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A natural model for a random Markov matrix:
stochastic matrix K with random entries

Ui

Kij= =i
SN Uik

Uyj = 0 iid.

Reversible case: U;j = U;; (random conductances)
Non-reversible case: U;; i.i.d. (weighted oriented graph)

Bulk behavior: convergence of empirical spectral density of K

1. Finite second moment: semi-circular law, circular law

2. Heavy tails: P(U;j > t) ~ t=%, « € (0,2), new invariance
principles



Random reversible stochastic matrix

G = (V,E): complete graph over n vertices with self-loops
V={1,....,n}, E={{i,j}, i, jeV}
Random network (G, U):

U=(Ujh<i<j<n
ii.d. RV's with law £ on [0, c0).
Symmetry (undirected graph): U; = U, j > I.
Random walk on (G, U):

Ui

n
Ki=—2, pi=>» Uj.
Pi st

K is a reversible stochastic matrix: p; Kjj = p; Kj .



Eigenvalues of K

K is a.s. irreducible and aperiodic with eigenvalues:
—1<Ap < A1 <o <K o< =1,

Empirical spectral distribution (ESD):

1 n
K:;Z(S)\i.
i=1

Moments: py(i) return probability at i after £ steps

1
1
/XZMK(C/X) o (K = ZP@

-1

Convergence of ESD uk (after scaling if necessary) ?



Finite variance, reversible case

Suppose E[U ] < o0,

E[U;] =1 (no loss of generality), 02 = E[(U; — 1)?].
Theorem

If 02 € (0,00), then almost surely

w
H/nk n—>oo; W,

where Wh, is Wigner’s Semi-circle law:

\/ 40' — X2 1[ 20 20]

Whe(dx)



Finite variance, reversible case

Suppose E[U ] < o0,
E[U;] =1 (no loss of generality), 02 = E[(U; — 1)?].

Theorem
If 02 € (0,00), then almost surely

w
H/nk n—>oo; W,

where Wh, is Wigner’s Semi-circle law:

\/ 40' — X2 1[ 20 20]

Idea of proof (perturbation argument):

Whe(dx) =

Uniform strong LLN: p; ~ nE[U] = n, Kj ~ n~! Uj;.

dp:= max |pi/n—1=0(1), a.s. (n — o)

i=1,...,n



Heavy tails
For a > 0, we say that £ € H,, or simply Uj; € H,, if

G(t)=P(Uj >t)=L(t)t™~,
jim L0

t—00 L(t)

=1, x>0. (slow variation)

a€(0,2) = E[Ug] = 00, Ujj in domain of attract. of a-stable law.
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jim L0

t—00 L(t)

=1, x>0. (slow variation)
a€(0,2) = E[Ug] = 00, Ujj in domain of attract. of a-stable law.
Scaling: a, = n*/{(n), with £(n) slowly varying,

nG(apt) >t~ % as n— oo.

Example: X = Unif[0, 1] then X~Y* € H,, with a, = n/®.



Heavy tails
For a > 0, we say that £ € H,, or simply Uj; € H,, if

G(t)=P(Uj >t)=L(t)t™~,
jim L0

t—00 L(t)

=1, x>0. (slow variation)

a€(0,2) = E[Ug] = 00, Ujj in domain of attract. of a-stable law.
Scaling: a, = n*/{(n), with £(n) slowly varying,

nG(apt) >t~ % as n— oo.
Example: X = Unif[0,1] then X~ Y € H,, with a, = n/®.
Recall:
a, (order statistics of ni.i.d. RVsin H,) ~ (FIl/a, e r;l/“)

where Ty = S5 | £;, and E; are i.i.d. Esp(1), i.e. PPP(ax—®1),
.



Heavy tails: i.i.d. case

Symmetric i.i.d. matrix A = (Aj), with |Aj| € Ha, o € (0,2), with
iMoo piatregy = 0 € [0,1]

Theorem
For a € (0,2), there exists a symmetric probability ji, on R
depending only on « such that, a.s.

1 o w
Hasia =7 D On(artay oo Ha
i=1

n—o0

Moreover i, is a.c. with bounded density and jio([t, 00)) ~ 5t~

Bouchaud-Cizeau (PRE 1994), Zakharevich (CMP 2006), Ben
Arous—Guionnet (CMP 2008). Belinschi-Dembo-Guionnet (CMP
2009). Resolvent method (Stieltjes transform).

Our approach gives an alternative proof.



Heavy tails: Markov matrix
Stochastic matrix Kj; = Ujj/pi, with Ujj € Ha. 1o as above.

