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Outline

A natural model for a random Markov matrix:
stochastic matrix K with random entries

Ki ,j =
Ui ,j∑
k Ui ,k

Ui ,j > 0 i.i.d.

Reversible case: Ui ,j = Uj ,i (random conductances)

Non-reversible case: Ui ,j i.i.d. (weighted oriented graph)

Bulk behavior: convergence of empirical spectral density of K

1. Finite second moment: semi-circular law, circular law

2. Heavy tails: P(Ui ,j > t) ∼ t−α, α ∈ (0, 2), new invariance
principles
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Random reversible stochastic matrix

G = (V ,E ): complete graph over n vertices with self–loops
V = {1, . . . , n} , E = {{i , j} , i , j ∈ V }.

Random network (G ,U):

U = (Uij)1 6 i 6 j 6 n

i.i.d. RV’s with law L on [0,∞).

Symmetry (undirected graph): Uji = Uij , j > i .

Random walk on (G ,U):

Kij =
Uij

ρi
, ρi =

n∑
j=1

Uij .

K is a reversible stochastic matrix: ρi Kij = ρj Kji .



Eigenvalues of K

K is a.s. irreducible and aperiodic with eigenvalues:

−1 < λn 6 λn−1 6 · · · 6 λ2 < λ1 = 1 .

Empirical spectral distribution (ESD):

µK =
1

n

n∑
i=1

δλi .

Moments: p`(i) return probability at i after ` steps∫ 1

−1
x` µK (dx) =

1

n
Tr (K `) =

1

n

n∑
i=1

p`(i) .

Convergence of ESD µK (after scaling if necessary) ?



Finite variance, reversible case

Suppose E[U2
ij ] <∞,

E[Uij ] = 1 (no loss of generality), σ2 = E[(Uij − 1)2].

Theorem
If σ2 ∈ (0,∞), then almost surely

µ√n K
w−→

n→∞
W2σ ,

where W2σ is Wigner’s Semi-circle law:

W2σ(dx) =
1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x) dx .

Idea of proof (perturbation argument):

Uniform strong LLN: ρi ∼ nE[Uij ] = n , Kij ∼ n−1 Uij .

δn := max
i=1,...,n

|ρi/n − 1| = o(1) , a.s. (n→∞)
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Heavy tails
For α > 0, we say that L ∈ Hα, or simply Uij ∈ Hα, if

G (t) = P(Uij > t) = L(t) t−α ,

lim
t→∞

L(x t)

L(t)
= 1 , x > 0 . (slow variation)

α ∈ (0, 2) ⇒ E[U2
ij ] =∞, Uij in domain of attract. of α-stable law.

Scaling: an = n1/α `(n), with `(n) slowly varying,

n G (ant)→ t−α as n→∞.

Example: X = Unif [0, 1] then X−1/α ∈ Hα, with an = n1/α.

Recall:

a−1n (order statistics of n i.i.d. RVs in Hα) ∼ (Γ
−1/α
1 , . . . , Γ

−1/α
n )

where Γk =
∑k

i=1 Ei , and Ei are i.i.d. Esp(1), i.e. PPP(αx−α−1).
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Heavy tails: i.i.d. case

Symmetric i.i.d. matrix A = (Aij), with |Aij | ∈ Hα, α ∈ (0, 2), with

limt→∞
P(Ai,j>t)
P(|Ai,j |>t) = θ ∈ [0, 1].

Theorem
For α ∈ (0, 2), there exists a symmetric probability µα on R
depending only on α such that, a.s.

µa−1
n A =

1

n

n∑
i=1

δλi (a−1
n A)

w−→
n→∞

µα .

Moreover µα is a.c. with bounded density and µα([t,∞)) ∼ 1
2 t
−α.

Bouchaud–Cizeau (PRE 1994), Zakharevich (CMP 2006), Ben
Arous–Guionnet (CMP 2008). Belinschi-Dembo-Guionnet (CMP
2009). Resolvent method (Stieltjes transform).

Our approach gives an alternative proof.



Heavy tails: Markov matrix

Stochastic matrix Kij = Uij/ρi , with Uij ∈ Hα. µα as above.

Theorem
Suppose α ∈ [1, 2). Then, a.s.

