Spectral properties of random Markov matrices

P. Caputo, with C. Bordenave and D. Chafai, and D. Piras

Hong Kong - Jan 6-9, 2015

Outline

A natural model for a random Markov matrix: stochastic matrix K with random entries

$$K_{i,j} = \frac{U_{i,j}}{\sum_k U_{i,k}}$$
 $U_{i,j} \ge 0$ i.i.d.

Outline

A natural model for a random Markov matrix: stochastic matrix K with random entries

$$K_{i,j} = \frac{U_{i,j}}{\sum_k U_{i,k}}$$
 $U_{i,j} \ge 0$ i.i.d.

Reversible case: $U_{i,j} = U_{j,i}$ (random conductances)

Non-reversible case: $U_{i,j}$ i.i.d. (weighted oriented graph)

Bulk behavior: convergence of empirical spectral density of K

- 1. Finite second moment: semi-circular law, circular law
- 2. Heavy tails: $\mathbb{P}(U_{i,j} > t) \sim t^{-\alpha}$, $\alpha \in (0,2)$, new invariance principles

Random reversible stochastic matrix

G = (V, E): complete graph over *n* vertices with self-loops $V = \{1, \ldots, n\}$, $E = \{\{i, j\}, i, j \in V\}$.

Random network (G, \mathbf{U}) :

$$\mathbf{U} = (\mathit{U}_{ij})_{1 \,\leqslant\, i \,\leqslant\, j \,\leqslant\, n}$$

i.i.d. RV's with law \mathcal{L} on $[0,\infty)$.

 $\label{eq:symmetry} \mbox{ (undirected graph): } U_{ji} = U_{ij} \mbox{ , } j > i.$

Random walk on (G, \mathbf{U}) :

$$\mathcal{K}_{ij} = rac{U_{ij}}{
ho_i}, \quad
ho_i = \sum_{j=1}^n U_{ij}.$$

K is a reversible stochastic matrix: $\rho_i K_{ij} = \rho_j K_{ji}$.

Eigenvalues of K

K is a.s. irreducible and aperiodic with eigenvalues:

$$-1 < \lambda_n \leqslant \lambda_{n-1} \leqslant \cdots \leqslant \lambda_2 < \lambda_1 = 1.$$

Empirical spectral distribution (ESD):

$$\mu_{\mathcal{K}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i} \, .$$

Moments: $p_{\ell}(i)$ return probability at *i* after ℓ steps

$$\int_{-1}^1 x^\ell \,\mu_{\mathcal{K}}(dx) = \frac{1}{n}\operatorname{Tr}\left(\mathcal{K}^\ell\right) = \frac{1}{n}\sum_{i=1}^n p_\ell(i)\,.$$

Convergence of ESD μ_{K} (after scaling if necessary) ?

Finite variance, reversible case

Suppose $\mathbb{E}[U_{ij}^2] < \infty$, $\mathbb{E}[U_{ij}] = 1$ (no loss of generality), $\sigma^2 = \mathbb{E}[(U_{ij} - 1)^2]$. Theorem If $\sigma^2 \in (0, \infty)$, then almost surely

$$\mu_{\sqrt{n}\,K} \xrightarrow[n \to \infty]{w} \mathcal{W}_{2\sigma} ,$$

where $W_{2\sigma}$ is Wigner's Semi-circle law:

$$\mathcal{W}_{2\sigma}(dx) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - x^2} \, \mathbb{1}_{[-2\sigma, 2\sigma]}(x) \, dx$$

Finite variance, reversible case

Suppose $\mathbb{E}[U_{ij}^2] < \infty$, $\mathbb{E}[U_{ij}] = 1$ (no loss of generality), $\sigma^2 = \mathbb{E}[(U_{ij} - 1)^2]$. Theorem If $\sigma^2 \in (0, \infty)$, then almost surely

$$\mu_{\sqrt{n}\,K} \xrightarrow[n \to \infty]{w} \mathcal{W}_{2\sigma} ,$$

where $W_{2\sigma}$ is Wigner's Semi-circle law:

$$\mathcal{W}_{2\sigma}(dx) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}\,\mathbf{1}_{[-2\sigma,2\sigma]}(x)\,dx.$$

Idea of proof (perturbation argument):

Uniform strong LLN: $\rho_i \sim n \mathbb{E}[U_{ij}] = n$, $K_{ij} \sim n^{-1} U_{ij}$.

$$\delta_n := \max_{i=1,\dots,n} |
ho_i/n - 1| = o(1), \text{ a.s. } (n o \infty)$$

Heavy tails

For $\alpha > 0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{ij} \in \mathcal{H}_{\alpha}$, if

$$egin{aligned} G(t) &= \mathbb{P}(U_{ij} > t) = L(t) \, t^{-lpha} \, , \ &\lim_{t o \infty} rac{L(x \, t)}{L(t)} = 1 \, , \; x > 0 \, . \end{aligned}$$
 (slow variation)

 $\alpha \in (0,2) \Rightarrow \mathbb{E}[U_{ij}^2] = \infty$, U_{ij} in domain of attract. of α -stable law.

