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Robust Estimation of Scatter/ 3/60

Covariance estimation and sample covariance matrices

−→ Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations x1, . . . , xn of a r.v. x ∈ CN .

I The main reasons are:
I Assuming E [x] = 0, E [xx∗] = CN , with X = [x1, . . . , xn], by the LLN

ŜN ,
1

n
XX∗

a.s.−→ CN as n→∞.

→ Hence, if θ = f (CN), we often use the n-consistent estimate θ̂ = f (ŜN).
I The SCM ŜN is the ML estimate of CN for Gaussian x
→ One therefore expects θ̂ to closely approximate θ for all finite n.

I This approach however has two limitations:
I if N,n are of the same order of magnitude,

‖ŜN − CN‖ 6→ 0 as N,n→∞, N/n→ c > 0, so that in general |θ̂− θ| 6→ 0

→ This motivated the introduction of G-estimators.
I if x is not Gaussian, but has heavier tails, ŜN is a poor estimator for CN .
→ This motivated the introduction of robust estimators.
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Robust Estimation of Scatter/ 4/60

Reminders on robust estimation

→ The objectives of robust estimators:

I Replace the SCM ŜN by another estimate ĈN of CN which:
I rejects (or downscales) observations deterministically
I or rejects observations inconsistent with the full set of observations

→ Example: Huber estimator (Huber’67), ĈN defined as solution of

ĈN =
1

n

n∑
i=1

αmin

{
1,

k2

1
N x∗i Ĉ

−1
N xi

}
xix
∗
i for some α > 1, k2 > 0.

I Provide scale-free estimators of CN :
→ Example: Tyler’s estimator (Tyler’81): if one observes xi = τizi for unknown scalars τi ,

ĈN =
1

n

n∑
i=1

1
1
N x∗i Ĉ

−1
N xi

xix
∗
i

I existence and uniqueness of ĈN defined up to a constant.
I few constraints on x1, . . . , xn (N + 1 of them must be linearly independent)
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Robust Estimation of Scatter/ 5/60

Reminders on robust estimation

→ The objectives of robust estimators:

I replace the SCM ŜN by the ML estimate for CN .
→ Example: Maronna’s estimator (Maronna’76) for elliptical x

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

with u(s) such that
(i) u(s) is continuous and non-increasing on [0,∞)

(ii) φ(s) = su(s) is non-decreasing, bounded by φ∞ > 1. Moreover, φ(s) increases where φ(s) < φ∞.

(note that Huber’s estimator is compliant with Maronna’s estimators)

I existence is not too demanding
I uniqueness imposes strictly increasing u(s) (inconsistent with Huber’s estimate)
I consistency result: ĈN → CN if u(s) meets the ML estimator for CN .

Robust RMT estimation
Can we study the performance of estimators based on the ĈN?

I what are the spectral properties of ĈN?
I can we generate RMT-based estimators relying on ĈN?
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Robust Estimation of Scatter/ 6/60

Setting and assumptions

I Assumptions:

I Take x1, . . . , xn ∈ CN “elliptical-like” random vectors, i.e. xi =
√
τiC

1
2
N wi where

I τ1, . . . ,τn ∈ R+ random or deterministic with 1
n
∑n

i=1 τi
a.s.−→ 1

I w1, . . . ,wn ∈ CN random independent with wi/
√
N uniformly distributed over the unit-sphere

I CN ∈ CN×N deterministic, with CN � 0 and lim supN ‖CN‖ <∞
I As n→∞, cN , N/n→ c ∈ (0, 1).

I Maronna’s estimator of scatter: (almost sure) unique solution to

ĈN =
1

n

n∑
i=1

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

(i) u : [0,∞)→ (0,∞) nonnegative continuous and non-increasing

(ii) φ : x 7→ xu(x) increasing and bounded with limx→∞φ(x) , φ∞ > 1
(iii) φ∞ < c−1

+ .

I Additional technical assumption: Let νn , 1
n

∑n
i=1 δτi . For each a > b > 0, a.s.

lim sup
t→∞

lim supn νn((t,∞))

φ(at) −φ(bt)
= 0.

Examples:
I τi <M for each i . In this case, νn((t,∞)) = 0 a.s. for t >M.
I For u(t) = (1 +α)/(α+ t), α > 0, and τi i.i.d., it is sufficient to have E [τ1+ε

1 ] <∞.
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Robust Estimation of Scatter/ 7/60

RMT analysis of ĈN

I First remark: we can work with CN = IN without generality restriction.

I Intuition:
I Denote

Ĉ(j) =
1

n

n∑
i 6=j

u

(
1

N
x∗i Ĉ

−1
N xi

)
xix
∗
i

−→ Intuitively, Ĉ(j) and xj are only “weakly” dependent.
I We expect in particular:

1

N
x∗i Ĉ

−1
(i) xi ' τi

1

N
tr Ĉ−1

(i) ' τi
1

N
tr Ĉ−1

N ' τiγN

for some deterministic equivalent γN .

I Assuming this is correct, we then proceed as follows:
I Algebraic manipulation: For some function f (later called g−1), write

ĈN =
1

n

n∑
i=1

(u ◦ f )
(

1

N
x∗i Ĉ

−1
(i) xi

)
xix
∗
i

I Use conjecture 1
N x∗i Ĉ

−1
(i) xi ' τiγN to get

ĈN '
1

n

n∑
i=1

(u ◦ f ) (τiγN) xix
∗
i

I Use random matrix results to find a deterministic equivalent γN from γN ' 1
N tr Ĉ−1

N .
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tr Ĉ−1

N ' τiγN

for some deterministic equivalent γN .