µκn K =
1

n

n∑
i=1

δλi (κn K)
w−→

n→∞
µα .

where κn = nwna
−1
n , wn = E[Uij χ(Uij 6 an)].

Theorem
Suppose α ∈ (0, 1). Then, there exists a probability measure µ̃α on
[−1, 1] depending only on α such that, a.s.

µK =
1

n

n∑
i=1

δλi (K)
w−→

n→∞
µ̃α .



Scaling, α ∈ (0, 2):

a−1n (ρi − nwn)
d−→

n→∞
sα α-stable

α ∈ (1, 2): wn → E[Uij ] = 1 and ρi/n→ 1 a.s.

κn K ∼ na−1n K ∼ a−1n A, where A has i.i.d. entries.

α = 1, then ρi/nwn → 1 in probability

[example: U = (Unif [0, 1])−1, then κn = wn = log n]

κnK = nwna
−1
n K ∼ a−1n A, A i.i.d. entries.

α ∈ (0, 1), then a−1n ρi
d−→

n→∞
s+α

each row of K converges to Poisson-Dirichlet(α): Γk =
∑k

i=1 Ei

Z =

( ∞∑
n=1

Γ
− 1
α

n

)−1(
Γ
− 1
α

1 , Γ
− 1
α

2 , . . .

)
.
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Some ideas of the proof

Start with symmetric i.i.d. matrix Aij = Uij as a weighted graph:

Convergence of resolvents from

local convergence of graphs

[Bordenave, Lelarge]
Objective method (Aldous-Steele ’04)

Limiting graph is a random infinite rooted tree (Tα; o):

Recall that a−1n (order stat. of row 1) ∼ PPP(αx−α−1)

This convergence can be extended to local convergence to the
Poisson weighted infinite tree PWIT (Aldous ’92)



Define PWIT(mα)= Tα, for

mα(dx) = α x−1−α dx , on (0,∞) .

Start from the root o, with N offsprings. Each edge (o, k) is given
a mark ξk where ξ1 > ξ2 > · · · is a realization of PPP(mα).
The distance of offspring k from o is defined by ξ−1k . Repeat this
independently at each offspring to obtain an infinite ∞-ary tree
with Poissonian marks (PWIT).

Convergence: (G ,U) rooted at 1. The vector (a−1n U1,j)j converges
in distribution to PPP(mα), (via order statistics). In the local sense

(G ,U; 1)→ (Tα; o) .

(again via order statistics. Small weights correspond to points far
away from the root.) This holds for any α > 0.

Similar result for A = (Aij), with |Aij | = Uij ∈ Hα. Signed marks.
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Key point: for α ∈ (0, 2), this convergence is sufficient to establish
convergence (in distribution) of resolvent diagonal entries.
Hilbert space is `2(V), V the vertices of the tree:

〈δ1, (a−1n A− z)−1δ1〉 → 〈δo , (T− z)−1δo〉

where T is the limiting operator associated to a−1n A:

〈δu,Tδv 〉 = ξu,v mark across edge (u, v) in Tα .

T is symmetric in `2(V). Note: If T is self adjoint then ∃ µT

〈δo , (T− z)−1δo〉 =

∫
R

µT(dx)

x − z
, z ∈ C+

Taking expectation we have Eµa−1
n A → µα := E[µT] , since∫

R

E[µa−1
n A](dx)

x − z
= E[〈δ1, (a−1n A− z)−1δ1〉]→

∫
R

E[µT](dx)

x − z



Technical point: must show T is essentially self-adjoint; no
solution ϕ 6= 0 of T∗ϕ = ±iϕ (exploit tree structure).

Almost sure convergence µa−1
n A → µα follows from concentration

properties of ESD of i.i.d. matrices.

This gives an alternative proof in the i.i.d. case
[see Ben Arous–Guionnet 08 for an earlier different proof]

Properties of µα.

Recursive Distributional Equation: h(z) = 〈δo , (T− z)−1δo〉
satisfies

h(z)
d
= −

(
z +

∑
k

ξk hk(z)

)−1
where ξk is PPP(mα/2) and hk(z) are i.i.d. copies of h(z).
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The Markov matrix case: again network convergence.

α ∈ (0, 1): the PPP(mα) satisfies
∑

i ξi <∞ a.s.