Heavy tails

For $\alpha > 0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{ij} \in \mathcal{H}_{\alpha}$, if

$$egin{aligned} G(t) &= \mathbb{P}(U_{ij} > t) = L(t) \, t^{-lpha} \, , \ &\lim_{t o \infty} rac{L(x \, t)}{L(t)} = 1 \, , \; x > 0 \, . \end{aligned}$$
 (slow variation)

 $\alpha \in (0,2) \Rightarrow \mathbb{E}[U_{ij}^2] = \infty$, U_{ij} in domain of attract. of α -stable law. Scaling: $a_n = n^{1/\alpha} \ell(n)$, with $\ell(n)$ slowly varying,

$$n G(a_n t)
ightarrow t^{-lpha}$$
 as $n
ightarrow \infty$.

Example: X = Unif[0, 1] then $X^{-1/\alpha} \in \mathcal{H}_{\alpha}$, with $a_n = n^{1/\alpha}$.

Heavy tails

For $\alpha > 0$, we say that $\mathcal{L} \in \mathcal{H}_{\alpha}$, or simply $U_{ij} \in \mathcal{H}_{\alpha}$, if

$$egin{aligned} G(t) &= \mathbb{P}(U_{ij} > t) = L(t) \, t^{-lpha} \, , \ &\lim_{t o \infty} rac{L(x \, t)}{L(t)} = 1 \, , \; x > 0 \, . \end{aligned}$$
 (slow variation)

 $\alpha \in (0,2) \Rightarrow \mathbb{E}[U_{ij}^2] = \infty$, U_{ij} in domain of attract. of α -stable law. Scaling: $a_n = n^{1/\alpha} \ell(n)$, with $\ell(n)$ slowly varying,

$$n G(a_n t)
ightarrow t^{-lpha}$$
 as $n
ightarrow \infty$.

Example: X = Unif[0,1] then $X^{-1/\alpha} \in \mathcal{H}_{\alpha}$, with $a_n = n^{1/\alpha}$.

Recall:

 a_n^{-1} (order statistics of *n* i.i.d. RVs in \mathcal{H}_{α}) ~ ($\Gamma_1^{-1/\alpha}, \ldots, \Gamma_n^{-1/\alpha}$) where $\Gamma_k = \sum_{i=1}^k E_i$, and E_i are i.i.d. Esp(1), i.e. $PPP(\alpha x^{-\alpha-1})$.

Heavy tails: i.i.d. case

Symmetric i.i.d. matrix $A = (A_{ij})$, with $|A_{ij}| \in \mathcal{H}_{\alpha}$, $\alpha \in (0, 2)$, with $\lim_{t\to\infty} \frac{\mathbb{P}(A_{i,j}>t)}{\mathbb{P}(|A_{i,j}|>t)} = \theta \in [0, 1]$.

Theorem

For $\alpha \in (0,2)$, there exists a symmetric probability μ_{α} on \mathbb{R} depending only on α such that, a.s.

$$\mu_{a_n^{-1}A} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(a_n^{-1}A)} \xrightarrow[n \to \infty]{w} \mu_{\alpha} .$$

Moreover μ_{α} is a.c. with bounded density and $\mu_{\alpha}([t,\infty)) \sim \frac{1}{2} t^{-\alpha}$.

Bouchaud–Cizeau (PRE 1994), Zakharevich (CMP 2006), Ben Arous–Guionnet (CMP 2008). Belinschi-Dembo-Guionnet (CMP 2009). Resolvent method (Stieltjes transform).

Our approach gives an alternative proof.

Heavy tails: Markov matrix

Stochastic matrix $K_{ij} = U_{ij}/\rho_i$, with $U_{ij} \in \mathcal{H}_{\alpha}$. μ_{α} as above.

Theorem

Suppose $\alpha \in [1, 2)$. Then, a.s.

$$\mu_{\kappa_n \, K} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(\kappa_n \, K)} \xrightarrow[n \to \infty]{w} \mu_{\alpha} \, .$$

where
$$\kappa_n = nw_n a_n^{-1}$$
, $w_n = \mathbb{E}[U_{ij} \chi(U_{ij} \leqslant a_n)]$.

Theorem

Suppose $\alpha \in (0, 1)$. Then, there exists a probability measure $\tilde{\mu}_{\alpha}$ on [-1, 1] depending only on α such that, a.s.

$$\mu_{\mathcal{K}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathcal{K})} \xrightarrow[n \to \infty]{w} \widetilde{\mu}_{\alpha} \,.$$

Scaling, $\alpha \in (0, 2)$:

$$a_n^{-1}(\rho_i - nw_n) \xrightarrow[n \to \infty]{d} s_\alpha \quad \alpha$$
-stable

 $\alpha \in (1,2)$: $w_n \to \mathbb{E}[U_{ij}] = 1$ and $\rho_i/n \to 1$ a.s.

 $\kappa_n K \sim n a_n^{-1} K \sim a_n^{-1} A$, where A has i.i.d. entries.

Scaling, $\alpha \in (0, 2)$:

$$a_n^{-1}(\rho_i - nw_n) \xrightarrow[n \to \infty]{d} s_\alpha$$
 α -stable

 $\alpha \in (1,2)$: $w_n \to \mathbb{E}[U_{ij}] = 1$ and $\rho_i/n \to 1$ a.s. $\kappa_n K \sim na_n^{-1} K \sim a_n^{-1} A$, where A has i.i.d. entries.