I Assuming this is correct, we then proceed as follows:
I Algebraic manipulation: For some function f (later called g−1), write
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ĈN '
1

n

n∑
i=1

(u ◦ f ) (τiγN) xix
∗
i

I Use random matrix results to find a deterministic equivalent γN from γN ' 1
N tr Ĉ−1
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RMT analysis of ĈN : f and γN

I Determination of f : Recall the identity (A+ tvv∗)−1v = A−1/(1 + tv∗A−1v). Then

1

N
x∗i Ĉ

−1
N xi =

1
N x∗i Ĉ

−1
(i) xi

1 + cNu(
1
N x∗i Ĉ

−1
N xi )

1
N x∗i Ĉ

−1
(i) xi

so that
1

N
x∗i Ĉ

−1
(i) xi =

1
N x∗i Ĉ

−1
N xi

1 − cNφ( 1
N x∗i Ĉ

−1
N xi )

.

Now the function g : x 7→ x/(1 − cNφ(x)) is monotonous increasing (we use the assumption
φ∞ < c−1!), hence, with f = g−1,

1

N
x∗i Ĉ

−1
N xi = g−1

(
1

N
x∗i Ĉ

−1
(i) xi

)
.
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RMT analysis of ĈN : f and γN
I Determination of γN : From previous calculus, we expect

ĈN '
1

n

n∑
i=1

(u ◦ g−1)

(
τi

1

N
tr Ĉ−1

N

)
xix
∗
i '

1

n

n∑
i=1

(u ◦ g−1) (τiγN) xix
∗
i .

Hence

γN '
1

N
tr Ĉ−1

N ' 1

N
tr

(
1

n

n∑
i=1

(u ◦ g−1) (τiγN)τiwiw
∗
i

)−1

.

Since τi are independent of wi and γN deterministic, this is a Bai-Silverstein model

1

n
WDW ∗, W = [w1, . . . ,wn], D = diag(Dii ) = τi (u ◦ g−1)(τiγN).

And we have:

γN '
1

N
tr

(
1

n
WDW ∗

)−1

= m 1
nWDW∗(0) '

(∫
t(u ◦ g−1)(tγN)

1 + c(u ◦ g−1)(tγN)m 1
nWDW∗(0)

νN(dt)

)−1

=

(
1

n

n∑
i=1

τi (u ◦ g−1)(τiγN)

1 + cτi (u ◦ g−1)(τiγN)m 1
nWDW∗(0)

)−1

.

Since γN ' m 1
nWDW∗(0), this defines γN as a solution of a fixed-point equation:

γN =

(
1

n

n∑
i=1

τi (u ◦ g−1)(τiγN)

1 + cτi (u ◦ g−1)(τiγN)γN

)−1

.
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Main result

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s M-estimator
with elliptically distributed samples”, (in Press) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have

∥∥∥ĈN − ŜN

∥∥∥ a.s.−→ 0, where ŜN ,
1

n

n∑
i=1

v(τiγN)xix
∗
i =

1

n

n∑
i=1

ψ(τiγN)

γN
wiw

∗
i

v(x) = (u ◦ g−1)(x), ψ(x) = xv(x), g(x) = x/(1 − cφ(x)) and γN > 0 unique solution of

1 =
1

n

n∑
i=1

ψ(τiγN)

1 + cψ(τiγN)
.

I Remarks:
I Corollary:

max
16i6n

∣∣∣λi (ŜN) − λi (ĈN)
∣∣∣ a.s.−→ 0

−→ Important feature for detection and estimation.

I Proof: So far, we do not have a rigorous proof!
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Proof of the “conjecture”

I Technical trick: Denote

ei ,
v
(

1
N x∗i Ĉ

−1
(i) xi

)
v(τiγ)

and relabel terms such that
e1 6 . . . 6 en

We shall prove that, for each ` > 0,

e1 > 1 − ` and en < 1 + ` for all large n a.s.

I Some basic inequalities: Denoting di ,
1
τi

1
N x∗i Ĉ

−1
(i) xi =

1
Nw∗i Ĉ

−1
(i) wi , we have

ej =

v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τidi )wiw

∗
i

)−1
wj

)
v(τjγ)

=

v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)eiwiw

∗
i

)−1
wj

)
v(τjγ)

6
v

(
τj

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)enwiw

∗
i

)−1
wj

)
v(τjγ)

=

v

(
τj
en

1
Nw∗j

(
1
n

∑
i 6=j τiv(τiγ)wiw

∗
i

)−1
wj

)
v(τjγ)
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Proof

I Specialization to en:

en 6
v

(
τn
en

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

)
v(τnγ)

or equivalently, recalling ψ(x) = xv(x),

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

γ
6
ψ

(
τn
en

1
Nw∗n

(
1
n

∑
i 6=n τiv(τiγ)wiw

∗
i

)−1
wn

)
ψ(τnγ)

.

I Random Matrix result: We can prove precisely that:

max
16j6n

∣∣∣∣∣∣∣
1

N
w∗j

 1

n

∑
i 6=j

τiv(τiγN)wiw
∗
i

−1

wj −γ

∣∣∣∣∣∣∣ a.s.−→ 0

(uniformity fundamental after relabeling)
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Proof

I For all large n a.s., we then have (using growth of ψ)

γ− ε

γ
6
ψ
(
τn
en

(γ+ ε)
)

ψ(τnγ)
.

