonian marks (PWIT).

Convergence: (G, \mathbf{U}) rooted at 1 . The vector $\left(a_{n}^{-1} U_{1, j}\right)_{j}$ converges in distribution to $\operatorname{PPP}\left(m_{\alpha}\right)$, (via order statistics). In the local sense

$$
(G, \mathbf{U} ; 1) \rightarrow\left(\mathcal{T}_{\alpha} ; o\right)
$$

(again via order statistics. Small weights correspond to points far away from the root.) This holds for any $\alpha>0$.
Similar result for $A=\left(A_{i j}\right)$, with $\left|A_{i j}\right|=U_{i j} \in \mathcal{H}_{\alpha}$. Signed marks.

Key point: for $\alpha \in(0,2)$, this convergence is sufficient to establish convergence (in distribution) of resolvent diagonal entries. Hilbert space is $\ell^{2}(\mathcal{V}), \mathcal{V}$ the vertices of the tree:

$$
\left\langle\delta_{1},\left(a_{n}^{-1} A-z\right)^{-1} \delta_{1}\right\rangle \rightarrow\left\langle\delta_{o},(\mathbf{T}-z)^{-1} \delta_{o}\right\rangle
$$

where \mathbf{T} is the limiting operator associated to $a_{n}^{-1} A$:

$$
\left\langle\delta_{u}, \mathbf{T} \delta_{v}\right\rangle=\xi_{u, v} \quad \text { mark across edge }(u, v) \text { in } \mathcal{T}_{\alpha}
$$

\mathbf{T} is symmetric in $\ell^{2}(\mathcal{V})$. Note: If \mathbf{T} is self adjoint then $\exists \mu_{\mathbf{T}}$

$$
\left\langle\delta_{o},(\mathbf{T}-z)^{-1} \delta_{o}\right\rangle=\int_{\mathbb{R}} \frac{\mu_{\mathbf{T}}(d x)}{x-z}, \quad z \in \mathbb{C}_{+}
$$

Taking expectation we have $\mathbb{E} \mu_{\mathrm{a}_{n}^{-1} A} \rightarrow \mu_{\alpha}:=\mathbb{E}\left[\mu_{\mathbf{T}}\right]$, since

$$
\int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{a_{n}^{-1} A}\right](d x)}{x-z}=\mathbb{E}\left[\left\langle\delta_{1},\left(a_{n}^{-1} A-z\right)^{-1} \delta_{1}\right\rangle\right] \rightarrow \int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{\mathbf{T}}\right](d x)}{x-z}
$$

Technical point: must show \mathbf{T} is essentially self-adjoint; no solution $\varphi \neq 0$ of $\mathbf{T}^{*} \varphi= \pm i \varphi$ (exploit tree structure).
Almost sure convergence $\mu_{a_{n}^{-1} A} \rightarrow \mu_{\alpha}$ follows from concentration properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case [see Ben Arous-Guionnet 08 for an earlier different proof]

Technical point: must show \mathbf{T} is essentially self-adjoint; no solution $\varphi \neq 0$ of $\mathbf{T}^{*} \varphi= \pm i \varphi$ (exploit tree structure).
Almost sure convergence $\mu_{a_{n}^{-1} A} \rightarrow \mu_{\alpha}$ follows from concentration properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case [see Ben Arous-Guionnet 08 for an earlier different proof]

Properties of μ_{α}.
Recursive Distributional Equation: $h(z)=\left\langle\delta_{o},(\mathbf{T}-z)^{-1} \delta_{0}\right\rangle$ satisfies

$$
h(z) \stackrel{d}{=}-\left(z+\sum_{k} \xi_{k} h_{k}(z)\right)^{-1}
$$

where ξ_{k} is $\operatorname{PPP}\left(m_{\alpha / 2}\right)$ and $h_{k}(z)$ are i.i.d. copies of $h(z)$.