 $\alpha = 1$, then $\rho_i / nw_n \rightarrow 1$ in probability

[example: $U = (Unif[0, 1])^{-1}$, then $\kappa_n = w_n = \log n$] $\kappa_n K = nw_n a_n^{-1} K \sim a_n^{-1} A$, A i.i.d. entries. Scaling, $\alpha \in (0, 2)$:

$$a_n^{-1}(\rho_i - nw_n) \xrightarrow[n \to \infty]{d} s_\alpha$$
 α -stable

 $\alpha \in (1,2)$: $w_n \to \mathbb{E}[U_{ij}] = 1$ and $\rho_i/n \to 1$ a.s. $\kappa_n K \sim na_n^{-1} K \sim a_n^{-1} A$, where A has i.i.d. entries.

 $\alpha = 1$, then $\rho_i / nw_n \rightarrow 1$ in probability

[example: $U = (Unif[0,1])^{-1}$, then $\kappa_n = w_n = \log n$] $\kappa_n K = nw_n a_n^{-1} K \sim a_n^{-1} A$, A i.i.d. entries. $\alpha \in (0,1)$, then $a_n^{-1} \rho_i \stackrel{d}{\longrightarrow} s_{\alpha}^+$

each row of K converges to Poisson-Dirichlet(α): $\Gamma_k = \sum_{i=1}^k E_i$

$$Z = \left(\sum_{n=1}^{\infty} \Gamma_n^{-\frac{1}{\alpha}}\right)^{-1} \left(\Gamma_1^{-\frac{1}{\alpha}}, \Gamma_2^{-\frac{1}{\alpha}}, \dots\right) \,.$$

Some ideas of the proof

Start with symmetric i.i.d. matrix $A_{ij} = U_{ij}$ as a weighted graph:

Convergence of resolvents from

local convergence of graphs

[Bordenave, Lelarge] Objective method (Aldous-Steele '04) Limiting graph is a random infinite rooted tree (\mathcal{T}_{α} ; o):

Recall that a_n^{-1} (order stat. of row 1) ~ $PPP(\alpha x^{-\alpha-1})$

This convergence can be extended to local convergence to the Poisson weighted infinite tree **PWIT** (Aldous '92)

Define **PWIT** $(m_{\alpha}) = \mathcal{T}_{\alpha}$, for

$$m_{\alpha}(dx) = \alpha x^{-1-\alpha} dx$$
, on $(0,\infty)$.

Start from the root o, with \mathbb{N} offsprings. Each edge (o, k) is given a mark ξ_k where $\xi_1 > \xi_2 > \cdots$ is a realization of PPP (m_α) . The distance of offspring k from o is defined by ξ_k^{-1} . Repeat this *independently* at each offspring to obtain an infinite ∞ -ary tree with Poissonian marks (PWIT). Define **PWIT** $(m_{\alpha}) = \mathcal{T}_{\alpha}$, for

$$m_{\alpha}(dx) = \alpha x^{-1-\alpha} dx$$
, on $(0,\infty)$.

Start from the root o, with \mathbb{N} offsprings. Each edge (o, k) is given a mark ξ_k where $\xi_1 > \xi_2 > \cdots$ is a realization of PPP (m_α) . The distance of offspring k from o is defined by ξ_k^{-1} . Repeat this *independently* at each offspring to obtain an infinite ∞ -ary tree with Poissonian marks (PWIT).

Convergence: (G, \mathbf{U}) rooted at 1. The vector $(a_n^{-1} U_{1,j})_j$ converges in distribution to PPP (m_α) , (via order statistics). In the *local* sense

$$(G, \mathbf{U}; 1) \rightarrow (\mathcal{T}_{\alpha}; o).$$

(again via order statistics. Small weights correspond to points far away from the root.) This holds for any $\alpha > 0$.

Similar result for $A = (A_{ij})$, with $|A_{ij}| = U_{ij} \in \mathcal{H}_{\alpha}$. Signed marks.

Key point: for $\alpha \in (0, 2)$, this convergence is sufficient to establish convergence (in distribution) of resolvent diagonal entries. Hilbert space is $\ell^2(\mathcal{V})$, \mathcal{V} the vertices of the tree:

$$\langle \delta_1, (a_n^{-1}A - z)^{-1}\delta_1 \rangle \to \langle \delta_o, (\mathbf{T} - z)^{-1}\delta_o \rangle$$

where **T** is the limiting operator associated to $a_n^{-1}A$:

$$\langle \delta_u, {f T} \delta_v
angle = \xi_{u,v} \quad$$
mark across edge (u,v) in \mathcal{T}_lpha .

T is symmetric in $\ell^2(\mathcal{V})$. Note: If **T** is self adjoint then $\exists \mu_{\mathbf{T}}$

$$\langle \delta_o, (\mathbf{T}-z)^{-1} \delta_o
angle = \int_{\mathbb{R}} rac{\mu_{\mathbf{T}}(dx)}{x-z}, \qquad z \in \mathbb{C}_+$$

Taking expectation we have $\mathbb{E}\mu_{\mathbf{a}_n^{-1}\mathbf{A}} \to \mu_{\alpha} := \mathbb{E}[\mu_{\mathbf{T}}]$, since

$$\int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{a_n^{-1}A}](dx)}{x-z} = \mathbb{E}[\langle \delta_1, (a_n^{-1}A - z)^{-1}\delta_1 \rangle] \to \int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathsf{T}}](dx)}{x-z}$$

Technical point: must show **T** is essentially self-adjoint; no solution $\varphi \neq 0$ of $\mathbf{T}^* \varphi = \pm i \varphi$ (exploit tree structure).