(K1,j)j ∼ PD(α) Poisson–Dirichlet law (Pitman-Yor ’97).

Z =

( ∞∑
n=1

Γ
− 1
α

n

)−1(
Γ
− 1
α

1 , Γ
− 1
α

2 , . . .

)
Γk =

k∑
i=1

Ei .

Limit operator K describes Random Walk on PWIT Tα

Ku,v =
ξu,v
ρu

, ρu =
∑

v∈V: v∼u
ξu,v .

Here, for every u ∈ V: {ξu,v , v ∈ V : v child of u} is PPP(mα).

Note: limit operator K is a non-trivial generalization of
Poisson-Dirichlet law (dependecies!).



K is bounded self adjoint operator in `2(V, ρ) and
EµK → µ̃α = E[µK] , since∫

R

E[µK ](dx)

x − z
= E[〈δ1, (K − z)−1δ1〉]→

∫
R

E[µK](dx)

x − z

µK spectral measure of K at the root vector δo .

Moments of µK are return probabilities for RW on Tα.

Shape of µ̃α: Beta-like law on [−1, 0] and [0, 1].

Tail of µ̃α at edge: µ̃α(1− ε, 1) ∼ εα.

µ̃α → 1
4 δ−1 + 1

2 δ0 + 1
4 δ1, α ↓ 0

Spectral gap: 1− λ2 = O(n−1/α) (up to SV corrections).
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Reversible invariant measure of RW on PWIT Tα .

ρ̃1 > ρ̃2 > · · · > ρ̃n ranked values of invariant vector

(ρ1 + · · ·+ ρn)−1 (ρ1, . . . , ρn) .

Theorem

1. If α ∈ (0, 1), then

ρ̃
d−→

n→∞

1

2
(V1,V1,V2,V2, . . . ) ,

where V1 > V2 > · · · is a Poisson–Dirichlet PD(α, 0) random
vector.

2. If α ∈ [1, 2), then

κn(n+1)/2 ρ̃
d−→

n→∞

1

2
(ξ1, ξ1, ξ2, ξ2, . . . ) ,

where ξ1 > ξ2 > · · · is PPP(mα), and κn = na−1n wn.



Further investigations and open problems:

• More details on the measures µα, µ̃α

• Analysis of stochastic the process associated to the limiting
operator K

• Extremal eigenvalues: Poisson statistics ? (known for i.i.d.
matrix Soshnikov 2004, Auffinger-Ben Arous-Peche 2008)



Non-reversible Markov matrix

G = (V ,E ): complete oriented graph over n vertices with
self–loops V = {1, . . . , n} , E = {(i , j) , i , j ∈ V }.

Random network (G ,U):

U = (Uij)1 6 i ,j 6 n

i.i.d. RV’s with law L on [0,∞). No symmetry.

Random walk on (G ,U):

Kij =
Uij

ρi
, ρi =

n∑
j=1

Uij .

Eigenvalues: |λ1(K )| > · · · > |λn(K )|. µK = 1
n

∑n
i=1 δλi (K)



Circular law theorem
From works of Girko (1984) . . . Bai (1997) . . . Tao-Vu (2009).

Uσ(dz) = 1
πσ2 1{|z| 6 σ} dz

Theorem
If Xi ,j are i.i.d. with variance σ2 ∈ (0,∞) then a.s.

µ 1√
n
X

w−→
n→∞

Uσ.

In our case we prove

Theorem
If Ui ,j has variance σ

2 ∈ (0,∞) and its law is a.c. with bounded
density then a.s.

µ√nK
w−→

n→∞
Uσ.

idea: as before |ρi/n − 1| → 0 uniformly and therefore Kij ∼
Uij

n ,
but here there is no easy perturbation argument
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The logarithmic potential Uµ(z) = −
∫
C log |z ′ − z |µ(dz ′)

determines the distribution µ:

∆Uµ = −2π µ , in D′(C) .

For any n × n matrix A:

UµA(z) = −1

n

n∑
i=1

log |λi (A)− z | = −1

n
log |det(A− z)|

= −1

n
log det

(√
(A− z)(A− z)∗

)
Let νA denote the ESD of singular spectrum νA = 1

n

∑n
i=1 δσi (A),

where si (A) = λi (
√
AA∗). Then

UµA(z) = −
∫ ∞
0

log(t) νA−z(dt)

A is normal, i.e. AA∗ = A∗A, iff |λi (A)| = si (A) ∀ i . In general
n∏

i=1

|λi (A)| =
n∏

i=1

σi (A) , |λ1(A)| 6 s1(A) , |λn(A)| > sn(A) .