The Markov matrix case: again network convergence.
$\alpha \in(0,1)$: the $\operatorname{PPP}\left(m_{\alpha}\right)$ satisfies $\sum_{i} \xi_{i}<\infty$ a.s.
$\left(K_{1, j}\right)_{j} \sim P D(\alpha)$ Poisson-Dirichlet law (Pitman-Yor '97).

$$
Z=\left(\sum_{n=1}^{\infty} \Gamma_{n}^{-\frac{1}{\alpha}}\right)^{-1}\left(\Gamma_{1}^{-\frac{1}{\alpha}}, \Gamma_{2}^{-\frac{1}{\alpha}}, \ldots\right) \quad \Gamma_{k}=\sum_{i=1}^{k} E_{i} .
$$

Limit operator K describes Random Walk on PWIT \mathcal{T}_{α}

$$
\mathbf{K}_{u, v}=\frac{\xi_{u, v}}{\rho_{u}}, \quad \rho_{u}=\sum_{v \in \mathcal{V}: v \sim u} \xi_{u, v}
$$

Here, for every $u \in \mathcal{V}: \quad\left\{\xi_{u, v}, v \in \mathcal{V}: v\right.$ child of $\left.u\right\}$ is $\operatorname{PPP}\left(m_{\alpha}\right)$.
Note: limit operator \mathbf{K} is a non-trivial generalization of Poisson-Dirichlet law (dependecies!).
\mathbf{K} is bounded self adjoint operator in $\ell^{2}(\mathcal{V}, \rho)$ and
$\mathbb{E} \mu_{K} \rightarrow \widetilde{\mu}_{\alpha}=\mathbb{E}\left[\mu_{K}\right]$, since

$$
\int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{K}\right](d x)}{x-z}=\mathbb{E}\left[\left\langle\delta_{1},(K-z)^{-1} \delta_{1}\right\rangle\right] \rightarrow \int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{\mathrm{K}}\right](d x)}{x-z}
$$

$\mu_{\mathbf{K}}$ spectral measure of \mathbf{K} at the root vector δ_{0}.
\mathbf{K} is bounded self adjoint operator in $\ell^{2}(\mathcal{V}, \rho)$ and $\mathbb{E} \mu_{K} \rightarrow \widetilde{\mu}_{\alpha}=\mathbb{E}\left[\mu_{\mathrm{K}}\right]$, since

$$
\int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{K}\right](d x)}{x-z}=\mathbb{E}\left[\left\langle\delta_{1},(K-z)^{-1} \delta_{1}\right\rangle\right] \rightarrow \int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{K}\right](d x)}{x-z}
$$

μ_{K} spectral measure of \mathbf{K} at the root vector δ_{o}.
Moments of μ_{K} are return probabilities for RW on \mathcal{T}_{α}.
Shape of $\widetilde{\mu}_{\alpha}$: Beta-like law on $[-1,0]$ and $[0,1]$.
Tail of $\widetilde{\mu}_{\alpha}$ at edge: $\widetilde{\mu}_{\alpha}(1-\varepsilon, 1) \sim \varepsilon^{\alpha}$.

$$
\widetilde{\mu}_{\alpha} \rightarrow \frac{1}{4} \delta_{-1}+\frac{1}{2} \delta_{0}+\frac{1}{4} \delta_{1}, \quad \alpha \downarrow 0
$$

\mathbf{K} is bounded self adjoint operator in $\ell^{2}(\mathcal{V}, \rho)$ and $\mathbb{E} \mu_{K} \rightarrow \widetilde{\mu}_{\alpha}=\mathbb{E}\left[\mu_{\mathrm{K}}\right]$, since

$$
\int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{K}\right](d x)}{x-z}=\mathbb{E}\left[\left\langle\delta_{1},(K-z)^{-1} \delta_{1}\right\rangle\right] \rightarrow \int_{\mathbb{R}} \frac{\mathbb{E}\left[\mu_{K}\right](d x)}{x-z}
$$

