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Joint work in preparation with Patrick Hayden (Stanford) and lon
Nechita (CNRS, Toulouse)
Outline:

1. Positive maps: why do we care? (a primer of quantum
information theory)

2. Random positive maps with random matrices (convergence of
the largest eigenvalue).

3. Application: almost optimal entanglement witnesses.
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A quantum system is a Hilbert space C". Its set of states

D(C") = D, is the collection of positive trace one matrices of

» Two (disjoint) quantum systems can be combined into one by
taking the Hilbert tensor product: C™ @ C™.

» Separable states Sep(ni, n2) := Conv(D,, ® Dy,). This is a
convex body.

> Although, Sep(n1, n2) C D(ninz), Sep(ny, n2) # D(nin)
unless ny or ny is 1.

» Entangled states Ent(ny, n2) := D(niny) — Sep(n1, n2). A

very important set (resource for quantum computing, etc).
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A map that is positive for all k is called completely positive.



Quantum information: positive maps

» Paradoxically, completely positive maps are easier to classify
than ‘just’ positive maps.
They are all of the form X — ). A;XA? (a variant of
Stinespring theorem).



Quantum information: positive maps

» Paradoxically, completely positive maps are easier to classify
than ‘just’ positive maps.
They are all of the form X — ). A;XA? (a variant of
Stinespring theorem).

» On the other hand, positive maps are still completely
unclassified.



Quantum information: positive maps

» Paradoxically, completely positive maps are easier to classify
than ‘just’ positive maps.
They are all of the form X — ). A;XA? (a variant of
Stinespring theorem).

» On the other hand, positive maps are still completely
unclassified.
(roughly speaking) The only final results available are: maps
from M, (C) = M,,(C) with
(n1,m) ={(1,n);(n, 1);(2,2);(2,3);(3,2)} are positive iff
they are CP.
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» If p € Sep(n1, nz) and ® : M, (C) — My, (C) is positive
then ® ® In,(p) is positive (because a tensor and a convex
combination of positive matrices is positive).

» However, if p € Ent(ny, n2) then ® ® In,(p) could in principle
fail to be positive.

» But a failure to be positive can’t happen if ¢ is CP by
definition.

So, trying to find positive but not completely positive maps is
a strategy to witness entanglement.
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» Example: the PPT (positive partial transpose) test, with the
transpose map.

» The following state is not separable in M»(C) ® M>(C)

02 0 0 O
0 03 03 O
0 03 03 O
0 0 0 02
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» A corollary of Hahn Banach theorem is that, for every
entangled state p there exists a positive map & such that
® ® Id(p) fails to be positive.

» However, the transpose is not enough!
We need to find more examples of ‘more’ positive maps. This
is a hard task.

» RMT can help.
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» To a linear map ¢ : M, (C) — M,,(C) we assocciate its
Choi matrix Co € M;,(C) ® Mp,(C) given by

Co = Z E; ® &(E;)

(This is a new encoding of the map).

» Theorem (Choi, 70's): ® is completely positive iff Ce is
positive.

> More recently: @ is positive iff p @ 1,,Cop ® 1,, is positive.
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> In My (C) ® M,(C), we pick X a GUE centered at 1 and of
variance a.
Its eigenvalue distribution is (close to) a semi-circle
distribution on the interval [1 — 2y/a,1 4 2,/a].
» Let p be a rank 1 projection in M (C). Then, the non-trivial
eigenvalues of
P®1n'C¢'P®1n

follow a GUE centered at 1 and of variance a/k.
That is, the eigenvalues are located in a semi-circle

distribution on the interval [1 —2+\/a/k,1+ 2+/a/k].
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» Fixing k, if we construct a (random) map
® : My (C) = Mp(C) whose Choi matrix is X.
And if a is such that 1 — 2\/3/7 >0,
with probability tending to 1 as n becomes large, we obtain a
random positive map.
[largest eigenvalue convergence + e-net + union bound
argument]

» In addition, if 1 —2y/a < 0, ® is not completely positive with

probability tending to 1 as n becomes large, therefore it
‘detects’ many entangled states.
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Generalization of this example

> Let pu be a compactly supported real probability measure of
1st moment > 0.

» The free CLT and super convergence (Bercovici Voiculescu)
imply that for / large enough, 1™/ has positive support.

» Picking a random selfadjoint matrix X € M(C) ® M,(C)
with random eigenvectors (UXU* ~ X) whose eigenvalue
distribution converges strongly to pu yields a random map
whose Choi map is X.

> If / >/, this map is positive with probability one as n — co.
[uses C & Male's strong convergence for random unitaries]
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efficiency of the other models at this time).
Let X be a GUE as above: X € M (C) ® M,(C) its eigenvalues

are approximately in [1 — 24/a,1 + 2./a]. k is fixed, n tends to oco.
Set o = 2¢/a.

» X is positive with probability one as n — oo as soon as
O<a<l

» X is PPT with probability one as n — oo as soon as
O<ax<l.

> PPT states and general states have typical size —i.e. PPT is
not so efficient in large dimension to detect entanglement.
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Let X be a GUE as above: X € M (C) ® M,(C) its eigenvalues
are approximately in [1 — 2y/a,1 4+ 2/3]. k is fixed, n tends to oc.
Set a = 24/a.
With probability one, as n — oc:

» With 1 > o > 4/vk, X is PPT but not separable.

» If a < Vk/(2(k — 1) +V'k), X is separable.

» The criterion starts to become useful when k > 16.

» In both cases, a is of order C/v/k. The order C/v/k is
optimal. We use the non-centered GUE random positive maps
exhibited earlier to prove this result.

» Conclusion: Random maps are much more efficient than PPT.
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Thank you!