Theorem
Suppose o € [1,2). Then, a.s.

1 — w
Hin K = - 25A,-(Hn K) nj@ M -
_ -1 _ . N
where Kk, = nwpa;, ~, w, = E[U;; x(Uy < ap)].
Theorem

Suppose e € (0,1). Then, there exists a probability measure [i,, on
[—1, 1] depending only on « such that, a.s.

n—oo

1 < W~
MK:n;dA;(K) — Ha -
=



Scaling, a € (0, 2):

_ d
“(pi — nw,) - s, a-stable

n—o00

a

ae(1,2): wy, —E[Uj]=1and pj/n—1 as.

knK ~na, K ~a 'A,  where A has i.i.d. entries.



Scaling, a € (0, 2):

_ d
“pi — nw,) = s, a-stable

n—o00

a

ae(1,2): wy, —E[Uj]=1and pj/n—1 as.

knK ~na, K ~a 'A,  where A has i.i.d. entries.
a =1, then p;/nw, — 1 in probability
[example: U = (Unif[0,1])7}, then x, = w, = log n]

knK = nwpa, 1K ~ a, 1A, Ai.id. entries.



Scaling, a € (0, 2):

_ d
“pi — nw,) = s, a-stable

n—o00

a

ae(1,2): wy, —E[Uj]=1and pj/n—1 as.
knK ~na, K ~a 'A,  where A has i.i.d. entries.
a =1, then p;/nw, — 1 in probability
[example: U = (Unif[0,1])7}, then x, = w, = log n]
knK = nwpa- 1K ~ a;lA, A i.i.d. entries.

n

a € (0,1), then a,1p; _}i> sk
n—o0

each row of K converges to Poisson-Dirichlet(a): 'y = fozl E;

00 -1
_1 1 1
zz<§jrna> <r1a,r2a,...>.
n=1



Some ideas of the proof

Start with symmetric i.i.d. matrix A; = Uj; as a weighted graph:
Convergence of resolvents from
local convergence of graphs

[Bordenave, Lelarge]
Objective method (Aldous-Steele '04)

Limiting graph is a random infinite rooted tree (7,; 0):
Recall that a;!(order stat. of row 1) ~ PPP(ax—“"1)

This convergence can be extended to local convergence to the
Poisson weighted infinite tree PWIT (Aldous '92)



Define PWIT(m,)= T, for

ma(dx) = ax 1"%dx, on (0,00).

Start from the root o, with N offsprings. Each edge (o, k) is given
a mark & where & > & > -+ is a realization of PPP(m,).

The distance of offspring k from o is defined by f;l. Repeat this
independently at each offspring to obtain an infinite oco-ary tree
with Poissonian marks (PWIT).



Define PWIT(m,)= T, for

ma(dx) = ax 1"%dx, on (0,00).

Start from the root o, with N offsprings. Each edge (o, k) is given
a mark & where & > & > -+ is a realization of PPP(m,).

The distance of offspring k from o is defined by f;l. Repeat this
independently at each offspring to obtain an infinite oco-ary tree
with Poissonian marks (PWIT).

Convergence: (G, U) rooted at 1. The vector (a,* Uy j); converges
in distribution to PPP(m,,), (via order statistics). In the local sense

(G,U;1) = (Tas 0) .

(again via order statistics. Small weights correspond to points far
away from the root.) This holds for any a > 0.

Similar result for A = (Aj;), with |A;j| = Uy € Ho. Signed marks.



Key point: for a € (0,2), this convergence is sufficient to establish
convergence (in distribution) of resolvent diagonal entries.
Hilbert space is £2(V), V the vertices of the tree:

(01, (aptA — 2)7161) = (30, (T — 2)714,)
where T is the limiting operator associated to a; tA:
(04, Toy) =&, mark across edge (u,v) in Ty .
T is symmetric in £2(V). Note: If T is self adjoint then 3 u

(6o (T — 2)7265) :/’“("X), zec,

R X—Z

Taking expectation we have Ep_-1, — o = E[ur], since

/ Elaal() E[(61, (3, A — z)7161)] — / Elprl(d)
R

X—2z R X—2Z



Technical point: must show T is essentially self-adjoint; no
solution ¢ # 0 of T*p = £ip (exploit tree structure).

Almost sure convergence pi_-1, — o follows from concentration
properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case
[see Ben Arous—Guionnet 08 for an earlier different proof]



Technical point: must show T is essentially self-adjoint; no
solution ¢ # 0 of T*p = £ip (exploit tree structure).