μ_{K} spectral measure of \mathbf{K} at the root vector δ_{o}.
Moments of μ_{K} are return probabilities for RW on \mathcal{T}_{α}.
Shape of $\widetilde{\mu}_{\alpha}$: Beta-like law on $[-1,0]$ and $[0,1]$.
Tail of $\widetilde{\mu}_{\alpha}$ at edge: $\widetilde{\mu}_{\alpha}(1-\varepsilon, 1) \sim \varepsilon^{\alpha}$.

$$
\widetilde{\mu}_{\alpha} \rightarrow \frac{1}{4} \delta_{-1}+\frac{1}{2} \delta_{0}+\frac{1}{4} \delta_{1}, \quad \alpha \downarrow 0
$$

Spectral gap: $1-\lambda_{2}=O\left(n^{-1 / \alpha}\right)$ (up to SV corrections).

Reversible invariant measure of RW on PWIT \mathcal{T}_{α}.
$\widetilde{\rho}_{1} \geqslant \widetilde{\rho}_{2} \geqslant \cdots \geqslant \widetilde{\rho}_{n}$ ranked values of invariant vector

$$
\left(\rho_{1}+\cdots+\rho_{n}\right)^{-1}\left(\rho_{1}, \ldots, \rho_{n}\right)
$$

Theorem

1. If $\alpha \in(0,1)$, then

$$
\tilde{\rho} \underset{n \rightarrow \infty}{\stackrel{d}{\longrightarrow}} \frac{1}{2}\left(V_{1}, V_{1}, V_{2}, V_{2}, \ldots\right),
$$

where $V_{1}>V_{2}>\cdots$ is a Poisson-Dirichlet $\operatorname{PD}(\alpha, 0)$ random vector.
2. If $\alpha \in[1,2)$, then

$$
\kappa_{n(n+1) / 2} \widetilde{\rho} \xrightarrow[n \rightarrow \infty]{d} \frac{1}{2}\left(\xi_{1}, \xi_{1}, \xi_{2}, \xi_{2}, \ldots\right),
$$

where $\xi_{1}>\xi_{2}>\cdots$ is $\operatorname{PPP}\left(m_{\alpha}\right)$, and $\kappa_{n}=n a_{n}^{-1} w_{n}$.

Further investigations and open problems:

- More details on the measures $\mu_{\alpha}, \widetilde{\mu}_{\alpha}$
- Analysis of stochastic the process associated to the limiting operator K
- Extremal eigenvalues: Poisson statistics ? (known for i.i.d. matrix Soshnikov 2004, Auffinger-Ben Arous-Peche 2008)

Non-reversible Markov matrix

$G=(V, E)$: complete oriented graph over n vertices with self-loops $V=\{1, \ldots, n\}, E=\{(i, j), i, j \in V\}$.
Random network (G, \mathbf{U}):

$$
\mathbf{U}=\left(U_{i j}\right)_{1 \leqslant i, j \leqslant n}
$$

i.i.d. RV's with law \mathcal{L} on $[0, \infty)$. No symmetry.

Random walk on (G, \mathbf{U}) :

$$
K_{i j}=\frac{U_{i j}}{\rho_{i}}, \quad \rho_{i}=\sum_{j=1}^{n} U_{i j}
$$

Eigenvalues: $\left|\lambda_{1}(K)\right| \geqslant \cdots \geqslant\left|\lambda_{n}(K)\right| . \quad \mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)}$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009).

$$
\mathcal{U}_{\sigma}(d z)=\frac{1}{\pi \sigma^{2}} 1_{\{|z| \leqslant \sigma\}} d z
$$

Theorem
If $X_{i, j}$ are i.i.d. with variance $\sigma^{2} \in(0, \infty)$ then a.s.

$$
\mu_{\frac{1}{\sqrt{n}}} \times \underset{n \rightarrow \infty}{w} \mathcal{U}_{\sigma} .
$$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009).

$$
\mathcal{U}_{\sigma}(d z)=\frac{1}{\pi \sigma^{2}} 1_{\{|z| \leqslant \sigma\}} d z
$$

