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Covariance estimation and sample covariance matrices

— Many statistical inference techniques rely on the sample covariance matrix (SCM) taken
from i.i.d. observations xi,...,xn of a r.v. x € CN,
» The main reasons are:
> Assuming E[x] =0, E[xx*] = Cy, with X =[xy, ..., x,], by the LLN

.‘}Né %XX* 225 Cy as n — oo.

— Hence, if 8 = £(Cy), we often use the n-consistent estimate 6 = f(§N).
> The SCM §N is the ML esAtimate of Cy for Gaussian x
— One therefore expects 0 to closely approximate 0 for all finite n.
> This approach however has two limitations:
> if N, n are of the same order of magnitude,

||§N, Cunll 4 0as N,n— oo, N/n— ¢ >0, so that in general |6 — 6] 4 0

— This motivated the introduction of G-estimators.
> if x is not Gaussian, but has heavier tails, Sy is a poor estimator for Cy.
— This motivated the introduction of robust estimators.
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— The objectives of robust estimators:

> Replace the SCM Sy by another estimate Cy of Cp which:
> rejects (or downscales) observations deterministically
> or rejects observations inconsistent with the full set of observations

— Example: Huber estimator (Huber'67), Cy defined as solution of
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> Provide scale-free estimators of Cy:
— Example: Tyler's estimator (Tyler'81): if one observes x; = T;z; for unknown scalars ;,

1¢ 1

CN:fg — XX

T or i1, %
i N Oy X

> existence and uniqueness of f’N defined up to a constant.
> few constraints on xi,...,x, (N + 1 of them must be linearly independent)
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Reminders on robust estimation

— The objectives of robust estimators:

> replace the SCM ~§N by the ML estimate for Cp.
— Example: Maronna’s estimator (Maronna'76) for elliptical x

n

A 1 1 B
CN:EZU(N ,C X,>X,'X,v

i=1

with u(s) such that

(i) u(s) is continuous and non-increasing on [0, co)

(ii) & (s) = su(s) is non-decreasing, bounded by ¢, > 1. Moreover, ¢ (s) increases where ¢ (s) < Ppoo.
(note that Huber's estimator is compliant with Maronna's estimators)

> existence is not too demanding
> uniqueness imposes strictly increasing u(s) (inconsistent with Huber’s estimate)

> consistency result: (.A'N — Cy if u(s) meets the ML estimator for Cy.

Robust RMT estimation N
Can we study the performance of estimators based on the Cp?

> what are the spectral properties of Gl
> can we generate RMT-based estimators relying on Cn?



Setting and assumptions
> Assumptions:
> Take xq,...,

> owy,
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Setting and assumptions

> Assumptions:

1
> Take x1,...,x, € CN “elliptical-like” random vectors, i.e. x; = ,/T,»C,g w; where
> 11,...,7Tp € RT random or deterministic with % YT S8k g1
> wy,...,wp € cN random independent with w; /v N uniformly distributed over the unit-sphere

> Cy € CNXN deterministic, with Cy > 0 and limsuppy || Cy|| < oo
> Asn— o0, cy 2 N/n—ce (0,1).

> Maronna's estimator of scatter: (almost sure) unique solution to

n

N 1 1 .~ *
Cy = " Z u <NX,- CN1X,'> XiX;

i=1

(i) u:[0,00) — (0, 00) nonnegative continuous and non-increasing
(i) & : x — xu(x) increasing and bounded with limy_, ¢ (x) 2 o >1
(i) doo < it
» Additional technical assumption: Let v, = 157 5. Foreach a>b >0, as.
. limsup, vn((t,
lim sup lim sup, Vs ((£,00))

MSUP o tat) — (bt

Examples:

> 1; < M for each i. In this case, v,((t,00)) =0 a.s. for t > M.
> For u(t) = (1+ o)/(ex+t), x>0, and 7T; i.i.d., it is sufficient to have E[Ti+£] < o0.
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RMT analysis of Cy

» First remark: we can work with Cy = Iy without generality restriction
> Intuition:

> Denote

A 1 ¢ 1 ., .
Cp==-Du (NX" Cn 1><;> XiX;
i#j
—— Intuitively, C(j) and x; are only “weakly” dependent.
> We expect in particular:

e A 1 A 1 s
Nx,- C(,.)lx,- ~ T,-Ntr C[i)1 ~ T,—Ntr Cy L tiyn
for some deterministic equivalent y .