Almost sure convergence $\mu_{a_n^{-1}A} \rightarrow \mu_{\alpha}$ follows from concentration properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case [see Ben Arous–Guionnet 08 for an earlier different proof] Technical point: must show **T** is essentially self-adjoint; no solution $\varphi \neq 0$ of $\mathbf{T}^* \varphi = \pm i \varphi$ (exploit tree structure).

Almost sure convergence $\mu_{a_n^{-1}A} \rightarrow \mu_{\alpha}$ follows from concentration properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case [see Ben Arous–Guionnet 08 for an earlier different proof]

Properties of μ_{α} .

Recursive Distributional Equation: $h(z) = \langle \delta_o, (\mathbf{T} - z)^{-1} \delta_o \rangle$ satisfies

$$h(z) \stackrel{d}{=} -\left(z + \sum_{k} \xi_{k} h_{k}(z)\right)^{-}$$

where ξ_k is PPP $(m_{\alpha/2})$ and $h_k(z)$ are i.i.d. copies of h(z).

The Markov matrix case: again network convergence.

$$\alpha \in (0, 1)$$
: the PPP (m_{α}) satisfies $\sum_{i} \xi_{i} < \infty$ a.s.

 $(K_{1,j})_j \sim PD(\alpha)$ Poisson–Dirichlet law (Pitman-Yor '97).

$$Z = \left(\sum_{n=1}^{\infty} \Gamma_n^{-\frac{1}{\alpha}}\right)^{-1} \left(\Gamma_1^{-\frac{1}{\alpha}}, \Gamma_2^{-\frac{1}{\alpha}}, \dots\right) \qquad \Gamma_k = \sum_{i=1}^k E_i.$$

Limit operator K describes Random Walk on PWIT \mathcal{T}_{α}

$$\mathbf{K}_{u,v} = \frac{\xi_{u,v}}{\rho_u}, \quad \rho_u = \sum_{v \in \mathcal{V}: v \sim u} \xi_{u,v}.$$

Here, for every $u \in \mathcal{V}$: $\{\xi_{u,v}, v \in \mathcal{V} : v \text{ child of } u\}$ is $\mathsf{PPP}(m_{\alpha})$.

Note: limit operator K is a non-trivial generalization of Poisson-Dirichlet law (dependecies!).

K is *bounded* self adjoint operator in $\ell^2(\mathcal{V}, \rho)$ and $\mathbb{E}\mu_{\mathsf{K}} \to \widetilde{\mu}_{\alpha} = \mathbb{E}[\mu_{\mathsf{K}}]$, since

$$\int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z} = \mathbb{E}[\langle \delta_1, (\mathcal{K}-z)^{-1}\delta_1 \rangle] \to \int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z}$$

 $\mu_{\mathbf{K}}$ spectral measure of **K** at the root vector δ_o .

K is *bounded* self adjoint operator in $\ell^2(\mathcal{V}, \rho)$ and $\mathbb{E}\mu_K \to \tilde{\mu}_{\alpha} = \mathbb{E}[\mu_K]$, since

$$\int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z} = \mathbb{E}[\langle \delta_1, (\mathcal{K}-z)^{-1}\delta_1 \rangle] \to \int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z}$$

 $\mu_{\mathbf{K}}$ spectral measure of \mathbf{K} at the root vector δ_{o} .

Moments of $\mu_{\mathbf{K}}$ are return probabilities for RW on \mathcal{T}_{α} .

Shape of $\tilde{\mu}_{\alpha}$: Beta-like law on [-1, 0] and [0, 1].

Tail of $\widetilde{\mu}_{\alpha}$ at edge: $\widetilde{\mu}_{\alpha}(1-\varepsilon,1) \sim \varepsilon^{\alpha}$.

$$\widetilde{\mu}_{\alpha} \rightarrow \frac{1}{4} \, \delta_{-1} + \frac{1}{2} \, \delta_0 + \frac{1}{4} \, \delta_1, \quad \alpha \downarrow 0$$

K is *bounded* self adjoint operator in $\ell^2(\mathcal{V}, \rho)$ and $\mathbb{E}\mu_{\mathbf{K}} \to \tilde{\mu}_{\alpha} = \mathbb{E}[\mu_{\mathbf{K}}]$, since

$$\int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z} = \mathbb{E}[\langle \delta_1, (\mathcal{K}-z)^{-1}\delta_1 \rangle] \to \int_{\mathbb{R}} \frac{\mathbb{E}[\mu_{\mathcal{K}}](dx)}{x-z}$$

 $\mu_{\mathbf{K}}$ spectral measure of \mathbf{K} at the root vector δ_{o} .

Moments of $\mu_{\mathbf{K}}$ are return probabilities for RW on \mathcal{T}_{α} .

Shape of $\tilde{\mu}_{\alpha}$: Beta-like law on [-1, 0] and [0, 1].

Tail of $\widetilde{\mu}_{\alpha}$ at edge: $\widetilde{\mu}_{\alpha}(1-\varepsilon,1) \sim \varepsilon^{\alpha}$.

$$\widetilde{\mu}_{\alpha} \rightarrow \frac{1}{4} \, \delta_{-1} + \frac{1}{2} \, \delta_0 + \frac{1}{4} \, \delta_1, \quad \alpha \downarrow 0$$

Spectral gap: $1 - \lambda_2 = O(n^{-1/\alpha})$ (up to SV corrections).