Almost sure convergence pi_-1, — o follows from concentration
properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case
[see Ben Arous—Guionnet 08 for an earlier different proof]

Properties of pig.
Recursive Distributional Equation: h(z) = (o, (T — z)71d,)

satisfies
-1
h(z) < - <z +> & hk(z)>
k

where & is PPP(m, ) and hy(z) are i.i.d. copies of h(z).



The Markov matrix case: again network convergence.
a € (0,1): the PPP(m,) satisfies ). & < 0o a.s.
(K1j)j ~ PD(«) Poisson-Dirichlet law (Pitman-Yor '97).
o0 O\ 7t . . k
zz<Zr;a> (rl‘a,rgﬂ,...) Me=> E.
n=1 i=1

Limit operator K describes Random Walk on PWIT 7,

u,v
Ku,v: . y  Pu = § £u7v‘
Pu

veV:vru

Here, for every u e V:  {&,v, v €V : vchild of u} is PPP(m,).

Note: limit operator K is a non-trivial generalization of
Poisson-Dirichlet law (dependecies!).



K is bounded self adjoint operator in £2(V, p) and
Efix — jio = Elpk] , since

/E[MK](dX) :E[<51,( 151 ] _>/ E[MK] dX
R

X —Z X —Z

pk spectral measure of K at the root vector §,.
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Moments of uk are return probabilities for RW on 7.
Shape of fi4: Beta-like law on [—1,0] and [0, 1].

Tail of [14 at edge: fig(l —e,1) ~ .

fioa = 36-1+ 300+ %01, alO



K is bounded self adjoint operator in £2(V, p) and
Efix — jio = Elpk] , since

/E[MK](dX) :E[<(51,( 151 ] _>/ E[MK] dX)
R

X—z X—z
pk spectral measure of K at the root vector §,.
Moments of uk are return probabilities for RW on 7.
Shape of fi4: Beta-like law on [—1,0] and [0, 1].
Tail of [14 at edge: fig(l —e,1) ~ .

fioa = 36-1+ 300+ %01, alO

Spectral gap: 1 — Xa = O(n~Y/®) (up to SV corrections).



Reversible invariant measure of RW on PWIT 7.
p1 = p2 = .-+ = pp ranked values of invariant vector

(pr+-+pn) " (1, pn) -

Theorem
1. Ifa €(0,1), then

d
'On;)o (Vl,Vl,VQ,VQ,...),

N -

where Vi > Vo > --- s a Poisson—Dirichlet PD(«, 0) random
vector.

2. Ifa €[1,2), then

n(n+1)/2p _> 7(51751 527527"’)7

where & > & > - is PPP(m,,), and K, = na,w,.



Further investigations and open problems:

e More details on the measures g, fia
e Analysis of stochastic the process associated to the limiting
operator K

o Extremal eigenvalues: Poisson statistics ? (known for i.i.d.
matrix Soshnikov 2004, Auffinger-Ben Arous-Peche 2008)



Non-reversible Markov matrix

G = (V, E): complete oriented graph over n vertices with
self-loops V ={1,...,n}, E={(i,j), i,j € V}.

Random network (G, U):
U=(Uji<ij<n

i.i.d. RV's with law £ on [0,00). No symmetry.
Random walk on (G, U):

Uij

n
Ki=—2, pi=>» Uj.
Pi =

Eigenvalues: [A1(K)| = -+ = [\a(K)|.  pk =130 65k



Circular law theorem
From works of Girko (1984) ...Bai (1997) ... Tao-Vu (2009).
Ug(dz) =1 1{|z| <o} dz

e
Theorem
If X;j are i.i.d. with variance 0 € (0,00) then a.s.

[L v Z/{
1 — .
W X n—o0 o



Circular law theorem
From works of Girko (1984) ...Bai (1997) ... Tao-Vu (2009).
Ug(dz) = 71_7(172 1{|z| <o} dz

Theorem
If X;j are i.i.d. with variance 0 € (0,00) then a.s.

[L v U
1 — .
W X n—o0 o

In our case we prove

Theorem
If U;j has variance 02 € (0, 00) and its law is a.c. with bounded
density then a.s.

n—oo



Circular law theorem
From works of Girko (1984) ...Bai (1997) ... Tao-Vu (2009).
Ug(dz) = 71_7(172 1{|z| <o} dz

Theorem
If X;j are i.i.d. with variance 0 € (0,00) then a.s.

[L v U
1 — .
W X n—o0 o

In our case we prove

Theorem
If U;j has variance 02 € (0, 00) and its law is a.c. with bounded

density then a.s.
U
Hynk n—soo O
idea: as before |p;/n — 1| — 0 uniformly and therefore Kjj ~ %
but here there is no easy perturbation argument



The logarithmic potential U,(z) = — [ log |z’ — z|u(dZ’)
determines the distribution p:

AU, ==2mu, inD(C).