Theorem
If $X_{i, j}$ are i.i.d. with variance $\sigma^{2} \in(0, \infty)$ then a.s.

$$
\mu_{\frac{1}{\sqrt{n}}} \times \underset{n \rightarrow \infty}{w} \mathcal{U}_{\sigma} .
$$

In our case we prove
Theorem
If $U_{i, j}$ has variance $\sigma^{2} \in(0, \infty)$ and its law is a.c. with bounded density then a.s.

$$
\mu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{w} \mathcal{U}_{\sigma}
$$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009).

$$
\mathcal{U}_{\sigma}(d z)=\frac{1}{\pi \sigma^{2}} 1_{\{|z| \leqslant \sigma\}} d z
$$

Theorem
If $X_{i, j}$ are i.i.d. with variance $\sigma^{2} \in(0, \infty)$ then a.s.

$$
\mu_{\frac{1}{\sqrt{n}}} \times \underset{n \rightarrow \infty}{w} \mathcal{U}_{\sigma} .
$$

In our case we prove
Theorem
If $U_{i, j}$ has variance $\sigma^{2} \in(0, \infty)$ and its law is a.c. with bounded density then a.s.

$$
\mu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{w} \mathcal{U}_{\sigma} .
$$

idea: as before $\left|\rho_{i} / n-1\right| \rightarrow 0$ uniformly and therefore $K_{i j} \sim \frac{U_{i j}}{n}$, but here there is no easy perturbation argument

The logarithmic potential $U_{\mu}(z)=-\int_{\mathbb{C}} \log \left|z^{\prime}-z\right| \mu\left(d z^{\prime}\right)$ determines the distribution μ :

$$
\Delta U_{\mu}=-2 \pi \mu, \quad \text { in } \mathcal{D}^{\prime}(\mathbb{C})
$$

For any $n \times n$ matrix A :

$$
\begin{aligned}
U_{\mu_{A}}(z) & =-\frac{1}{n} \sum_{i=1}^{n} \log \left|\lambda_{i}(A)-z\right|=-\frac{1}{n} \log |\operatorname{det}(A-z)| \\
& =-\frac{1}{n} \log \operatorname{det}\left(\sqrt{(A-z)(A-z)^{*}}\right)
\end{aligned}
$$

Let ν_{A} denote the ESD of singular spectrum $\nu_{A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\sigma_{i}(A)}$, where $s_{i}(A)=\lambda_{i}\left(\sqrt{A A^{*}}\right)$. Then

$$
U_{\mu_{A}}(z)=-\int_{0}^{\infty} \log (t) \nu_{A-z}(d t)
$$

A is normal, i.e. $A A^{*}=A^{*} A$, iff $\left|\lambda_{i}(A)\right|=s_{i}(A) \forall i$. In general

$$
\prod_{i=1}^{n}\left|\lambda_{i}(A)\right|=\prod_{i=1}^{n} \sigma_{i}(A), \quad\left|\lambda_{1}(A)\right| \leqslant s_{1}(A), \quad\left|\lambda_{n}(A)\right| \geqslant s_{n}(A)
$$

Lemma (Girko's hermitization strategy)

Let $\left(A_{n}\right)_{n \geqslant 1}$ be a sequence of $n \times n$ matrices. We have

$$
U_{\mu_{A_{n}}}(z)=-\int_{0}^{\infty} \log (t) \nu_{A_{n}-z}(d t)
$$

Suppose that for a.a. $z \in \mathbb{C}$, there is a probability ν_{z} on $[0, \infty)$ such that
(i) $\nu_{A_{n}-z} \rightarrow \nu_{z}$ weakly as $n \rightarrow \infty$
(ii) $\log (\cdot)$ is uniformly integrable fo $\nu_{A_{n}-z}$

Then there exists a probability μ on \mathbb{C} such that $\mu_{A_{n}} \rightarrow \mu$ weakly as $n \rightarrow \infty$, and $U_{\mu}(z)=-\int_{0}^{\infty} \log (t) \nu_{z}(d t)$.
[In the random case, one can use this lemma for a.a. realizations.]