Reversible invariant measure of RW on **PWIT** \mathcal{T}_{α} .

 $\widetilde{\rho}_1 \ge \widetilde{\rho}_2 \ge \cdots \ge \widetilde{\rho}_n$ ranked values of invariant vector $(\rho_1 + \cdots + \rho_n)^{-1} (\rho_1, \dots, \rho_n)$.

Theorem

1. If $\alpha \in (0,1)$, then

$$\widetilde{
ho} \stackrel{d}{\underset{n \to \infty}{\longrightarrow}} \frac{1}{2} \left(V_1, V_1, V_2, V_2, \dots \right) \,,$$

where $V_1 > V_2 > \cdots$ is a Poisson–Dirichlet $PD(\alpha, 0)$ random vector.

2. If $\alpha \in [1, 2)$, then

$$\kappa_{n(n+1)/2} \widetilde{\rho} \xrightarrow[n \to \infty]{d} \frac{1}{2} (\xi_1, \xi_1, \xi_2, \xi_2, \dots) ,$$

where $\xi_1 > \xi_2 > \cdots$ is $PPP(m_{\alpha})$, and $\kappa_n = na_n^{-1}w_n$.

Further investigations and open problems:

- More details on the measures μ_{lpha} , $\widetilde{\mu}_{lpha}$
- Analysis of stochastic the process associated to the limiting operator ${\bf K}$
- Extremal eigenvalues: Poisson statistics ? (known for i.i.d. matrix Soshnikov 2004, Auffinger-Ben Arous-Peche 2008)

Non-reversible Markov matrix

G = (V, E): complete oriented graph over n vertices with self-loops $V = \{1, ..., n\}$, $E = \{(i, j), i, j \in V\}$.

Random network (G, \mathbf{U}) :

$$\mathbf{U} = (\mathit{U}_{ij})_{1 \,\leqslant\, i,j \,\leqslant\, n}$$

i.i.d. RV's with law \mathcal{L} on $[0, \infty)$. No symmetry. Random walk on (G, \mathbf{U}) :

$$\mathcal{K}_{ij} = \frac{U_{ij}}{\rho_i}, \quad \rho_i = \sum_{j=1}^n U_{ij}.$$

Eigenvalues: $|\lambda_1(K)| \ge \cdots \ge |\lambda_n(K)|$. $\mu_K = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(K)}$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009). $\mathcal{U}_{\sigma}(dz) = \frac{1}{\pi\sigma^2} \, \mathbf{1}_{\{|z| \leqslant \sigma\}} \, dz$

Theorem

If $X_{i,j}$ are i.i.d. with variance $\sigma^2 \in (0,\infty)$ then a.s.

$$\mu_{\frac{1}{\sqrt{n}}X} \xrightarrow[n \to \infty]{w} \mathcal{U}_{\sigma}.$$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009). $\mathcal{U}_{\sigma}(dz) = \frac{1}{\pi\sigma^2} \, \mathbb{1}_{\{|z| \leqslant \sigma\}} \, dz$

Theorem

If $X_{i,j}$ are i.i.d. with variance $\sigma^2 \in (0,\infty)$ then a.s.

$$\mu_{\frac{1}{\sqrt{n}}X} \xrightarrow[n \to \infty]{w} \mathcal{U}_{\sigma}.$$

In our case we prove

Theorem

If $U_{i,j}$ has variance $\sigma^2 \in (0,\infty)$ and its law is a.c. with bounded density then a.s.

$$\mu_{\sqrt{n}K} \xrightarrow[n \to \infty]{w} \mathcal{U}_{\sigma}.$$

Circular law theorem

From works of Girko (1984) ... Bai (1997) ... Tao-Vu (2009). $\mathcal{U}_{\sigma}(dz) = \frac{1}{\pi\sigma^2} \, \mathbb{1}_{\{|z| \leqslant \sigma\}} \, dz$

Theorem

If $X_{i,j}$ are i.i.d. with variance $\sigma^2 \in (0,\infty)$ then a.s.

$$\mu_{\frac{1}{\sqrt{n}}X} \xrightarrow[n \to \infty]{w} \mathcal{U}_{\sigma}.$$

In our case we prove

Theorem

If $U_{i,j}$ has variance $\sigma^2 \in (0,\infty)$ and its law is a.c. with bounded density then a.s.

$$\mu_{\sqrt{n}K} \xrightarrow[n \to \infty]{w} \mathcal{U}_{\sigma}.$$

idea: as before $|\rho_i/n - 1| \rightarrow 0$ uniformly and therefore $K_{ij} \sim \frac{U_{ij}}{n}$, but here there is no easy perturbation argument

The logarithmic potential $U_{\mu}(z) = -\int_{\mathbb{C}} \log |z' - z| \mu(dz')$ determines the distribution μ :

$$\Delta U_{\mu} = -2\pi \mu$$
, in $\mathcal{D}'(\mathbb{C})$.