I Proof by contradiction: Assume en > 1 + ` i.o., then on a subsequence

γ− ε

γ
6
ψ
(
τn

1+` (γ+ ε)
)

ψ(τnγ)
.

I Bounded τi : If 0 < τ− < τi < τ+ <∞ for all i ,n, then on a subsequence where τn → τ0,

γ− ε

γ︸ ︷︷ ︸
→1 as ε→0

6
ψ
( τ0

1+` (γ+ ε)
)

ψ(τ0γ)︸ ︷︷ ︸
→
ψ
( τ0

1+` γ
)

ψ(τ0γ)
<1 as ε→0

CONTRADICTION!

I Unbounded τi : Importance of relative growth of τn versus convergence of ψ to ψ∞.
Proof consists in dividing {τi } in two groups: few large ones versus all others.
Sufficient condition:

lim sup
t→∞

lim supn νn((t,∞))

φ(at) −φ(bt)
= 0.
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Simulations
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Figure: Histogram of the eigenvalues of 1
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i=1 xix

∗
i for n = 2500, N = 500, CN = diag(I125, 3I125, 10I250), τ1

with Γ(.5, 2)-distribution.



Robust Estimation of Scatter/ 15/60

Simulations

0 0.5 1 1.5 2
0

1

2

3

Eigenvalues

D
en

si
ty

Empirical eigenvalue distribution of ĈN
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Figure: Histogram of the eigenvalues of ĈN (left) and ŜN (right) for n = 2500, N = 500,
CN = diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

I Remark/Corollary: Spectrum of ĈN a.s. bounded uniformly on n.
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CN = diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

I Remark/Corollary: Spectrum of ĈN a.s. bounded uniformly on n.
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Hint on potential applications

I Spectrum boundedness: for impulsive noise scenarios,
I SCM spectrum grows unbounded
I robust scatter estimator spectrum remains bounded

⇒ Robust estimators improve spectrum separability (important for many statistical inference
techniques seen previously)

I Spiked model generalization: we may expect a generalization to spiked models
I spikes are swallowed by the bulk in SCM context
I we expect spikes to re-emerge in robust scatter context

⇒ We shall see that we get even better than this. . .
I Application scenarios:

I Radar detection in impulsive noise (non-Gaussian noise, possibly clutter)
I Financial data analytics
I Any application where Gaussianity is too strong an assumption. . .
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Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers
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System Setting

I Signal model:

yi =
L∑

l=1

√
plal sli +

√
τiwi = Ai w̄i

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
, w̄i , [s1i , . . . , sLi ,wi ]

T.

with y1, . . . , yn ∈ CN satisfying:

1. τ1, . . . ,τn > 0 random such that νn , 1
n

∑n
i=1 δτi → ν weakly and

∫
tν(dt) = 1;

2. w1, . . . ,wn ∈ CN random independent unitarily invariant
√
N-norm;

3. L ∈ N, p1 > . . . > pL > 0 deterministic;

4. a1, . . . , aL ∈ CN deterministic or random with A∗A
a.s.−→ diag(p1, . . . ,pL) as N →∞, with

A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L.

5. s1,1, . . . , sLn ∈ C independent with zero mean, unit variance.

I Relation to previous model: If L = 0, yi =
√
τiwi .

⇒ Elliptical model with covariance a low-rank (L) perturbation of IN .
⇒ We expect a spiked version of previous results.

I Application contexts:
I wireless communications: signals sli from L transmitters, N-antenna receiver; al random i.i.d.

channels (a∗l al ′ → δl−l ′ , e.g. al ∼ CN(0, IN/N));
I array processing: L sources emit signals sli at steering angle al = a(θl ). For ULA,

[a(θ)]j = N− 1
2 exp(2πıdj sin(θ)).



Spiked model extension and robust G-MUSIC/ 18/60

System Setting

I Signal model:

yi =
L∑

l=1

√
plal sli +

√
τiwi = Ai w̄i

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
, w̄i , [s1i , . . . , sLi ,wi ]

T.

with y1, . . . , yn ∈ CN satisfying:

1. τ1, . . . ,τn > 0 random such that νn , 1
n

∑n
i=1 δτi → ν weakly and

∫
tν(dt) = 1;

2. w1, . . . ,wn ∈ CN random independent unitarily invariant
√
N-norm;

3. L ∈ N, p1 > . . . > pL > 0 deterministic;

4. a1, . . . , aL ∈ CN deterministic or random with A∗A
a.s.−→ diag(p1, . . . ,pL) as N →∞, with

A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L.

5. s1,1, . . . , sLn ∈ C independent with zero mean, unit variance.

I Relation to previous model: If L = 0, yi =
√
τiwi .

⇒ Elliptical model with covariance a low-rank (L) perturbation of IN .
⇒ We expect a spiked version of previous results.

I Application contexts:
I wireless communications: signals sli from L transmitters, N-antenna receiver; al random i.i.d.

channels (a∗l al ′ → δl−l ′ , e.g. al ∼ CN(0, IN/N));
I array processing: L sources emit signals sli at steering angle al = a(θl ). For ULA,

[a(θ)]j = N− 1
2 exp(2πıdj sin(θ)).



