Random positive maps

Benoît Collins

Kyoto University & University of Ottawa

Hong Kong, January 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse) Outline:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Positive maps: why do we care? (a primer of quantum information theory)

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse) Outline:

- 1. Positive maps: why do we care? (a primer of quantum information theory)
- 2. Random positive maps with random matrices (convergence of the largest eigenvalue).

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse) Outline:

- 1. Positive maps: why do we care? (a primer of quantum information theory)
- 2. Random positive maps with random matrices (convergence of the largest eigenvalue).

3. Application: almost optimal entanglement witnesses.

A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).

- A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).
- ► Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: Cⁿ₁ ⊗ Cⁿ₂.

- A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).
- ► Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: Cⁿ₁ ⊗ Cⁿ₂.

Separable states Sep(n₁, n₂) := Conv(D_{n1} ⊗ D_{n2}). This is a convex body.

- A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).
- ► Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: Cⁿ₁ ⊗ Cⁿ₂.
- Separable states Sep(n₁, n₂) := Conv(D_{n1} ⊗ D_{n2}). This is a convex body.
- ▶ Although, $Sep(n_1, n_2) \subset D(n_1n_2)$, $Sep(n_1, n_2) \neq D(n_1n_2)$ unless n_1 or n_2 is 1.

- A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).
- ► Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: Cⁿ₁ ⊗ Cⁿ₂.
- Separable states Sep(n₁, n₂) := Conv(D_{n1} ⊗ D_{n2}). This is a convex body.
- ▶ Although, $Sep(n_1, n_2) \subset D(n_1n_2)$, $Sep(n_1, n_2) \neq D(n_1n_2)$ unless n_1 or n_2 is 1.

• Entangled states $Ent(n_1, n_2) := D(n_1n_2) - Sep(n_1, n_2)$.

- A quantum system is a Hilbert space Cⁿ. Its set of states D(Cⁿ) = D_n is the collection of positive trace one matrices of M_n(C).
- ► Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: Cⁿ₁ ⊗ Cⁿ₂.
- Separable states Sep(n₁, n₂) := Conv(D_{n1} ⊗ D_{n2}). This is a convex body.
- Although, $Sep(n_1, n_2) \subset D(n_1n_2)$, $Sep(n_1, n_2) \neq D(n_1n_2)$ unless n_1 or n_2 is 1.
- ► Entangled states Ent(n₁, n₂) := D(n₁n₂) Sep(n₁, n₂). A very important set (resource for quantum computing, etc).

A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.

• For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.

A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.

- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).

A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.

- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).
- Both examples are very different:

- A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.
- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).
- Both examples are very different: although Φ₁ ⊗ I_k : M_n(ℂ) ⊗ M_k(ℂ) → M_n(ℂ) ⊗ M_k(ℂ) remains positive for all k, this is not the case for Φ₂.

- A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.
- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).
- Both examples are very different: although Φ₁ ⊗ *I_k* : *M_n*(ℂ) ⊗ *M_k*(ℂ) → *M_n*(ℂ) ⊗ *M_k*(ℂ) remains positive for all *k*, this is not the case for Φ₂.
- Φ_1 is k-positive for all k whereas Φ_2 is 'only' 1-positive.

(日) (同) (三) (三) (三) (○) (○)

- A positive map is a linear map M_{n1}(ℂ) → M_{n2}(ℂ) that takes positive matrices to positive matrices.
- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).
- Both examples are very different: although Φ₁ ⊗ *I_k* : *M_n*(ℂ) ⊗ *M_k*(ℂ) → *M_n*(ℂ) ⊗ *M_k*(ℂ) remains positive for all *k*, this is not the case for Φ₂.
- Φ_1 is k-positive for all k whereas Φ_2 is 'only' 1-positive.
- ► A map that is positive for all *k* is called *completely positive*.

(日) (同) (三) (三) (三) (○) (○)

 Paradoxically, completely positive maps are easier to classify than 'just' positive maps.
 They are all of the form X → ∑_i A_iXA_i^{*} (a variant of Stinespring theorem).

 Paradoxically, completely positive maps are easier to classify than 'just' positive maps.
 They are all of the form X → ∑_i A_iXA_i^{*} (a variant of Stinespring theorem).

 On the other hand, positive maps are still completely unclassified.

- Paradoxically, completely positive maps are easier to classify than 'just' positive maps.
 They are all of the form X → ∑_i A_iXA_i^{*} (a variant of Stinespring theorem).
- On the other hand, positive maps are still completely unclassified.

(roughly speaking) The only final results available are: maps from $\mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ with $(n_1, n_2) = \{(1, n); (n, 1); (2, 2); (2, 3); (3, 2)\}$ are positive iff

 $(n_1, n_2) = \{(1, n); (n, 1); (2, 2); (2, 3); (3, 2)\}$ are positive iff they are CP.