Lemma (Girko’s hermitization strategy)

Let (An)n > 1 be a sequence of n × n matrices. We have

UµAn (z) = −
∫ ∞
0

log(t) νAn−z(dt) .

Suppose that for a.a. z ∈ C, there is a probability νz on [0,∞)
such that

(i) νAn−z → νz weakly as n→∞
(ii) log(·) is uniformly integrable fo νAn−z

Then there exists a probability µ on C such that µAn → µ weakly
as n→∞, and Uµ(z) = −

∫∞
0 log(t) νz(dt).

[In the random case, one can use this lemma for a.a. realizations.]



For our matrices K : We prove

Theorem (singular values)

If σ2 ∈ (0,∞), then almost surely

ν√nK
w−→

n→∞
Qσ .

where Qσ(dt) = 1
πσ2

√
4σ2 − t2 1{0<t<2σ2} dt. Moreover, for a.a.

z ∈ C, ν√nK−z
w−→

n→∞
νz with νz satisfying

UUσ(z) := −
∫
C

log |z ′ − z |Uσ(dz ′) = −
∫ ∞
0

log(t) νz(dt).

Theorem (uniform integrability)

If σ2 ∈ (0,∞), then almost surely, for a.a. z ∈ C, log(·) is
uniformly integrable w.r.t. ν√nK−z , i.e. for all ε > 0:

limβ→∞ P
(

supn |
∫
| log(·)|>β log(t)ν√nK−z(dt)| > ε

)
→ 0.
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Ideas of proof
Singular values: use perturbation for hermitian matrices and known
results for convergence of ν 1√

n
X−z (Pan-Zhou, Bai, ...).

Uniform integrability is harder (problems at 0, not at ∞).
Following Tao-Vu we need two facts:

1) Smallest singular value bound: for every a,C > 0 there exists
b > 0 such that for any z ∈ C with |z | 6 C

P(sn(
√
nK − z) 6 n−b) 6 n−a.

2) Control of sn−i (
√
nK − z) for n1−ε < i < n: almost surely

sn−i (
√
nK − z) > c i/n .

Extensions: it’s possible to remove the bdd density assumtpion
[refined estimate for sn following Rudelson-Vershynin,
Götze-Tikhomirov]. One can also treat sparse graphs: Uij 7→ εijUij

with εij iid Bernoulli(p(n)), np(n)(log n)−6 →∞, p(n)→ 0
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Non-hermitian i.i.d. heavy tailed matrices

A = (Aij)1 6 i ,j 6 n, i.i.d. with law |Aij | ∈ Hα, α ∈ (0, 2), and

limt→∞
P(Ai,j>t)
P(|Ai,j |>t) = θ ∈ [0, 1]. Assume also bounded density of Aij .

Theorem
There exists an isotropic probability µα on C depending only on α
such that, a.s.

µa−1
n A =

1

n

n∑
i=1

δλi (a−1
n A)

w−→
n→∞

µα .

Moreover µα is a.c. with bounded density µα(dz) = ϕ(|z |) dz
satisfying

ϕ(t) ∼ t2(α−1) e−
α
2
tα , t →∞ .

[No heavy tails. Shrinking of the spectrum w.r.t. singular values]



Ideas of proof I

From Girko’s hermitization: need to establish a) Singular values
convergence and b) Uniform integrability.

Theorem (singular values)

There exists νz depending on α and z ∈ C, such that for a.a.
z ∈ C, almost surely,

νa−1
n A−z

w−→
n→∞

νz .

[For z = 0 already in Belinschi-Dembo-Guionnet 2009].

We prove it using again PWIT technology. Need a bipartized
version of PWIT. Note: νz has heavy tails e.g. at z = 0 !
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Ideas of proof II

Theorem (uniform integrability)

For a.a. z ∈ C, almost surely, log(·) is uniformly integrable w.r.t.
νa−1

n A−z

As before, for the proof we need:

1) Smallest singular value bound: here OK by bdd density
assumption

P(sn(a−1n A− z) 6 n−b) 6 n−a.