For our matrices K : We prove
Theorem (singular values)
If $\sigma^{2} \in(0, \infty)$, then almost surely

$$
\nu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{w} \mathcal{Q}_{\sigma} .
$$

where $Q_{\sigma}(d t)=\frac{1}{\pi \sigma^{2}} \sqrt{4 \sigma^{2}-t^{2}} 1_{\left\{0<t<2 \sigma^{2}\right\}} d t$. Moreover, for a.a.
$z \in \mathbb{C}, \nu_{\sqrt{n} K-z} \xrightarrow[n \rightarrow \infty]{\stackrel{w}{\longrightarrow}} \nu_{z}$ with ν_{z} satisfying

$$
U_{\mathcal{U}_{\sigma}}(z):=-\int_{\mathbb{C}} \log \left|z^{\prime}-z\right| \mathcal{U}_{\sigma}\left(d z^{\prime}\right)=-\int_{0}^{\infty} \log (t) \nu_{z}(d t) .
$$

For our matrices K : We prove
Theorem (singular values)
If $\sigma^{2} \in(0, \infty)$, then almost surely

$$
\nu_{\sqrt{n} K} \xrightarrow[n \rightarrow \infty]{\stackrel{w}{\longrightarrow}} \mathcal{Q}_{\sigma} .
$$

where $Q_{\sigma}(d t)=\frac{1}{\pi \sigma^{2}} \sqrt{4 \sigma^{2}-t^{2}} 1_{\left\{0<t<2 \sigma^{2}\right\}} d t$. Moreover, for a.a.
$z \in \mathbb{C}, \nu_{\sqrt{n} K-z} \xrightarrow[n \rightarrow \infty]{w} \nu_{z}$ with ν_{z} satisfying

$$
U_{\mathcal{U}_{\sigma}}(z):=-\int_{\mathbb{C}} \log \left|z^{\prime}-z\right| \mathcal{U}_{\sigma}\left(d z^{\prime}\right)=-\int_{0}^{\infty} \log (t) \nu_{z}(d t) .
$$

Theorem (uniform integrability)
If $\sigma^{2} \in(0, \infty)$, then almost surely, for a.a. $z \in \mathbb{C}, \log (\cdot)$ is uniformly integrable w.r.t. $\nu_{\sqrt{n} K-z}$, i.e. for all $\epsilon>0$:
$\lim _{\beta \rightarrow \infty} \mathbb{P}\left(\sup _{n}\left|\int_{|\log (\cdot)|>\beta} \log (t) \nu_{\sqrt{n} K-z}(d t)\right|>\epsilon\right) \rightarrow 0$.

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{n}}} x_{-z}($ Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0 , not at ∞).
Following Tao-Vu we need two facts:

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{n}}} x_{-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0 , not at ∞).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every $a, C>0$ there exists $b>0$ such that for any $z \in \mathbb{C}$ with $|z| \leqslant C$

$$
\mathbb{P}\left(s_{n}(\sqrt{n} K-z) \leqslant n^{-b}\right) \leqslant n^{-a}
$$

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{n}}} x_{-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0 , not at ∞).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every $a, C>0$ there exists $b>0$ such that for any $z \in \mathbb{C}$ with $|z| \leqslant C$

$$
\mathbb{P}\left(s_{n}(\sqrt{n} K-z) \leqslant n^{-b}\right) \leqslant n^{-a} .
$$

2) Control of $s_{n-i}(\sqrt{n} K-z)$ for $n^{1-\varepsilon}<i<n$: almost surely

$$
s_{n-i}(\sqrt{n} K-z) \geqslant c i / n .
$$

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{n}}} x_{-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0 , not at ∞).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every $a, C>0$ there exists $b>0$ such that for any $z \in \mathbb{C}$ with $|z| \leqslant C$

$$
\mathbb{P}\left(s_{n}(\sqrt{n} K-z) \leqslant n^{-b}\right) \leqslant n^{-a} .
$$