If ρ ∈ Sep(n₁, n₂) and Φ : M_{n1}(ℂ) → M_{n3}(ℂ) is positive then Φ ⊗ I_{n2}(ρ) is positive

 If ρ ∈ Sep(n₁, n₂) and Φ : M_{n1}(C) → M_{n3}(C) is positive then Φ ⊗ I_{n2}(ρ) is positive (because a tensor and a convex combination of positive matrices is positive).

- If ρ ∈ Sep(n₁, n₂) and Φ : M_{n1}(C) → M_{n3}(C) is positive then Φ ⊗ I_{n2}(ρ) is positive (because a tensor and a convex combination of positive matrices is positive).
- However, if ρ ∈ Ent(n₁, n₂) then Φ ⊗ I_{n2}(ρ) could in principle fail to be positive.

- If ρ ∈ Sep(n₁, n₂) and Φ : M_{n1}(C) → M_{n3}(C) is positive then Φ ⊗ I_{n2}(ρ) is positive (because a tensor and a convex combination of positive matrices is positive).
- However, if $\rho \in Ent(n_1, n_2)$ then $\Phi \otimes I_{n_2}(\rho)$ could in principle fail to be positive.

 But a failure to be positive can't happen if Φ is CP by definition.

- If ρ ∈ Sep(n₁, n₂) and Φ : M_{n1}(C) → M_{n3}(C) is positive then Φ ⊗ I_{n2}(ρ) is positive (because a tensor and a convex combination of positive matrices is positive).
- However, if $\rho \in Ent(n_1, n_2)$ then $\Phi \otimes I_{n_2}(\rho)$ could in principle fail to be positive.
- But a failure to be positive can't happen if Φ is CP by definition.

So, trying to find *positive but not completely positive maps* is a strategy to *witness* entanglement.

 Example: the PPT (positive partial transpose) test, with the transpose map.

(ロ)、(型)、(E)、(E)、 E) の(の)

- Example: the PPT (positive partial transpose) test, with the transpose map.
- The following state is not separable in $\mathcal{M}_2(\mathbb{C})\otimes\mathcal{M}_2(\mathbb{C})$

$$\left(\begin{array}{ccccc} 0.2 & 0 & 0 & 0 \\ 0 & 0.3 & 0.3 & 0 \\ 0 & 0.3 & 0.3 & 0 \\ 0 & 0 & 0 & 0.2 \end{array}\right)$$

・ロト・日本・モート モー うへぐ

A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that Φ ⊗ Id(ρ) fails to be positive.

・ロト・日本・モート モー うへぐ

A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that Φ ⊗ Id(ρ) fails to be positive.

・ロト・日本・モート モー うへぐ

However, the transpose is not enough!

- A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that Φ ⊗ Id(ρ) fails to be positive.
- However, the transpose is not enough!
 We need to find more examples of 'more' positive maps. This is a hard task.

- A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that Φ ⊗ Id(ρ) fails to be positive.
- However, the transpose is not enough!
 We need to find more examples of 'more' positive maps. This is a hard task.

RMT can help.

Choi matrix

► To a linear map Φ : M_{n1}(ℂ) → M_{n2}(ℂ) we assocciate its Choi matrix C_Φ ∈ M_{n1}(ℂ) ⊗ M_{n2}(ℂ) given by

$$C_{\Phi} := \sum E_{ij} \otimes \Phi(E_{ij})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choi matrix

► To a linear map Φ : M_{n1}(ℂ) → M_{n2}(ℂ) we assocciate its Choi matrix C_Φ ∈ M_{n1}(ℂ) ⊗ M_{n2}(ℂ) given by

$$C_{\Phi} := \sum E_{ij} \otimes \Phi(E_{ij})$$

(This is a new encoding of the map).

Theorem (Choi, 70's): Φ is completely positive iff C_Φ is positive.

Choi matrix

► To a linear map Φ : M_{n1}(ℂ) → M_{n2}(ℂ) we assocciate its Choi matrix C_Φ ∈ M_{n1}(ℂ) ⊗ M_{n2}(ℂ) given by

$$C_{\Phi} := \sum E_{ij} \otimes \Phi(E_{ij})$$

(This is a new encoding of the map).

- Theorem (Choi, 70's): Φ is completely positive iff C_Φ is positive.
- More recently: Φ is *positive* iff $p \otimes 1_{n_2} C_{\Phi} p \otimes 1_{n_2}$ is positive.

In M_k(ℂ) ⊗ M_n(ℂ), we pick X a GUE centered at 1 and of variance a.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In M_k(ℂ) ⊗ M_n(ℂ), we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval [1 - 2√a, 1 + 2√a].

In M_k(ℂ) ⊗ M_n(ℂ), we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval [1 - 2√a, 1 + 2√a].

• Let p be a rank 1 projection in $\mathcal{M}_k(\mathbb{C})$.

- In M_k(ℂ) ⊗ M_n(ℂ), we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval [1 2√a, 1 + 2√a].
- ▶ Let p be a rank 1 projection in M_k(C). Then, the non-trivial eigenvalues of

$$p\otimes 1_n\cdot C_{\Phi}\cdot p\otimes 1_n$$

follow a *GUE* centered at 1 and of variance a/k.