Spiked model extension and robust G-MUSIC/ 18/60

System Setting

I Signal model:

yi =
L∑

l=1

√
plal sli +

√
τiwi = Ai w̄i

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
, w̄i , [s1i , . . . , sLi ,wi ]

T.

with y1, . . . , yn ∈ CN satisfying:

1. τ1, . . . ,τn > 0 random such that νn , 1
n

∑n
i=1 δτi → ν weakly and

∫
tν(dt) = 1;

2. w1, . . . ,wn ∈ CN random independent unitarily invariant
√
N-norm;

3. L ∈ N, p1 > . . . > pL > 0 deterministic;

4. a1, . . . , aL ∈ CN deterministic or random with A∗A
a.s.−→ diag(p1, . . . ,pL) as N →∞, with

A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L.

5. s1,1, . . . , sLn ∈ C independent with zero mean, unit variance.

I Relation to previous model: If L = 0, yi =
√
τiwi .

⇒ Elliptical model with covariance a low-rank (L) perturbation of IN .
⇒ We expect a spiked version of previous results.

I Application contexts:
I wireless communications: signals sli from L transmitters, N-antenna receiver; al random i.i.d.

channels (a∗l al ′ → δl−l ′ , e.g. al ∼ CN(0, IN/N));
I array processing: L sources emit signals sli at steering angle al = a(θl ). For ULA,

[a(θ)]j = N− 1
2 exp(2πıdj sin(θ)).



Spiked model extension and robust G-MUSIC/ 19/60

Some intuition

I Signal detection/estimation in impulsive environments: Two scenarios
I heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
I Gaussian noise with spurious impulsions

I Problems expected with SCM: Respectively,
I unbounded limiting spectrum, no source separation!
⇒ Invalidates G-MUSIC

I isolated eigenvalues due to spikes in time direction
⇒ False alarms induced by noise impulses!

I Our results: In a spiked model with noise impulsions,
I whatever noise impulsion type, spectrum of ĈN remains bounded
I isolated largest eigenvalues may appear, two classes:

I isolated eigenvalues due to noise impulses CANNOT exceed a threshold!
I all isolated eigenvalues beyond this threshold are due to signal
⇒ Detection criterion: everything above threshold is signal.
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Theoretical results

Theorem (Extension to spiked robust model)
Under the same assumptions as in previous section,

‖ĈN − ŜN‖
a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

v(τiγ)Ai w̄i w̄
∗
i A
∗
i

with γ the unique solution to

1 =

∫
ψ(tγ)

1 + cψ(tγ)
ν(dt)

and we recall

Ai ,
[√

p1a1 . . .
√
pLaL

√
τi IN

]
w̄i = [s1i , . . . , sLi ,wi ]

T.

I Remark: For L = 0, Ai = [0, . . . , 0, IN ].
⇒ Recover previous result Ai w̄i becomes wi .
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Localization of eigenvalues

Theorem (Eigenvalue localization)
Denote

I uk eigenvector of k-th largest eigenvalue of AA∗ =
∑L

i=1 piaia
∗
i

I ûk eigenvector of k-th largest eigenvalue of ĈN

Also define δ(x) unique positive solution to

δ(x) = c

(
−x +

∫
tvc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

.

Further denote

p− , lim
x↓S+

−c

(∫
δ(x)vc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

, S+ ,
φ∞(1 +

√
c)2

γ(1 − cφ∞)
.

Then, if pj > p−, λ̂j
a.s.−→Λj > S+, otherwise lim supn λ̂j 6 S+ a.s., with Λj unique positive

solution to

−c

(
δ(Λj)

∫
vc(τγ)

1 + δ(Λj)τvc(τγ)
ν(dτ)

)−1

= pj .
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1 + δ(x)tvc(tγ)
ν(dt)

)−1

, S+ ,
φ∞(1 +

√
c)2

γ(1 − cφ∞)
.

Then, if pj > p−, λ̂j
a.s.−→Λj > S+, otherwise lim supn λ̂j 6 S+ a.s., with Λj unique positive

solution to

−c

(
δ(Λj)

∫
vc(τγ)

1 + δ(Λj)τvc(τγ)
ν(dτ)

)−1

= pj .
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Simulation
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N = 200, n = 1000, Sudent-t impulsions.
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Simulation
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with α = 0.2, L = 2, p1 = p2 = 1, N = 200, n = 1000, Student-t impulsions.
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Comments

I SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of
scatter.

I Largest eigenvalues:
I λi (ĈN) > S+ ⇒ Presence of a source!
I λi (ĈN) ∈ (sup(Support),S+)⇒ May be due to a source or to a noise impulse.
I λi (ĈN) < sup(Support)⇒ As usual, nothing can be said.

⇒ Induces a natural source detection algorithm.
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Eigenvalue and eigenvector projection estimates
I Two scenarios:

I known ν = limn
1
n

∑n
i=1 δτi

I unknown ν

Theorem (Estimation under known ν)
1. Power estimation. For each pj > p−,

−c

(
δ(λ̂j)

∫
vc(τγ)

1 + δ(λ̂j)τvc(τγ)
ν(dτ)

)−1
a.s.−→ pj .