2) Control of $s_{n-i}(\sqrt{n} K-z)$ for $n^{1-\varepsilon}<i<n$: almost surely

$$
s_{n-i}(\sqrt{n} K-z) \geqslant c i / n .
$$

Extensions: it's possible to remove the bdd density assumtpion [refined estimate for s_{n} following Rudelson-Vershynin, Götze-Tikhomirov]. One can also treat sparse graphs: $U_{i j} \mapsto \varepsilon_{i j} U_{i j}$ with $\varepsilon_{i j}$ iid $\operatorname{Bernoulli}(p(n)), n p(n)(\log n)^{-6} \rightarrow \infty, p(n) \rightarrow 0$

Non-hermitian i.i.d. heavy tailed matrices

$A=\left(A_{i j}\right)_{1 \leqslant i, j \leqslant n}$, i.i.d. with law $\left|A_{i j}\right| \in \mathcal{H}_{\alpha}, \alpha \in(0,2)$, and $\lim _{t \rightarrow \infty} \frac{\mathbb{P}\left(A_{i, j}>t\right)}{\mathbb{P}\left(\left|A_{i, j}\right|>t\right)}=\theta \in[0,1]$. Assume also bounded density of $A_{i j}$.
Theorem
There exists an isotropic probability μ_{α} on \mathbb{C} depending only on α such that, a.s.

$$
\mu_{a_{n}^{-1} A}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(a_{n}^{-1} A\right)} \xrightarrow[n \rightarrow \infty]{w} \mu_{\alpha} .
$$

Moreover μ_{α} is a.c. with bounded density $\mu_{\alpha}(d z)=\varphi(|z|) d z$ satisfying

$$
\varphi(t) \sim t^{2(\alpha-1)} e^{-\frac{\alpha}{2} t^{\alpha}}, \quad t \rightarrow \infty
$$

[No heavy tails. Shrinking of the spectrum w.r.t. singular values]

Ideas of proof I

From Girko's hermitization: need to establish a) Singular values convergence and b) Uniform integrability.

Ideas of proof I

From Girko's hermitization: need to establish a) Singular values convergence and b) Uniform integrability.

Theorem (singular values)

There exists ν_{z} depending on α and $z \in \mathbb{C}$, such that for a.a.
$z \in \mathbb{C}$, almost surely,

$$
\nu_{a_{n}^{-1}} A-z \underset{n \rightarrow \infty}{\stackrel{w}{\longrightarrow}} \nu_{z} .
$$

[For $z=0$ already in Belinschi-Dembo-Guionnet 2009].
We prove it using again PWIT technology. Need a bipartized version of PWIT. Note: ν_{z} has heavy tails e.g. at $z=0$!

Ideas of proof II

Theorem (uniform integrability)
For a.a. $z \in \mathbb{C}$, almost surely, $\log (\cdot)$ is uniformly integrable w.r.t. $\nu_{a_{n}^{-1} A-z}$

As before, for the proof we need:

1) Smallest singular value bound: here OK by bdd density assumption

$$
\mathbb{P}\left(s_{n}\left(a_{n}^{-1} A-z\right) \leqslant n^{-b}\right) \leqslant n^{-a} .
$$

2) Control of $s_{n-i}\left(a_{n}^{-1} A-z\right)$ for $n^{1-\varepsilon}<i<n$:

Here we cannot have $s_{n-i}\left(a_{n}^{-1} A-z\right) \geqslant c \frac{i}{n}$.
There is not enough concentration.
We establish weaker estimates that are still sufficient.