In M_k(ℂ) ⊗ M_n(ℂ), we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle

distribution on the interval $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$.

Let p be a rank 1 projection in M_k(ℂ). Then, the non-trivial eigenvalues of

$$p\otimes 1_n\cdot C_{\Phi}\cdot p\otimes 1_n$$

follow a *GUE* centered at 1 and of variance a/k. That is, the eigenvalues are located in a semi-circle distribution on the interval $[1 - 2\sqrt{a/k}, 1 + 2\sqrt{a/k}]$.

Fixing k, if we construct a (random) map Φ : M_k(ℂ) → M_n(ℂ) whose Choi matrix is X.

Fixing k, if we construct a (random) map
 Φ: M_k(ℂ) → M_n(ℂ) whose Choi matrix is X.
 And if a is such that 1 − 2√a/k > 0,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fixing k, if we construct a (random) map $\Phi: \mathcal{M}_k(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ whose Choi matrix is X. And if a is such that $1 - 2\sqrt{a/k} > 0$, with probability tending to 1 as n becomes large, we obtain a random positive map.

Fixing k, if we construct a (random) map
 Φ: M_k(ℂ) → M_n(ℂ) whose Choi matrix is X.
 And if a is such that 1 - 2√a/k > 0,
 with probability tending to 1 as n becomes large, we obtain a random positive map.
 [largest eigenvalue convergence + ε-net + union bound argument]

Fixing k, if we construct a (random) map
 Φ: M_k(ℂ) → M_n(ℂ) whose Choi matrix is X.
 And if a is such that 1 - 2√a/k > 0,
 with probability tending to 1 as n becomes large, we obtain a random positive map.
 [largest eigenvalue convergence + ε-net + union bound

argument]

In addition, if 1 − 2√a < 0, Φ is not completely positive with probability tending to 1 as n becomes large, therefore it 'detects' many entangled states.

► Let µ be a compactly supported real probability measure of 1st moment > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► Let µ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for / large enough, µ[⊞]/ has positive support.

- Let µ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for / large enough, µ[⊞]/ has positive support.
- ▶ Picking a random selfadjoint matrix X ∈ M_k(ℂ) ⊗ M_n(ℂ) with random eigenvectors (UXU* ~ X) whose eigenvalue distribution converges strongly to µ yields a random map whose Choi map is X.

- Let µ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for / large enough, µ[⊞]/ has positive support.
- ▶ Picking a random selfadjoint matrix X ∈ M_k(ℂ) ⊗ M_n(ℂ) with random eigenvectors (UXU* ~ X) whose eigenvalue distribution converges strongly to µ yields a random map whose Choi map is X.
- If l > l, this map is positive with probability one as $n \to \infty$.

- Let µ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for / large enough, µ[⊞]/ has positive support.
- ▶ Picking a random selfadjoint matrix X ∈ M_k(ℂ) ⊗ M_n(ℂ) with random eigenvectors (UXU* ~ X) whose eigenvalue distribution converges strongly to µ yields a random map whose Choi map is X.
- If *I* > *I*, this map is positive with probability one as *n* → ∞.
 [uses C & Male's strong convergence for random unitaries]

We focus on the non-centered GUE case (we can't study the efficiency of the other models at this time).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We focus on the non-centered GUE case (we can't study the efficiency of the other models at this time).

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ .

We focus on the non-centered GUE case (we can't study the efficiency of the other models at this time). Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ .

Set $\alpha = 2\sqrt{a}$.

X is positive with probability one as n→∞ as soon as 0 < α < 1.</p>

We focus on the non-centered GUE case (we can't study the efficiency of the other models at this time). Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues

are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

- X is positive with probability one as n→∞ as soon as 0 < α < 1.</p>
- X is PPT with probability one as n→∞ as soon as 0 < α < 1.</p>

We focus on the non-centered GUE case (we can't study the efficiency of the other models at this time).

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

- X is positive with probability one as n→∞ as soon as 0 < α < 1.</p>
- X is PPT with probability one as n→∞ as soon as 0 < α < 1.</p>
- PPT states and general states have typical size i.e. PPT is not so efficient in large dimension to detect entanglement.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$. With probability one, as $n \to \infty$:

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$. With probability one, as $n \to \infty$:

• With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$. With probability one, as $n \to \infty$:

• With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.

• If
$$\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$$
, X is separable.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when k > 16.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when k > 16.
- In both cases, α is of order C/\sqrt{k} .

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when k > 16.
- ▶ In both cases, α is of order C/\sqrt{k} . The order C/\sqrt{k} is optimal.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when k > 16.
- In both cases, α is of order C/√k. The order C/√k is optimal. We use the non-centered GUE random positive maps exhibited earlier to prove this result.

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞ . Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k-1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when k > 16.
- In both cases, α is of order C/√k. The order C/√k is optimal. We use the non-centered GUE random positive maps exhibited earlier to prove this result.
- ► Conclusion: Random maps are much more efficient than PPT.

Thank you!

Thank you!