For any n x n matrix A:

1
Up( :—72|og])\ ) — 2| :—Elog\det(A—z)|

= —; log det (\/(A —z)(A- z)*)

Let v denote the ESD of singular spectrum vy = % S do;(A)s
where s;(A) = X\;j(VAA*). Then

Uin(z) = [ tos(e) va-ute)
0
Ais normal, i.e. AA* = A*A, iff |\;(A)| = si(A) Vi. In general

[T A I—HG/ (A < si(A), [Aa(A)] = sa(A).
i=1



Lemma (Girko's hermitization strategy)
Let (Ap)n>1 be a sequence of n x n matrices. We have

Upn,(2) = [ 10g(e)va,o(dt).

Suppose that for a.a. z € C, there is a probability v, on [0, o)
such that

(i) va,—z — v, weakly as n — oo
(ii) log(-) is uniformly integrable fo va,_,

Then there exists a probability 11 on C such that pa, — 1 weakly
as n — oo, and U,(z) = — [, log(t) vz(dt).

[In the random case, one can use this lemma for a.a. realizations.]



For our matrices K: We prove

Theorem (singular values)
If 02 € (0,00), then almost surely

BLEANe)
VK e <7

where Q,(dt) = -L; /402 — t2 L{o<t<202}y dt. Moreover, for a.a.

o2
ze€C, v pk_, H%O v, with v, satisfying

Uy, (z) == — /C log |z — z|U,(dZ) = — /Ooo log(t) v.(dt).



For our matrices K: We prove

Theorem (singular values)

If 02 € (0,00), then almost surely

BLEANe)
VK e <7

where Q,(dt) = -L; /402 — t2 L{o<t<202}y dt. Moreover, for a.a.

o2
zeC vk, H%O v, with v, satisfying

Uy, (z) == — /C log |z — z|U,(dZ) = — /OOO log(t) v.(dt).

Theorem (uniform integrability)

If 02 € (0, 00), then almost surely, for a.a. z € C, log(-) is
uniformly integrable w.r.t. v gk _,, i.e. for all € > 0:

iMoo P (supn | ogty 1o 1080 k()] > e) =0



|deas of proof

Singular values: use perturbation for hermitian matrices and known
results for convergence of Vix-z (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at co).
Following Tao-Vu we need two facts:
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Singular values: use perturbation for hermitian matrices and known
results for convergence of Vix-z (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at co).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists
b > 0 such that for any z € C with |z| < C

P(sp(vnK —z) < nb)

N
S

|

)
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Singular values: use perturbation for hermitian matrices and known
results for convergence of Vix-z (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at co).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists
b > 0 such that for any z € C with |z| < C
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2) Control of s, ;(y/nK — z) for n1=¢ < i < n: almost surely

sn—i(v/nK —z) > ci/n.



|deas of proof

Singular values: use perturbation for hermitian matrices and known
results for convergence of Vix-z (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at co).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a, C > 0 there exists
b > 0 such that for any z € C with |z| < C

P(sh(vnK —z) < n7b) < n2.
2) Control of s, ;(y/nK — z) for n1=¢ < i < n: almost surely

sn—i(v/nK —z) > ci/n.

Extensions: it's possible to remove the bdd density assumtpion
[refined estimate for s, following Rudelson-Vershynin,
Gotze-Tikhomirov]. One can also treat sparse graphs: Uj — €;;Uj
with & iid Bernoulli(p(n)), np(n)(logn)=® — oo, p(n) — 0
.



Non-hermitian i.i.d. heavy tailed matrices

A= (A,_,)l <ij<m i.i.d. with law |A,J’ € Ha, a € (0,2), and

lim¢— oo %Qf%ﬁi?) =6 € [0,1]. Assume also bounded density of Aj;.

Theorem
There exists an isotropic probability 1, on C depending only on «
such that, a.s.

1 n
Ma;lA:;25 1A)—>ua
i=1

Moreover p, is a.c. with bounded density 11,(dz) = ¢(|z|) dz
satisfying
o(t) ~ 20 D=2 00,

[No heavy tails. Shrinking of the spectrum w.r.t. singular values]



|deas of proof |

From Girko's hermitization: need to establish a) Singular values
convergence and b) Uniform integrability.



|deas of proof |

From Girko's hermitization: need to establish a) Singular values
convergence and b) Uniform integrability.