Non-reversible Markov matrix: heavy tailed weights

[Work in progress with D. Piras]
$G=(V, E)$: complete oriented graph over n vertices with self-loops $V=\{1, \ldots, n\}, E=\{(i, j), i, j \in V\}$.
Random network (G, \mathbf{U}):

$$
\mathbf{U}=\left(U_{i j}\right)_{1 \leqslant i, j \leqslant n}
$$

i.i.d. RV's with law $\mathcal{L} \in \mathcal{H}_{\alpha}, \alpha \in(0,1)$. No symmetry. As before we consider the Random walk on (G, \mathbf{U}):

$$
K_{i j}=\frac{U_{i j}}{\rho_{i}}, \quad \rho_{i}=\sum_{j=1}^{n} U_{i j}
$$

Expect convergence of ESD $\mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)}$ without scaling.

Main result

Theorem
Assume bdd density for the law \mathcal{L}. For any $\alpha \in(0,1)$, there exists a radial probability $\hat{\mu}_{\alpha}$ on $\mathbb{D}=\{z \in \mathbb{C}:|z| \leqslant 1\}$ depending only on α such that, a.s.

$$
\mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)} \xrightarrow[n \rightarrow \infty]{w} \hat{\mu}_{\alpha} .
$$

Main result

Theorem
Assume bdd density for the law \mathcal{L}. For any $\alpha \in(0,1)$, there exists a radial probability $\hat{\mu}_{\alpha}$ on $\mathbb{D}=\{z \in \mathbb{C}:|z| \leqslant 1\}$ depending only on α such that, a.s.

$$
\mu_{K}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)} \xrightarrow[n \rightarrow \infty]{w} \hat{\mu}_{\alpha}
$$

Key steps:

1. Convergence of singular value spectrum ν_{K-z}, for all $z \in \mathbb{C}$.
2. Uniform integrability of $\log (\cdot)$ for ν_{K-z} for almost all $z \in \mathbb{C}$.

Note: for $z=1$, the matrix $K-z$ is singular with probability 1 !

The singular values

Theorem (Bulk)

There exists a probability measure $\hat{\nu}_{\alpha, z}$ on \mathbb{R}_{+}, depending on α and $z \in \mathbb{C}$, such that for a.a. $z \in \mathbb{C}$, a.s.,

$$
\nu_{K-z} \underset{n \rightarrow \infty}{\stackrel{w}{\longrightarrow}} \hat{\nu}_{\alpha, z} .
$$

The measure $\hat{\nu}_{\alpha, z}$ has unbounded support with exponential tails.
Theorem (Invertibility)
For any $\delta>0$ there exists $r>0$ such that for all $|z|<\delta^{-1}$ and $|z-1|>\delta$ one has almost surely

$$
\lim _{n \rightarrow \infty} n^{r} s_{n}(K-z)=+\infty
$$

Modified PWIT

Key observations:

1. order stat. of first row

$$
\begin{aligned}
& =\rho_{1}^{-1}\left(\text { order statistics of } n \text { i.i.d. RVs in } \mathcal{H}_{\alpha}\right) \\
& \sim P D(\alpha)=\left(\frac{\xi_{1}}{\sum_{i=1}^{x_{i}} \xi_{i}}, \frac{\xi_{2}}{\sum_{i=1}^{\infty_{i}} \xi_{i}}, \ldots\right)
\end{aligned}
$$

2. order stat. of first column

$$
=\left(\text { order statistics of } \frac{U_{i, 1}}{\rho_{i}}\right) \sim\left(\frac{\xi_{1}}{a+\xi_{1}}, \frac{\xi_{2}}{a+\xi_{2}}, \ldots\right)
$$

where $a>0$, and $\left\{\xi_{i}\right\}=\left\{\Gamma_{i}^{-1 / \alpha}\right\}$ is $\operatorname{PPP}\left(\alpha x^{-\alpha-1} d x\right)$.
Call $\mathcal{T}_{\alpha}^{ \pm}$the PWIT obtained by alternating $P D(\alpha)$ generations with $\left\{\frac{\xi_{i}}{a+\xi_{i}}\right\}$-generations.
We obtain that bipartized matrix $\left(\begin{array}{cc}0 & K \\ K^{*} & 0\end{array}\right)$ converges locally to the random rooted tree: \mathcal{T}_{α}^{+}with prob. $\frac{1}{2}$ and \mathcal{T}_{α}^{-}with prob. $\frac{1}{2}$.