> Assuming this is correct, we then proceed as follows:
> Algebraic manipulation: For some function f (later called g—1), write

n

A 1 1 .
Ey = = Z(u of) (Nx,-* lex,-) XiX;
i=1
> Use conjecture ﬁx,* CA(T.)IX,- ~ T;yy to get

n

1
Cn > > (uof) (tivn) xix;
i1

> Use random matrix results to find a deterministic equivalent yy from yy ~ +t ,\71.
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RMT analysis of Cy: f and yy

» Determination of f: Recall the identity (A + tww*) v = A"1/(1+4 tv*A~1v). Then

1 xpA~—1
1 N ore O nXC X
NN =T T 1,1 ¢ 1
+enu( X Cy i) yx; (i) i
so that L
1 ety — X Cy xi
i T T ~_ .
N7 1— ey (FxCytxi)

Now the function g : x — x/(1 — ¢y (x)) is monotonous increasing (we use the assumption
boo < c 1), hence, with f = g1,

%x,-*(:"lglx,- =g! (—x-" CA’.lx,-) .



RMT analysis of éN: f and vy

» Determination of yy: From previous calculus, we expect

n n

s 1 iz L1 B
Cy =~ ;Z(uogfl) <T,~NtrC,g1> Xix; o~ EZ(UOg b (tiyn) xixk.

i=1 i=1

Hence

—il
1 .4, 1 it _ .
VN:NtrCle:Ntr (n;(uog 1)(T,-yN)T,-W,-W,-> .
Since T, are independent of w; and vy deterministic, this is a Bai-Silverstein model

1 . _
EWDW*' W = [wi,...,wy], D=diag(D;) = tj(uog 1) (tivn).

And we have:

11 N N tuog ) (tvn) -
YN < WDW> = M1 wpw- (0) = (JlJrc(uog1)(tYN)m’17WDW*(0)VN(dt)

Z T uog ) (tivn) -
1+ ctj(uog1)(t TYn)mypp- (0) |

Since vy =~ m1 5« (0), this defines vy as a solution of a fixed-point equation:
n

Z i(wog 1) (tivn) -
1+CT (vog™H)(tivn)yn ’
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Main result

R. Couillet, F. Pascal, J. W. Silverstein, “The Random Matrix Regime of Maronna’s M-estimator
with elliptically distributed samples”, (in Press) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)
Under the assumptions defined earlier, we have
n

H6N—§NH 22,0, where ~§N ) %Z (Tivyn)Xxix; Z ll) Tiyn) w;wj*
i=1

v(x) = (uog 1) (x), b(x)=xv(x), g(x) =x/(1—cd(x)) and vy > 0 unique solution of

Z IYN
1+ Cll) IVN)

> Remarks:
> Corollary:

& A a.s,
IEES Ai(Sn) —Ai(Cy)| =0

— Important feature for detection and estimation.

» Proof: So far, we do not have a rigorous proof!
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Proof of the “conjecture”

» Technical trick: Denote

and relabel terms such that

We shall prove that, for each ¢ > 0,

eg >1—10and e, <1+ ¢ for all large n a.s.

-

» Some basic inequalities: Denoting d; = L L x* (A_'(j)lx,- = hLwf (:'(_I)l w;, we have

=

1 =1
v(Tj%Wj* (%Zi#ijv(Tidi)WiWi*) WJ> V<Tf%wj* <%Zi#JTiV(T"V)e“W’.W"*) Wj>

&=
! v(Ttv) v(tv)
vi{Ttidws (LY, tivitiy)ewiw? o w; v(Ziwr (LY. Tivity)wiw? 71W'
JNYj \'n &i# "1 iY)EnWiW; J en N7j \\n &=i#j "1 Y YUH J
< =
= v(Tiv)

v(Tyv)