2) Control of sn−i (a
−1
n A− z) for n1−ε < i < n:

Here we cannot have sn−i (a
−1
n A− z) > c i

n .

There is not enough concentration.

We establish weaker estimates that are still sufficient.



Non-reversible Markov matrix: heavy tailed weights

[Work in progress with D. Piras]

G = (V ,E ): complete oriented graph over n vertices with
self–loops V = {1, . . . , n} , E = {(i , j) , i , j ∈ V }.

Random network (G ,U):

U = (Uij)1 6 i ,j 6 n

i.i.d. RV’s with law L ∈ Hα, α ∈ (0, 1). No symmetry.

As before we consider the Random walk on (G ,U):

Kij =
Uij

ρi
, ρi =

n∑
j=1

Uij .

Expect convergence of ESD µK = 1
n

∑n
i=1 δλi (K) without scaling.



Main result

Theorem
Assume bdd density for the law L. For any α ∈ (0, 1), there exists
a radial probability µ̂α on D = {z ∈ C : |z | 6 1} depending only
on α such that, a.s.

µK =
1

n

n∑
i=1

δλi (K)
w−→

n→∞
µ̂α .

Key steps:

1. Convergence of singular value spectrum νK−z , for all z ∈ C.

2. Uniform integrability of log(·) for νK−z for almost all z ∈ C.

Note: for z = 1, the matrix K − z is singular with probability 1 !
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The singular values

Theorem (Bulk)

There exists a probability measure ν̂α,z on R+, depending on α
and z ∈ C, such that for a.a. z ∈ C, a.s.,

νK−z
w−→

n→∞
ν̂α,z .

The measure ν̂α,z has unbounded support with exponential tails.

Theorem (Invertibility)

For any δ > 0 there exists r > 0 such that for all |z | < δ−1 and
|z − 1| > δ one has almost surely

lim
n→∞

nr sn(K − z) = +∞.



Modified PWIT

Key observations:

1. order stat. of first row

= ρ−11 (order statistics of n i.i.d. RVs in Hα)

∼ PD(α) =
(

ξ1∑∞
i=1 ξi

, ξ2∑∞
i=1 ξi

, . . .
)

2. order stat. of first column

=
(

order statistics of
Ui,1

ρi

)
∼
(

ξ1
a+ξ1

, ξ2
a+ξ2

, . . .
)

where a > 0, and {ξi} = {Γ−1/αi } is PPP(αx−α−1dx).
Call T ±α the PWIT obtained by alternating PD(α) generations

with
{

ξi
a+ξi

}
-generations.

We obtain that bipartized matrix

(
0 K
K ∗ 0

)
converges locally to

the random rooted tree: T +
α with prob. 1

2 and T −α with prob. 1
2 .



Bipartized matrix

Example: n = 2

A =

(
A11 A12

A21 A22

)
⇒ B =


0 A11 0 A12

Ā11 0 A21 0
0 Ā21 0 A22

Ā12 0 Ā22 0



Moreover, B similar to

B̃ =


0 0 A11 A12

0 0 A21 A22

Ā11 Ā21 0 0
Ā12 Ā22 0 0

 =

(
0 A
A∗ 0

)
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Bipartized matrix

In general,

B = (Bij), with Bij =

(
0 Aij

Āji 0

)
is 2× 2 matrix.

Since B similar to B̃ =

(
0 A
A∗ 0

)
,

µB =
1

2n

n∑
i=1

(δσi (A) + δ−σi (A)) .



New resolvents: z ∈ C, η ∈ C+:

R(U) = (B − U ⊗ In)−1 , U = U(z , η) =

(
η z
z̄ η

)
Then R(U)kk =

(
ak(z , η) bk(z , η)
b̄k(z , η) ck(z , η)

)

Crucial relations: a random matrix A with exchangeable entries
satisfies, in D′(C)

EµA = − 1

4π
(∂x−i∂y )E b1(·, 0) = lim

t↓0
− 1

4π
(∂x−i∂y )E b1(·, it) (∗)

To prove properties of µa−1
n A: establish convergence to bipartized

PWIT and use relations like (∗) together with recursive
characterizations of Eb1(·, it) on PWIT.
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