For any $n \times n$ matrix A:

$$egin{split} U_{\mu_A}(z) &= -rac{1}{n}\sum_{i=1}^n \log|\lambda_i(A)-z| = -rac{1}{n}\log|\det(A-z)| \ &= -rac{1}{n}\log\det\left(\sqrt{(A-z)(A-z)^*}
ight) \end{split}$$

Let ν_A denote the ESD of singular spectrum $\nu_A = \frac{1}{n} \sum_{i=1}^n \delta_{\sigma_i(A)}$, where $s_i(A) = \lambda_i(\sqrt{AA^*})$. Then

$$U_{\mu_A}(z) = -\int_0^\infty \log(t) \,
u_{\mathcal{A}-z}(dt)$$

A is normal, i.e. $AA^* = A^*A$, iff $|\lambda_i(A)| = s_i(A) \ \forall i$. In general

$$\prod_{i=1}^n |\lambda_i(A)| = \prod_{i=1}^n \sigma_i(A), \quad |\lambda_1(A)| \leq s_1(A), \quad |\lambda_n(A)| \geq s_n(A).$$

Lemma (Girko's hermitization strategy) Let $(A_n)_{n \ge 1}$ be a sequence of $n \times n$ matrices. We have

$$U_{\mu_{\mathcal{A}_n}}(z) = -\int_0^\infty \log(t)\,
u_{\mathcal{A}_n-z}(dt)\,.$$

Suppose that for a.a. $z \in \mathbb{C}$, there is a probability ν_z on $[0, \infty)$ such that

(i)
$$\nu_{A_n-z} \rightarrow \nu_z$$
 weakly as $n \rightarrow \infty$
(ii) $\log(\cdot)$ is uniformly integrable fo ν_{A_n-z}
Then there exists a probability μ on \mathbb{C} such that $\mu_{A_n} \rightarrow \mu$ weakly
as $n \rightarrow \infty$, and $U_{\mu}(z) = -\int_0^{\infty} \log(t) \nu_z(dt)$.

[In the random case, one can use this lemma for a.a. realizations.]

For our matrices K: We prove

Theorem (singular values) If $\sigma^2 \in (0, \infty)$, then almost surely

$$\nu_{\sqrt{n}K} \xrightarrow[n \to \infty]{w} \mathcal{Q}_{\sigma}.$$

where $Q_{\sigma}(dt) = \frac{1}{\pi\sigma^2} \sqrt{4\sigma^2 - t^2} \mathbf{1}_{\{0 < t < 2\sigma^2\}} dt$. Moreover, for a.a. $z \in \mathbb{C}, \ \nu_{\sqrt{n}K-z} \xrightarrow{w}_{n \to \infty} \nu_z$ with ν_z satisfying

$$U_{\mathcal{U}_\sigma}(z) := -\int_{\mathbb{C}} \log |z'-z| \mathcal{U}_\sigma(dz') = -\int_0^\infty \log(t) \,
u_z(dt).$$

For our matrices K: We prove

Theorem (singular values) If $\sigma^2 \in (0, \infty)$, then almost surely

$$\nu_{\sqrt{n}K} \xrightarrow[n \to \infty]{w} \mathcal{Q}_{\sigma}.$$

where $Q_{\sigma}(dt) = \frac{1}{\pi\sigma^2} \sqrt{4\sigma^2 - t^2} \mathbf{1}_{\{0 < t < 2\sigma^2\}} dt$. Moreover, for a.a. $z \in \mathbb{C}, \ \nu_{\sqrt{n}K-z} \xrightarrow[n \to \infty]{w} \nu_z$ with ν_z satisfying

$$\mathcal{U}_{\mathcal{U}_\sigma}(z) := -\int_{\mathbb{C}} \log |z'-z| \mathcal{U}_\sigma(dz') = -\int_0^\infty \log(t) \,
u_z(dt).$$

Theorem (uniform integrability)

If $\sigma^2 \in (0, \infty)$, then almost surely, for a.a. $z \in \mathbb{C}$, $\log(\cdot)$ is uniformly integrable w.r.t. $\nu_{\sqrt{n}K-z}$, i.e. for all $\epsilon > 0$: $\lim_{\beta \to \infty} \mathbb{P}\left(\sup_n \left|\int_{|\log(\cdot)| > \beta} \log(t) \nu_{\sqrt{n}K-z}(dt)\right| > \epsilon\right) \to 0.$

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{2}}X-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at ∞). Following Tao-Vu we need two facts:

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{2}}X-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at ∞). Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists b > 0 such that for any $z \in \mathbb{C}$ with $|z| \leq C$

$$\mathbb{P}(s_n(\sqrt{n}K-z) \leqslant n^{-b}) \leqslant n^{-a}.$$

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{2}}X-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at ∞). Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists b > 0 such that for any $z \in \mathbb{C}$ with $|z| \leq C$

$$\mathbb{P}(s_n(\sqrt{n}K-z) \leqslant n^{-b}) \leqslant n^{-a}.$$

2) Control of $s_{n-i}(\sqrt{n}K - z)$ for $n^{1-\varepsilon} < i < n$: almost surely

$$s_{n-i}(\sqrt{n}K-z) \geq c i/n$$
.

Ideas of proof

Singular values: use perturbation for hermitian matrices and known results for convergence of $\nu_{\frac{1}{\sqrt{2}}X-z}$ (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at ∞). Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists b > 0 such that for any $z \in \mathbb{C}$ with $|z| \leq C$

$$\mathbb{P}(s_n(\sqrt{n}K-z) \leqslant n^{-b}) \leqslant n^{-a}.$$

2) Control of $s_{n-i}(\sqrt{n}K - z)$ for $n^{1-\varepsilon} < i < n$: almost surely

$$s_{n-i}(\sqrt{n}K-z) \geq c i/n$$
.