2. Bilinear form estimation. For each a,b ∈ CN with ‖a‖ = ‖b‖ = 1, and pj > p−∑
k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

wka
∗ûk û

∗
kb

a.s.−→ 0

where

wk =

∫
vc(tγ)(

1 + δ(λ̂k)tvc(tγ)
)2
ν(dt)

∫
vc(tγ)

1 + δ(λ̂k)tvc(tγ)
ν(dt)

1 −
1

c

∫
δ(λ̂k)

2t2vc(tγ)2(
1 + δ(λ̂k)tvc(tγ)

)2
ν(dt)


.
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Eigenvalue and eigenvector projection estimates

Theorem (Estimation under unknown ν)
1. Purely empirical power estimation. For each pj > p−,

−

(
δ̂(λ̂j)

1

N

n∑
i=1

v(τ̂i γ̂n)

1 + δ̂(λ̂j)τ̂iv(τ̂i γ̂n)

)−1
a.s.−→ pj .

2. Purely empirical bilinear form estimation. For each a,b ∈ CN with ‖a‖ = ‖b‖ = 1, and each
pj > p−, ∑

k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

ŵka
∗ûk û

∗
kb

a.s.−→ 0

where

ŵk =

1

n

n∑
i=1

v(τ̂i γ̂)(
1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)

)2

1

n

n∑
i=1

v(τ̂i γ̂)

1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)

1 −
1

N

n∑
i=1

δ̂(λ̂k)
2τ̂2

i v(τ̂i γ̂)
2(

1 + δ̂(λ̂k)τ̂iv(τ̂i γ̂)
)2


γ̂ ,

1

n

n∑
i=1

1

N
y∗i Ĉ

−1
(i) yi , τ̂i ,

1

γ̂

1

N
y∗i Ĉ

−1
(i) yi , δ̂(x) as δ(x) but for (τi ,γ)→ (τ̂i , γ̂).
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Application to G-MUSIC
I Assume the model ai = a(θi ) with

a(θ) = N− 1
2 [exp(2πıdj sin(θ))]N−1

j=0 .

Corollary (Robust G-MUSIC)
Define η̂RG(θ) and η̂emp

RG (θ) as

η̂RG(θ) = 1 −

|{j ,pj>p−}|∑
k=1

wka(θ)
∗ûk ûka(θ)

η̂
emp
RG (θ) = 1 −

|{j ,pj>p−}|∑
k=1

ŵka(θ)
∗ûk ûka(θ).

Then, for each pj > p−,

θ̂j
a.s.−→ θj

θ̂
emp
j

a.s.−→ θj

where

θ̂j , argminθ∈Rκj
{η̂RG(θ)}

θ̂
emp
j , argminθ∈Rκj

{
η̂
emp
RG (θ)

}
.
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Simulations: Single-shot in elliptical noise
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Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20,
n = 100, two sources at 10◦ and 12◦, Student-t impulsions with parameter β = 100, u(x) = (1 +α)/(α+ x)
with α = 0.2. Powers p1 = p2 = 100.5 = 5 dB.
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Simulations: Elliptical noise
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10◦ and 12◦, Student-t impulsions with parameter β = 10, u(x) = (1 +α)/(α+ x) with α = 0.2, p1 = p2.
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Simulations: Spurious impulses
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Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers
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Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator – Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

I Shrinkage covariance estimation: For N > n or N ' n, shrinkage estimator

(1 − ρ)
1

n

n∑
i=1

xix
∗
i + ρIN , for some ρ ∈ [0, 1].

I allows for invertibility, better conditioning
I ρ may be chosen to minimize an expected error metric

I Limitation of Maronna’s estimator:
I Maronna and Tyler estimators limited to N < n, otherwise do not exist
I introducing shrinkage in robust estimator cannot do much harm anyhow...

I Introducing the robust-shrinkage estimator: The literature proposes two such estimators

ĈN(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (max{0,
N − n

N
}, 1] (Pascal)

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

, B̌N(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i Ĉ

−1
N (ρ)xi

+ ρIN , ρ ∈ (0, 1] (Chen)
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Main theoretical result

I Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the
other, but the arguments we received were quite vague...

I Our result: In the random matrix regime, both estimators tend to be one and the same!

I Assumptions: As before, “elliptical-like” model

xi = τiC
1
2
N wi

−→ This time, CN cannot be taken IN (due to +ρIN)!
−→ Maronna-based shrinkage is possible but more involved...
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Pascal’s estimator

Theorem (Pascal’s estimator)
For ε ∈ (0, min{1, c−1}), define R̂ε = [ε+ max{0, 1 − c−1}, 1]. Then, as N,n→∞,
N/n→ c ∈ (0,∞),

sup
ρ∈R̂ε

∥∥∥ĈN(ρ) − ŜN(ρ)
∥∥∥ a.s.−→ 0

where

ĈN(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i ĈN(ρ)−1xi

+ ρIN

ŜN(ρ) =
1

γ̂(ρ)

1 − ρ

1 − (1 − ρ)c

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N + ρIN

and γ̂(ρ) is the unique positive solution to the equation in γ̂

1 =
1

N

N∑
i=1

λi (CN)

γ̂ρ+ (1 − ρ)λi (CN)
.