Bipartized matrix

Example: $n=2$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \Rightarrow B=\left(\begin{array}{cccc}
0 & A_{11} & 0 & A_{12} \\
\bar{A}_{11} & 0 & A_{21} & 0 \\
0 & \bar{A}_{21} & 0 & A_{22} \\
\bar{A}_{12} & 0 & \bar{A}_{22} & 0
\end{array}\right)
$$

Bipartized matrix

Example: $n=2$

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \Rightarrow B=\left(\begin{array}{cccc}
0 & A_{11} & 0 & A_{12} \\
\bar{A}_{11} & 0 & A_{21} & 0 \\
0 & \bar{A}_{21} & 0 & A_{22} \\
\bar{A}_{12} & 0 & \bar{A}_{22} & 0
\end{array}\right)
$$

Moreover, B similar to

$$
\widetilde{B}=\left(\begin{array}{cccc}
0 & 0 & A_{11} & A_{12} \\
0 & 0 & A_{21} & A_{22} \\
\bar{A}_{11} & \bar{A}_{21} & 0 & 0 \\
\bar{A}_{12} & \bar{A}_{22} & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right)
$$

Bipartized matrix

In general,

$$
B=\left(B_{i j}\right), \text { with } B_{i j}=\left(\begin{array}{cc}
0 & A_{i j} \\
\bar{A}_{j i} & 0
\end{array}\right) \text { is } 2 \times 2 \text { matrix. }
$$

Since B similar to $\widetilde{B}=\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right)$,

$$
\mu_{B}=\frac{1}{2 n} \sum_{i=1}^{n}\left(\delta_{\sigma_{i}(A)}+\delta_{-\sigma_{i}(A)}\right) .
$$

New resolvents: $z \in \mathbb{C}, \eta \in \mathbb{C}_{+}$:

$$
R(U)=\left(B-U \otimes I_{n}\right)^{-1}, \quad U=U(z, \eta)=\left(\begin{array}{cc}
\eta & z \\
\bar{z} & \eta
\end{array}\right)
$$

Then $R(U)_{k k}=\left(\begin{array}{ll}a_{k}(z, \eta) & b_{k}(z, \eta) \\ \bar{b}_{k}(z, \eta) & c_{k}(z, \eta)\end{array}\right)$

New resolvents: $z \in \mathbb{C}, \eta \in \mathbb{C}_{+}$:

$$
R(U)=\left(B-U \otimes I_{n}\right)^{-1}, \quad U=U(z, \eta)=\left(\begin{array}{cc}
\eta & z \\
\bar{z} & \eta
\end{array}\right)
$$

Then $R(U)_{k k}=\left(\begin{array}{ll}a_{k}(z, \eta) & b_{k}(z, \eta) \\ \bar{b}_{k}(z, \eta) & c_{k}(z, \eta)\end{array}\right)$
Crucial relations: a random matrix A with exchangeable entries satisfies, in $\mathcal{D}^{\prime}(\mathbb{C})$

$$
\begin{equation*}
\mathbb{E} \mu_{A}=-\frac{1}{4 \pi}\left(\partial_{x}-i \partial_{y}\right) \mathbb{E} b_{1}(\cdot, 0)=\lim _{t \downarrow 0}-\frac{1}{4 \pi}\left(\partial_{x}-i \partial_{y}\right) \mathbb{E} b_{1}(\cdot, i t) \tag{*}
\end{equation*}
$$

To prove properties of $\mu_{a_{n}^{-1} A^{\prime}}$: establish convergence to bipartized PWIT and use relations like $(*)$ together with recursive characterizations of $\mathbb{E} b_{1}(\cdot, i t)$ on PWIT.