Extensions: it's possible to remove the bdd density assumption [refined estimate for s_n following Rudelson-Vershynin, Götze-Tikhomirov]. One can also treat sparse graphs: $U_{ij} \mapsto \varepsilon_{ij} U_{ij}$ with ε_{ij} iid Bernoulli $(p(n)), np(n)(\log n)^{-6} \to \infty, p(n) \to 0$

Non-hermitian i.i.d. heavy tailed matrices

$$\begin{array}{l} A = (A_{ij})_{1 \leq i,j \leq n}, \text{ i.i.d. with law } |A_{ij}| \in \mathcal{H}_{\alpha}, \ \alpha \in (0,2), \text{ and} \\ \lim_{t \to \infty} \frac{\mathbb{P}(A_{i,j} > t)}{\mathbb{P}(|A_{i,j}| > t)} = \theta \in [0,1]. \end{array}$$
 Assume also bounded density of A_{ij} .

Theorem

There exists an isotropic probability μ_{α} on \mathbb{C} depending only on α such that, a.s.

$$\mu_{a_n^{-1}A} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(a_n^{-1}A)} \xrightarrow[n \to \infty]{w} \mu_{\alpha} \,.$$

Moreover μ_{α} is a.c. with bounded density $\mu_{\alpha}(dz) = \varphi(|z|) dz$ satisfying

$$arphi(t) \sim t^{2(lpha-1)} \, e^{-rac{lpha}{2} \, t^lpha} \,, \quad t o \infty \,.$$

[No heavy tails. Shrinking of the spectrum w.r.t. singular values]

Ideas of proof I

From Girko's hermitization: need to establish a) Singular values convergence and b) Uniform integrability.

Ideas of proof I

From Girko's hermitization: need to establish a) Singular values convergence and b) Uniform integrability.

Theorem (singular values)

There exists ν_z depending on α and $z \in \mathbb{C}$, such that for a.a. $z \in \mathbb{C}$, almost surely,

$$\nu_{a_n^{-1}A-z} \xrightarrow[n \to \infty]{w} \nu_z$$
.

[For z = 0 already in Belinschi-Dembo-Guionnet 2009].

We prove it using again PWIT technology. Need a *bipartized* version of **PWIT**. Note: ν_z has heavy tails e.g. at z = 0 !

Ideas of proof II

Theorem (uniform integrability) For a.a. $z \in \mathbb{C}$, almost surely, $\log(\cdot)$ is uniformly integrable w.r.t. $\nu_{a_n^{-1}A-z}$

As before, for the proof we need:

1) Smallest singular value bound: here OK by bdd density assumption

$$\mathbb{P}(s_n(a_n^{-1}A-z) \leqslant n^{-b}) \leqslant n^{-a}.$$

2) Control of $s_{n-i}(a_n^{-1}A - z)$ for $n^{1-\varepsilon} < i < n$:

Here we cannot have $s_{n-i}(a_n^{-1}A - z) \ge c \frac{i}{n}$. There is not enough concentration.

We establish weaker estimates that are still sufficient.

Non-reversible Markov matrix: heavy tailed weights

[Work in progress with D. Piras]

G = (V, E): complete oriented graph over n vertices with self-loops $V = \{1, \ldots, n\}$, $E = \{(i, j), i, j \in V\}$.

Random network (G, \mathbf{U}) :

$$\mathbf{U} = (U_{ij})_{1 \leqslant i,j \leqslant n}$$

i.i.d. RV's with law $\mathcal{L} \in \mathcal{H}_{\alpha}$, $\alpha \in (0, 1)$. No symmetry. As before we consider the Random walk on (G, \mathbf{U}) :

$$\mathcal{K}_{ij} = rac{U_{ij}}{
ho_i}, \quad
ho_i = \sum_{j=1}^n U_{ij}.$$

Expect convergence of ESD $\mu_{K} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)}$ without scaling.

Main result

Theorem

Assume bdd density for the law \mathcal{L} . For any $\alpha \in (0, 1)$, there exists a radial probability $\hat{\mu}_{\alpha}$ on $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$ depending only on α such that, a.s.

$$\mu_{K} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)} \xrightarrow[n \to \infty]{w} \hat{\mu}_{\alpha} \,.$$

Main result

Theorem

Assume bdd density for the law \mathcal{L} . For any $\alpha \in (0, 1)$, there exists a radial probability $\hat{\mu}_{\alpha}$ on $\mathbb{D} = \{z \in \mathbb{C} : |z| \leq 1\}$ depending only on α such that, a.s.

$$\mu_{K} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(K)} \xrightarrow[n \to \infty]{w} \hat{\mu}_{\alpha} \,.$$

Key steps:

- 1. Convergence of singular value spectrum ν_{K-z} , for all $z \in \mathbb{C}$.
- 2. Uniform integrability of log(·) for ν_{K-z} for almost all $z \in \mathbb{C}$.

Note: for z = 1, the matrix K - z is singular with probability 1 !