Moreover, ρ 7→ γ̂(ρ) is continuous on (0, 1].
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Chen’s estimator

Theorem (Chen’s estimator)
For ε ∈ (0, 1), define Řε = [ε, 1]. Then, as N,n→∞, N/n→ c ∈ (0,∞),

sup
ρ∈Řε

∥∥∥ČN(ρ) − ŠN(ρ)
∥∥∥ a.s.−→ 0

where

ČN(ρ) =
B̌N(ρ)

1
N tr B̌N(ρ)

, B̌N(ρ) = (1 − ρ)
1

n

n∑
i=1

xix
∗
i

1
N x∗i ČN(ρ)−1xi

+ ρIN

ŠN(ρ) =
1 − ρ

1 − ρ+Tρ

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N +

Tρ
1 − ρ+Tρ

IN

in which Tρ = ργ̌(ρ)F(γ̌(ρ);ρ) with, for all x > 0,

F(x ;ρ) =
1

2
(ρ− c(1 − ρ)) +

√
1

4
(ρ− c(1 − ρ))2 + (1 − ρ)

1

x

and γ̌(ρ) is the unique positive solution to the equation in γ̌

1 =
1

N

N∑
i=1

λi (CN)

γ̌ρ+ 1−ρ
(1−ρ)c+F(γ̌;ρ)λi (CN)

.

Moreover, ρ 7→ γ̌(ρ) is continuous on (0, 1].
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Asymptotic Model Equivalence

Theorem (Model Equivalence)
For each ρ ∈ (0, 1], there exist unique ρ̂ ∈ (max{0, 1 − c−1}, 1] and ρ̌ ∈ (0, 1] such that

ŜN(ρ̂)
1

γ̂(ρ̂)
1−ρ̂

1−(1−ρ̂)c + ρ̂
= ŠN(ρ̌) = (1 − ρ)

1

n

n∑
i=1

C
1
2
N wiw

∗
i C

1
2
N + ρIN .

Besides, (0, 1]→ (max{0, 1 − c−1}, 1], ρ 7→ ρ̂ and (0, 1]→ (0, 1], ρ 7→ ρ̌ are increasing and onto.

I Up to normalization, both estimators behave the same!

I Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator

I About uniformity: Uniformity over ρ in the theorems is essential to find optimal values of ρ.
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Optimal Shrinkage parameter

I Chen sought for a Frobenius norm minimizing ρ but got stuck by implicit nature of ČN(ρ)

I Our results allow for a simplification of the problem for large N,n!

I Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each ρ ∈ (0, 1], define

D̂N(ρ) =
1

N
tr

( ĈN(ρ)
1
N tr ĈN(ρ)

− CN

)2
 , ĎN(ρ) =

1

N
tr

((
ČN(ρ) − CN

)2
)

.

Denote D? = c M2−1
c+M2−1 , ρ? = c

c+M2−1 , M2 = limN
1
N

∑N
i=1 λ

2
i (CN) and ρ̂?, ρ̌? unique solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?

1−(1−ρ̂?)c + ρ̂?
=

Tρ̌?

1 − ρ̌? +Tρ̌?
= ρ?.

Then, letting ε small enough,

inf
ρ∈R̂ε

D̂N(ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN(ρ)

a.s.−→ D?

D̂N(ρ̂
?)

a.s.−→ D?, ĎN(ρ̌
?)

a.s.−→ D?.
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I Our results allow for a simplification of the problem for large N,n!

I Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each ρ ∈ (0, 1], define

D̂N(ρ) =
1

N
tr

( ĈN(ρ)
1
N tr ĈN(ρ)

− CN

)2
 , ĎN(ρ) =

1

N
tr

((
ČN(ρ) − CN

)2
)

.

Denote D? = c M2−1
c+M2−1 , ρ? = c

c+M2−1 , M2 = limN
1
N

∑N
i=1 λ

2
i (CN) and ρ̂?, ρ̌? unique solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?

1−(1−ρ̂?)c + ρ̂?
=

Tρ̌?

1 − ρ̌? +Tρ̌?
= ρ?.

Then, letting ε small enough,

inf
ρ∈R̂ε

D̂N(ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN(ρ)

a.s.−→ D?

D̂N(ρ̂
?)

a.s.−→ D?, ĎN(ρ̌
?)

a.s.−→ D?.
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Estimating ρ̂? and ρ̌?

I Theorem only useful if ρ̂? and ρ̌? can be estimated!

I Careful control of the proofs provide many ways to estimate these.

I Proposition below provides one example.

Optimal Shrinkage Estimate
Let ρ̂N ∈ (max{0, 1 − c−1}, 1] and ρ̌N ∈ (0, 1] be solutions (not necessarily unique) to

ρ̂N
1
N tr ĈN(ρ̂N)

=
cN

1
N tr

[(
1
n

∑n
i=1

xi x
∗
i

1
N ‖xi‖

2

)2
]
− 1

ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

1 − ρ̌N + ρ̌N
1
n

∑n
i=1

x∗i ČN (ρ̌N )−1xi
‖xi‖2

=
cN

1
N tr

[(
1
n

∑n
i=1

xi x
∗
i

1
N ‖xi‖

2

)2
]
− 1

defined arbitrarily when no such solutions exist. Then

ρ̂N
a.s.−→ ρ̂?, ρ̌N

a.s.−→ ρ̌?

