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Outline:

1. Positive maps: why do we care? (a primer of quantum
information theory)

2. Random positive maps with random matrices (convergence of
the largest eigenvalue).
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Quantum information: a primer

I A quantum system is a Hilbert space Cn. Its set of states
D(Cn) = Dn is the collection of positive trace one matrices of
Mn(C).

I Two (disjoint) quantum systems can be combined into one by
taking the Hilbert tensor product: Cn1 ⊗ Cn2 .

I Separable states Sep(n1, n2) := Conv(Dn1 ⊗ Dn2). This is a
convex body.

I Although, Sep(n1, n2) ⊂ D(n1n2), Sep(n1, n2) 6= D(n1n2)
unless n1 or n2 is 1.

I Entangled states Ent(n1, n2) := D(n1n2)− Sep(n1, n2). A
very important set (resource for quantum computing, etc).
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Quantum information: positive maps

I A positive map is a linear map Mn1(C)→Mn2(C) that takes
positive matrices to positive matrices.

I For example: Φ1 : X → AXA∗, or a convex combination
thereof.

I Or, Φ2 : X → X t (the matrix transpose).

I Both examples are very different: although
Φ1 ⊗ Ik :Mn(C)⊗Mk(C)→Mn(C)⊗Mk(C) remains
positive for all k, this is not the case for Φ2.

I Φ1 is k-positive for all k whereas Φ2 is ‘only’ 1-positive.

I A map that is positive for all k is called completely positive.
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Quantum information: positive maps

I Paradoxically, completely positive maps are easier to classify
than ‘just’ positive maps.
They are all of the form X →

∑
i AiXA

∗
i (a variant of

Stinespring theorem).

I On the other hand, positive maps are still completely
unclassified.
(roughly speaking) The only final results available are: maps
from Mn1(C)→Mn2(C) with
(n1, n2) = {(1, n); (n, 1); (2, 2); (2, 3); (3, 2)} are positive iff
they are CP.
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Quantum information: positive maps

I If ρ ∈ Sep(n1, n2) and Φ :Mn1(C)→Mn3(C) is positive
then Φ⊗ In2(ρ) is positive

(because a tensor and a convex
combination of positive matrices is positive).

I However, if ρ ∈ Ent(n1, n2) then Φ⊗ In2(ρ) could in principle
fail to be positive.

I But a failure to be positive can’t happen if Φ is CP by
definition.
So, trying to find positive but not completely positive maps is
a strategy to witness entanglement.
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Quantum information: entanglement witness

I Example: the PPT (positive partial transpose) test, with the
transpose map.

I The following state is not separable in M2(C)⊗M2(C)
0.2 0 0 0
0 0.3 0.3 0
0 0.3 0.3 0
0 0 0 0.2


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Quantum information: entanglement witness

I A corollary of Hahn Banach theorem is that, for every
entangled state ρ there exists a positive map Φ such that
Φ⊗ Id(ρ) fails to be positive.

I However, the transpose is not enough!
We need to find more examples of ‘more’ positive maps. This
is a hard task.

I RMT can help.
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Choi matrix

I To a linear map Φ :Mn1(C)→Mn2(C) we assocciate its
Choi matrix CΦ ∈Mn1(C)⊗Mn2(C) given by

CΦ :=
∑

Eij ⊗ Φ(Eij)

(This is a new encoding of the map).

I Theorem (Choi, 70’s): Φ is completely positive iff CΦ is
positive.

I More recently: Φ is positive iff p ⊗ 1n2CΦp ⊗ 1n2 is positive.
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One toy random example

I In Mk(C)⊗Mn(C), we pick X a GUE centered at 1 and of
variance a.

Its eigenvalue distribution is (close to) a semi-circle
distribution on the interval [1− 2

√
a, 1 + 2

√
a].

I Let p be a rank 1 projection in Mk(C). Then, the non-trivial
eigenvalues of

p ⊗ 1n · CΦ · p ⊗ 1n

follow a GUE centered at 1 and of variance a/k .
That is, the eigenvalues are located in a semi-circle
distribution on the interval [1− 2

√
a/k , 1 + 2

√
a/k].
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One toy random example

I Fixing k, if we construct a (random) map
Φ :Mk(C)→Mn(C) whose Choi matrix is X .

And if a is such that 1− 2
√
a/k > 0,

with probability tending to 1 as n becomes large, we obtain a
random positive map.
[largest eigenvalue convergence + ε-net + union bound
argument]

I In addition, if 1− 2
√
a < 0, Φ is not completely positive with

probability tending to 1 as n becomes large, therefore it
‘detects’ many entangled states.
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Generalization of this example

I Let µ be a compactly supported real probability measure of
1st moment > 0.

I The free CLT and super convergence (Bercovici Voiculescu)
imply that for l large enough, µ�l has positive support.

I Picking a random selfadjoint matrix X ∈Mk(C)⊗Mn(C)
with random eigenvectors (UXU∗ ∼ X ) whose eigenvalue
distribution converges strongly to µ yields a random map
whose Choi map is X .

I If l > l , this map is positive with probability one as n→∞.
[uses C & Male’s strong convergence for random unitaries]
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How useful are these examples?

We focus on the non-centered GUE case (we can’t study the
efficiency of the other models at this time).

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

I X is positive with probability one as n→∞ as soon as
0 < α < 1.

I X is PPT with probability one as n→∞ as soon as
0 < α < 1.

I PPT states and general states have typical size – i.e. PPT is
not so efficient in large dimension to detect entanglement.



How useful are these examples?

We focus on the non-centered GUE case (we can’t study the
efficiency of the other models at this time).
Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

I X is positive with probability one as n→∞ as soon as
0 < α < 1.

I X is PPT with probability one as n→∞ as soon as
0 < α < 1.

I PPT states and general states have typical size – i.e. PPT is
not so efficient in large dimension to detect entanglement.



How useful are these examples?

We focus on the non-centered GUE case (we can’t study the
efficiency of the other models at this time).
Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

I X is positive with probability one as n→∞ as soon as
0 < α < 1.

I X is PPT with probability one as n→∞ as soon as
0 < α < 1.

I PPT states and general states have typical size – i.e. PPT is
not so efficient in large dimension to detect entanglement.



How useful are these examples?

We focus on the non-centered GUE case (we can’t study the
efficiency of the other models at this time).
Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

I X is positive with probability one as n→∞ as soon as
0 < α < 1.

I X is PPT with probability one as n→∞ as soon as
0 < α < 1.

I PPT states and general states have typical size – i.e. PPT is
not so efficient in large dimension to detect entanglement.



How useful are these examples?

We focus on the non-centered GUE case (we can’t study the
efficiency of the other models at this time).
Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

I X is positive with probability one as n→∞ as soon as
0 < α < 1.

I X is PPT with probability one as n→∞ as soon as
0 < α < 1.

I PPT states and general states have typical size – i.e. PPT is
not so efficient in large dimension to detect entanglement.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k .

The order C/
√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal.

We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



How useful are these examples?

Let X be a GUE as above: X ∈Mk(C)⊗Mn(C) its eigenvalues
are approximately in [1− 2

√
a, 1 + 2

√
a]. k is fixed, n tends to ∞.

Set α = 2
√
a.

With probability one, as n→∞:

I With 1 > α > 4/
√
k , X is PPT but not separable.

I If α <
√
k/(2(k − 1) +

√
k), X is separable.

I The criterion starts to become useful when k > 16.

I In both cases, α is of order C/
√
k . The order C/

√
k is

optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

I Conclusion: Random maps are much more efficient than PPT.



Thank you!

Thank you!