The singular values

Theorem (Bulk)

There exists a probability measure $\hat{\nu}_{\alpha,z}$ on \mathbb{R}_+ , depending on α and $z \in \mathbb{C}$, such that for a.a. $z \in \mathbb{C}$, a.s.,

$$\nu_{K-z} \xrightarrow[n \to \infty]{w} \hat{\nu}_{\alpha,z}.$$

The measure $\hat{\nu}_{\alpha,z}$ has unbounded support with exponential tails.

Theorem (Invertibility)

For any $\delta > 0$ there exists r > 0 such that for all $|z| < \delta^{-1}$ and $|z - 1| > \delta$ one has almost surely

$$\lim_{n\to\infty}n^rs_n(K-z)=+\infty.$$

Modified PWIT

Key observations:

1. order stat. of first row

 $= \rho_1^{-1} (\text{order statistics of } n \text{ i.i.d. RVs in } \mathcal{H}_{\alpha})$ $\sim PD(\alpha) = \left(\frac{\xi_1}{\sum_{i=1}^{\infty} \xi_i}, \frac{\xi_2}{\sum_{i=1}^{\infty} \xi_i}, \dots \right)$

2. order stat. of first column

$$= \left(\text{order statistics of } \frac{U_{i,1}}{\rho_i} \right) \sim \left(\frac{\xi_1}{a + \xi_1}, \frac{\xi_2}{a + \xi_2}, \dots \right)$$

where a > 0, and $\{\xi_i\} = \{\Gamma_i^{-1/\alpha}\}$ is $PPP(\alpha x^{-\alpha-1}dx)$. Call $\mathcal{T}_{\alpha}^{\pm}$ the PWIT obtained by alternating $PD(\alpha)$ generations with $\left\{\frac{\xi_i}{a+\xi_i}\right\}$ -generations.

We obtain that bipartized matrix $\begin{pmatrix} 0 & K \\ K^* & 0 \end{pmatrix}$ converges locally to the random rooted tree: \mathcal{T}_{α}^+ with prob. $\frac{1}{2}$ and \mathcal{T}_{α}^- with prob. $\frac{1}{2}$.

Bipartized matrix

Example: n = 2

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow B = \begin{pmatrix} 0 & A_{11} & 0 & A_{12} \\ \bar{A}_{11} & 0 & A_{21} & 0 \\ 0 & \bar{A}_{21} & 0 & A_{22} \\ \bar{A}_{12} & 0 & \bar{A}_{22} & 0 \end{pmatrix}$$

Bipartized matrix

Example: n = 2

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \Rightarrow B = \begin{pmatrix} 0 & A_{11} & 0 & A_{12} \\ \bar{A}_{11} & 0 & A_{21} & 0 \\ 0 & \bar{A}_{21} & 0 & A_{22} \\ \bar{A}_{12} & 0 & \bar{A}_{22} & 0 \end{pmatrix}$$

Moreover, B similar to

$$\widetilde{B} = \begin{pmatrix} 0 & 0 & A_{11} & A_{12} \\ 0 & 0 & A_{21} & A_{22} \\ \bar{A}_{11} & \bar{A}_{21} & 0 & 0 \\ \bar{A}_{12} & \bar{A}_{22} & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$$

Bipartized matrix

In general,

$$B = (B_{ij}), \text{ with } B_{ij} = \begin{pmatrix} 0 & A_{ij} \\ \bar{A}_{ji} & 0 \end{pmatrix} \text{ is } 2 \times 2 \text{ matrix.}$$

Since B similar to $\tilde{B} = \begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix},$

$$\mu_B = \frac{1}{2n} \sum_{i=1}^{\prime\prime} (\delta_{\sigma_i(A)} + \delta_{-\sigma_i(A)}).$$

New resolvents: $z \in \mathbb{C}$, $\eta \in \mathbb{C}_+$:

$$R(U) = (B - U \otimes I_n)^{-1}, \quad U = U(z, \eta) = \begin{pmatrix} \eta & z \\ \bar{z} & \eta \end{pmatrix}$$

Then $R(U)_{kk} = \begin{pmatrix} a_k(z, \eta) & b_k(z, \eta) \\ \bar{b}_k(z, \eta) & c_k(z, \eta) \end{pmatrix}$

,

New resolvents: $z \in \mathbb{C}$, $\eta \in \mathbb{C}_+$:

$$R(U) = (B - U \otimes I_n)^{-1}, \quad U = U(z,\eta) = \begin{pmatrix} \eta & z \\ \overline{z} & \eta \end{pmatrix}$$

Then $R(U)_{kk} = \begin{pmatrix} a_k(z,\eta) & b_k(z,\eta) \\ \overline{b}_k(z,\eta) & c_k(z,\eta) \end{pmatrix}$

Crucial relations: a random matrix A with exchangeable entries satisfies, in $\mathcal{D}'(\mathbb{C})$

$$\mathbb{E}\mu_{A} = -\frac{1}{4\pi} (\partial_{x} - i\partial_{y}) \mathbb{E} b_{1}(\cdot, 0) = \lim_{t \downarrow 0} -\frac{1}{4\pi} (\partial_{x} - i\partial_{y}) \mathbb{E} b_{1}(\cdot, it) \qquad (*)$$

To prove properties of $\mu_{a_n^{-1}A}$: establish convergence to bipartized PWIT and use relations like (*) together with recursive characterizations of $\mathbb{E}b_1(\cdot, it)$ on PWIT.