D̂N(ρ̂N)
a.s.−→ D?, ĎN(ρ̌N)

a.s.−→ D?.
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Simulations
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Figure: Performance of optimal shrinkage averaged over 10 000 Monte Carlo simulations, for N = 32, various
values of n, [CN ]ij = r |i−j| with r = 0.7; ρ̌N as above; ρ̌O the clairvoyant estimator proposed in (Chen’11).
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Figure: Shrinkage parameter ρ averaged over 10 000 Monte Carlo simulations, for N = 32, various values of n,
[CN ]ij = r |i−j| with r = 0.7; ρ̂N and ρ̌N as above; ρ̌O the clairvoyant estimator proposed in (Chen’11);

ρ̂◦ = argmin
{ρ∈(max{0,1−c−1
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Connection to Power Control
I Power control problem results in solving, for each j = 1, . . . ,n

λj = σ
2

(1 +γ−1
j )

1

N
h∗j

(
1

N

n∑
i=1

λi
σ2

hih
∗
i + IN

)−1

hj

−1

with
I hi ∈ CN channel modeled as hi =

√
rixi , xi ∼ CN(0, IN)

I σ2 power of additive noise
I γi target SINR for user i

I Can be rewritten as

λj =
σ2γj

rj

 1

N
x∗j

 1

N

∑
i 6=j

λi ri
σ2

xix
∗
i + IN

−1

xj


−1

I With dj =
σ2γj
λj rj

, this is

dj =
1

N
x∗j

 1

N

∑
i 6=j

γi

di
xix
∗
i + IN

−1

xj .

I Under assumption lim supn
1
N

∑n
i=1

γi
1+γi

< 1 we then have

max
16j6n

∣∣∣∣∣∣λj − σ
2γj

rj

(
1 −

1

N

n∑
i=1

γi

1 +γi

)−1
∣∣∣∣∣∣ a.s.−→ 0.
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Context

I Hypothesis testing problem: Two sets of data

I Initial pure-noise data: x1, . . . , xn, xi =
√
τiC

1
2
N wi as before.

I New incoming data y given by:

y =

{
x , H0

αp + x , H1

with x =
√
τC

1
2
N w , p ∈ CN deterministic known, α unknown.

I GLRT detection test:

TN(ρ)
H1

≶
H0

Γ

for some detection threshold Γ where

TN(ρ) ,
|y∗Ĉ−1

N (ρ)p|√
y∗Ĉ−1

N (ρ)y
√
p∗Ĉ−1

N (ρ)p
.

and ĈN(ρ) defined in previous section.

−→ In fact, originally found to be ĈN(0) but
I only valid for N < n
I introducing ρ may bring improved for arbitrary N/n ratios.
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I only valid for N < n
I introducing ρ may bring improved for arbitrary N/n ratios.



Optimal robust GLRT detectors/ 44/60

Objectives and main results

I Initial observations:
I As N,n→∞, N/n→ c > 0, under H0,

TN(ρ)
a.s.−→ 0.

⇒ Trivial result of little interest!

I Natural question: for finite N,n and given Γ , find ρ such that

P (TN(ρ) > Γ) = min

I Turns out the correct non-trivial object is, for γ > 0 fixed

P
(√

NTN(ρ) > γ
)
= min

I Objectives:
I for each ρ, develop central limit theorem to evaluate

lim
N,n→∞
N/n→c

P
(√

NTN(ρ) > γ
)

I determine limiting minimizing ρ
I empirically estimate minimizing ρ
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What do we need?

CLT over ĈN statistics

I We know that ‖ĈN(ρ) − ŜN(ρ)‖
a.s.−→ 0

−→ Key result so far!

I What about ‖
√
N(ĈN(ρ) − ŜN(ρ))‖ ?

−→ Does not converge to zero!!!

I But there is hope. . . : √
N(a∗Ĉ−1

N (ρ)b− a∗Ŝ−1
N (ρ)b)

a.s.−→ 0

⇒ This is our main result!

I This requires much more delicate treatment, not discussed in this tutorial.
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N (ρ)b− a∗Ŝ−1
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a.s.−→ 0

−→ Key result so far!

I What about ‖
√
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Main results

Theorem (Fluctuation of bilinear forms)
Let a,b ∈ CN with ‖a‖ = ‖b‖ = 1. Then, as N,n→∞ with N/n→ c > 0, for any ε > 0 and
every k ∈ Z,

sup
ρ∈Rκ

N1−ε
∣∣∣a∗Ĉ k

N(ρ)b− a∗Ŝk
N(ρ)b

∣∣∣ a.s.−→ 0

where Rκ = [κ+ max{0, 1 − 1/c}, 1].
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False alarm performance

Theorem (Asymptotic detector performance)
As N,n→∞ with N/n→ c ∈ (0,∞),

sup
ρ∈Rκ

∣∣∣∣∣P
(
TN(ρ) >

γ√
N

)
− exp

(
−

γ2

2σ2
N(ρ̂)

)∣∣∣∣∣→ 0

where ρ 7→ ρ̂ is the aforementioned mapping and

σ2
N(ρ̂) ,

1

2

p∗CNQ
2
N(ρ̂)p

p∗QN(ρ̂)p · 1
N trCNQN(ρ̂) ·

(
1 − c(1 − ρ)2m(−ρ̂)2 1

N trC2
NQ

2
N(ρ̂)

)
with QN(ρ̂) , (IN + (1 − ρ̂)m(−ρ̂)CN)

−1.