Theorem (singular values)

There exists v, depending on o and z € C, such that for a.a.
z € C, almost surely,

w
— v,

V_ -1
an A=z 5o

[For z = 0 already in Belinschi-Dembo-Guionnet 2009].

We prove it using again PWIT technology. Need a bipartized
version of PWIT. Note: v, has heavy tailse.g. at z=10!



|deas of proof Il

Theorem (uniform integrability)
For a.a. z € C, almost surely, log(-) is uniformly integrable w.r.t.

Varla—z
As before, for the proof we need:

1) Smallest singular value bound: here OK by bdd density
assumption
P(sp(a,tA—z) < nb) < n72.

2) Control of s, j(a,*A— z) for n'=¢ < i < n:

Here we cannot have s, ;(a,?A—2z) > ¢

1A
"

There is not enough concentration.

We establish weaker estimates that are still sufficient.



Non-reversible Markov matrix: heavy tailed weights
[Work in progress with D. Piras]

G = (V, E): complete oriented graph over n vertices with
self-loops V ={1,...,n}, E={(i,j), i,j € V}.

Random network (G, U):
U=(Uj<ij<n

i.i.d. RV's with law £ € H,, o € (0,1). No symmetry.

As before we consider the Random walk on (G, U):

Uij

n
K,'J':f, p,':ZU,'j.
Pi e

Expect convergence of ESD uk = %Zle dx;(k) Without scaling.

i



Main result

Theorem

Assume bdd density for the law L. For any o € (0, 1), there exists
a radial probability [i, on D = {z € C: |z| < 1} depending only
on « such that, a.s.

1o wo o
Pk = z;%,w) o Ha -
1=



Main result

Theorem

Assume bdd density for the law L. For any o € (0, 1), there exists
a radial probability [i, on D = {z € C: |z| < 1} depending only
on « such that, a.s.

1o wo o
Pk = ;5A"(K) o Ha -
1=

Key steps:
1. Convergence of singular value spectrum vk _,, for all z € C.
2. Uniform integrability of log(-) for vk_, for almost all z € C.

Note: for z =1, the matrix K — z is singular with probability 1 !



The singular values

Theorem (Bulk)

There exists a probability measure U, , on R, depending on «
and z € C, such that for a.a. z € C, a.s.,

WA
VK—z > Voz -
n—00

The measure ¥, , has unbounded support with exponential tails.

Theorem (Invertibility)

For any § > 0 there exists r > 0 such that for all |z| < §~* and
|z — 1| > 0 one has almost surely

lim n"s,(K — z) = +o0.
n—oo



Modified PWIT

Key observations:

1. order stat. of first row

= p7 *(order statistics of ni.i.d. RVs in H,)

~ &
PD(a) = (Z‘”lf, 2?215,-"">
2. order stat. of first column

(ot st )~ (. )
Pi até1? at+é?

where a >0, and {&} = {I; "/} is PPP(ax—°1dx).
Call 7;F the PWIT obtained by alternating PD(«a) generations

with {a+§ } generations.

We obtain that bipartized matrix <£* 0

the random rooted tree: 7" with prob. 3 and 7 with prob. 3

> converges locally to



Bipartized matrix

Example: n =2

0 An 0 Ap

A1 A12> Ain 0 Ay 0
A = = B = -
<A21 Ao 0 Ax1 0 A2

AL, 0 Axn O



Bipartized matrix

Example: n =2

0 An 0 Ap

Au A12) An 0 Ax 0
A = = B = -
<A21 Az 0 Ax 0 Ax

AL, 0 Axn O

Moreover, B similar to

0 0 An Ap

5 |0 0 An Ay _<o A)
A1 Ax O 0 A* 0
A An 0 0



Bipartized matrix

In general,

B = (By), with B; = (;? %’f') is 2 x 2 matrix.

\ji

Since B similar to B = (/2* é)

Z U(A)+5—0' ))



New resolvents: z

eC,neCy:

RU)=(B-U®I,)™ !,

Then R(U) ik = <

fk(zan) bk(zvn)
bx(z,m) ck(z,m)

)



New resolvents: z € C, n € Cy:
RWU)=(B-U®I,)t, U=U(zn) = (Z Z)

n
Then R(U)kk = (Zig: Z; ?:g:ZD

Crucial relations: a random matrix A with exchangeable entries
satisfies, in D'(C)

1 . . 1 . .
Epa = =3 (0x—=i0,)E by(-,0) = It'fg ~ 2 (OO B by (- it)  (x)

To prove properties of p A lAl establish convergence to bipartized
PWIT and use relations like (*) together with recursive
characterizations of Eb; (-, it) on PWIT.