I Limiting Rayleigh distribution
⇒ Weak convergence to Rayleigh variable RN(ρ̂)

I Remark: σN and ρ̂ not a function of γ
⇒ There exists a uniformly optimal ρ!
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Simulation
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Figure: Histogram distribution function of the
√
NTN(ρ) versus RN(ρ̂), N = 20, p = N− 1

2 [1, . . . , 1]T, CN

Toeplitz from AR of order 0.7, cN = 1/2, ρ = 0.2.
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√
NTN(ρ) versus RN(ρ̂), N = 100, p = N− 1

2 [1, . . . , 1]T, CN

Toeplitz from AR of order 0.7, cN = 1/2, ρ = 0.2.
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Empirical estimation of optimal ρ

I Optimal ρ can be found by line search. . . but CN unknown!
I We shall successively:

I empirical estimate σN(ρ̂)
I minimize the estimate
I prove by uniformity asymptotic optimality of estimate

Theorem (Empirical performance estimation)
For ρ ∈ (max{0, 1 − c−1

N }, 1), let

σ̂2
N(ρ̂) ,

1

2

1 − ρ̂ · p
∗Ĉ−2

N (ρ)p

p∗Ĉ−1
N (ρ)p

· 1
N tr ĈN(ρ)(

1 − c + cρ̂ 1
N tr Ĉ−1

N (ρ) · 1
N tr ĈN(ρ)

)(
1 − ρ̂ 1

N tr Ĉ−1
N (ρ) · 1

N tr ĈN(ρ)
) .

Also let σ̂2
N(1) , limρ̂↑1 σ̂

2
N(ρ̂). Then

sup
ρ∈Rκ

∣∣∣σ2
N(ρ̂) − σ̂

2
N(ρ̂)

∣∣∣ a.s.−→ 0.
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Final result

Theorem (Optimality of empirical estimator)
Define

ρ̂∗N = argmin{ρ∈R′κ}

{
σ̂2
N(ρ̂)

}
.

Then, for every γ > 0,

P
(√

NTN(ρ̂
∗
N) > γ

)
− inf
ρ∈Rκ

{
P
(√

NTN(ρ) > γ
)}
→ 0.
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Simulations
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Figure: False alarm rate P(
√
NTN(ρ) > γ), N = 20, p = N− 1

2 [1, . . . , 1]T, CN Toeplitz from AR of order 0.7,
cN = 1/2.
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Simulations
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Figure: False alarm rate P(
√
NTN(ρ) > γ), N = 100, p = N− 1

2 [1, . . . , 1]T, CN Toeplitz from AR of order 0.7,
cN = 1/2.
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Simulations
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Figure: False alarm rate P(TN(ρ) > Γ) for N = 20 and N = 100, p = N− 1
2 [1, . . . , 1]T, [CN ]ij = 0.7|i−j|,

cN = 1/2.
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Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers
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Deterministic outliers

Observation matrix: X =
[
x1, . . . , x(1−εn)n, a1, . . . , aεnn

]
with

I x1, . . . , x(1−εn)n i.i.d. Gaussian zero mean covariance CN

I a1, . . . , aεnn deterministic such that

0 < mini lim infn N
− 1

2 ‖ai‖ 6 maxi lim supn N
− 1

2 ‖ai‖ <∞.

Theorem
Then, as N,n→∞,

∥∥∥ĈN − ŜN

∥∥∥ a.s.−→ 0, ŜN ,
1

n

(1−εn)n∑
i=1

v (γn) xix
∗
i +

1

n

εnn∑
i=1

v (αi ,n) aia
∗
i

with γn and α1,n, . . . ,αεnn,n the unique positive solutions to the system of εnn+ 1 equations
(i = 1, . . . ,εnn)

γn =
1

N
trCN

(
(1 − ε)vc(γn)

1 + cvc(γn)γn
CN +

1

n

εnn∑
i=1

v (αi ,n) aia
∗
i

)−1

αi ,n =
1

N
a∗i

 (1 − ε)vc(γn)

1 + cvc(γn)γn
CN +

1

n

εnn∑
j 6=i

v
(
αj ,n

)
aja
∗
j

−1

ai

and vc(x) = u
(
g−1(x)

)
, g(x) = x/(1 − cφ(x)).
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Comments

I Say εn = 1/n→ 0, then γn → γ with γ = φ−1(1)/(1 − c) and

α1,n =

(
φ−1(1)

1 − c
+ o(1)

)
1

N
a∗1C

−1
N a1.

I Rejection of outliers depends strongly on 1
N a∗1C

−1
N a1 compared to 1.
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Random outliers

Corollary

Assume now ai = D
1
2
Nwi with lim supN ‖DN‖ <∞. Then,∥∥∥ĈN − Ŝrnd

N

∥∥∥ a.s.−→ 0

where

Ŝrnd
N ,

1

n

(1−εn)n∑
i=1

v (γn) xix
∗
i +

1

n

εnn∑
i=1

v (αn) aia
∗
i

with γn and αn the unique positive solutions to

γn =
1

N
trCN

(
(1 − ε)vc(γn)

1 + cvc(γn)γn
CN +

εvc(αn)

1 + cvc(αn)αn
DN

)−1

αn =
1

N
trDN

(
(1 − ε)vc(γn)

1 + cvc(γn)γn
CN +

εvc(αn)

1 + cvc(αn)αn
DN

)−1

.

I Now, for ε small, rejection depends on 1
N trDNC

−1
N .
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Simulation example
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Figure: Limiting eigenvalue distributions. [CN ]ij = .9|i−j|, DN = IN , ε = .05.
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The End

Thank you.
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