Proof
> Specialization to e,

or equivalently, recalling \{(x)

v(Tny)
1

= xv(x),
TAK ( T ign TV (TIY)Wiw] >71 Mo W (hﬁ 77(1
Y

n

1
(,, X TiV(TiV)WiW,-*) Wn)

1
2 iznTiv( iV)WiW,-*) Wn)
W (Thy)




> Specialization to e;:

—1
v (%%W; (% T TiV(Tﬂ/)W,'W,-*) Wn)
<

v(Tny)

or equivalently, recalling 1\ (x) = xv(x),

-1 1 1 ot
%W,’j (% Z#n T,-v('r,-y)w,-wl-*> Whp ¥ (Z*:NW: (E Zi;én TIV(T:'Y)W{W,-*) Wn)

Y W (Thy)

» Random Matrix result: We can prove precisely that:

—1
a.s

max |— Tiv( wiwj* w;—v| —0
1<<n N J ; lyN i Ui Y
i#j

(uniformity fundamental after relabeling)
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> For all large n a.s., we then have (using growth of 1)

Y—¢
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Y
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> Proof by contradiction: Assume e, > 1+ { i.o., then on a subsequence
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Proof
> For all large n a.s., we then have (using growth of )

y_£<1b(%:(v+£))
Yy O WP(tay)

> Proof by contradiction: Assume e, > 1+ { i.o., then on a subsequence

y—e o ¥ (155 (v + ¢))
Yy O d(Tay)

» Bounded T;: If 0 < T_ < T; < T4 < oo for all i, n, then on a subsequence where T, — 7o,

y-e P (2% (v +e)

Yy = P (Toy)
N

—1 as e—0 Hw(%v)

P (toYv)

CONTRADICTION!

<las e—=0
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Proof

> For all large n a.s., we then have (using growth of )

v—e Ib(%:(ers))
Y o Wb(Ty)
> Proof by contradiction: Assume e, > 1+ { i.o., then on a subsequence

y—e o ¥ (155 (v + ¢))
Yy O d(Tay)

> Bounded 7;: If 0 < T < T; < T4 < oo for all i, n, then on a subsequence where T, — 7o,

P (2% (v +e)

Y—¢
< CONTRADICTION!
vy o (o)
——
—1 as e—0 T
HM<1 as e—0

P (toYv)

> Unbounded t;: Importance of relative growth of T, versus convergence of 1 to \Po,.
Proof consists in dividing {T;} in two groups: few large ones versus all others.
Sufficient condition: "
. imsup, v, ((t, 00
fimsup TSP Vi (£,00)

mSUP pat) — o(br)



Simulations
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Figure: Histogram of the eigenvalues of % i x;x;* for n = 2500, N = 500, Cy = diag(h2s,3h2s5,10hso), T1

with T'(.5, 2)-distribution.
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Figure: Histogram of the eigenvalues of Cy (left) and Sy (right) for n = 2500, N = 500,
Cy = diag(h2s,3h2s5,10hs0), T1 with T'(.5, 2)-distribution.




Simulations

T T T T
- - - Empirical eigenvalue distribution of Cpy L - - - Empirical eigenvalue distribution of Sy L

Limiting density
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Density
Density

0 0.5 1 15 2

Eigenvalues Eigenvalues

Figure: Histogram of the eigenvalues of Cy (left) and Sy (right) for n = 2500, N = 500,
Cy = diag(h2s,3h2s5,10hs0), T1 with T'(.5, 2)-distribution.

» Remark/Corollary: Spectrum of €y a.s. bounded uniformly on n.
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Hint on potential applications

» Spectrum boundedness: for impulsive noise scenarios,
> SCM spectrum grows unbounded
> robust scatter estimator spectrum remains bounded
= Robust estimators improve spectrum separability (important for many statistical inference
techniques seen previously)
> Spiked model generalization: we may expect a generalization to spiked models

> spikes are swallowed by the bulk in SCM context
> we expect spikes to re-emerge in robust scatter context

= We shall see that we get even better than this. ..
» Application scenarios:

> Radar detection in impulsive noise (non-Gaussian noise, possibly clutter)
> Financial data analytics
> Any application where Gaussianity is too strong an assumption. . .
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System Setting

> Signal model:

L
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4. ay,...,a, € CN deterministic or random with A*A 25 diag(pi,...,p) as N — oo, with
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5. s11,...,5Ln € C independent with zero mean, unit variance.
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System Setting

> Signal model:

L
Yi =Y _VPiaisi + JTiw = A
=1

A _ T
A= [prar ... praw VTiln], Wi = sy, .S, wil
with y1, ..., yn € CN satisfying:
1. T1,...,7T, > 0 random such that v, £ % T 8+, — v weakly and [tv(dt) =1,
2. wy,...,w, € CN random independent unitarily invariant v/N-norm;
3. LEN, p1 > ... > p. > 0 deterministic;
4. ay,...,a, € CN deterministic or random with A*A 25 diag(pi,...,p) as N — oo, with
A% [\/prat,...,/pral € CNxL.
5. s11,...,5Ln € C independent with zero mean, unit variance.

> Relation to previous model: If L =0, y; = /T;w;.
= Elliptical model with covariance a low-rank (L) perturbation of /y.
= We expect a spiked version of previous results.
» Application contexts:
> wireless communications: signals s; from L transmitters, N-antenna receiver; a; random i.i.d.

channels (afa;y — 8,_;/, e.g. a~ €N (0, Iy/N));
> array processing: L sources emit signals s; at steering angle a; = a(0,). For ULA,

[a(0)]; = N~ % exp(2mdjsin(6)).



Some intuition

> Signal detection/estimation in impulsive environments: Two scenarios
> heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
»> Gaussian noise with spurious impulsions
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Some intuition

> Signal detection/estimation in impulsive environments: Two scenarios

>
>

heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
Gaussian noise with spurious impulsions

» Problems expected with SCM: Respectively,

>

>

> Our

unbounded limiting spectrum, no source separation!
= Invalidates G-MUSIC

isolated eigenvalues due to spikes in time direction
= False alarms induced by noise impulses!

results: In a spiked model with noise impulsions,

whatever noise impulsion type, spectrum of Cy remains bounded
isolated largest eigenvalues may appear, two classes:
> isolated eigenvalues due to noise impulses CANNOT exceed a threshold!
> all isolated eigenvalues beyond this threshold are due to signal
= Detection criterion: everything above threshold is signal.
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Theorem (Extension to spiked robust model)

Under the same assumptions as in previous section,
where
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Theoretical results

Theorem (Extension to spiked robust model)
Under the same assumptions as in previous section,

v — Snll =550

where
A 1<
SN S E v('r,-y)A,-vT/,-vT/,-*A}‘
i=1
with v the unique solution to
P (ty)
l=| ———-—v(dt
J1+c¢(tv)v( )
and we recall
A s [ prar ... Praw Tl
Wi = [s1v ... st wil T

» Remark: For L=0, A; =10,...,0, Iy].
= Recover previous result A;w; becomes w;.



Localization of eigenvalues

Theorem (Eigenvalue localization)
Denote

> wuy eigenvector of k-th largest eigenvalue of AA* = Z,‘L:1 pia;ja;

> {, eigenvector of k-th largest eigenvalue of éN

Also define & (x) unique positive solution to
tve(ty) o
5(x)=c (—X + J mv(dt}) .
Further denote
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- x}S+
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Localization of eigenvalues

Theorem (Eigenvalue localization)

Denote
> wuy eigenvector of k-th largest eigenvalue of AA* = Z,‘L:1 pia;ja;
> (. eigenvector of k-th largest eigenvalue of éN

Also define & (x) unique positive solution to

B tve(ty) o
ok ‘C(‘”fm”‘”)) '

Further denote

A m
_ = lim —c
- x}S+

5(x)ve(ty) T a1+ VE)?
(J1+a(x)tvc(ty)v(d”> S = con)

Then, if pj > p—, )\ 25 Aj > ST, otherwise lim sup,A; < ST a.s., with Aj unique positive
solution to

ve(Ty) o
*C(“A‘)Jm”‘“)) —”J'



Simulation

12 T T

I Eicenvalues of 157y

s Limiting spectral measure
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Eigenvalues

Figure: Histogram of the eigenvalues of % > Yiy{ against the limiting spectral measure, L =2, p; = p> =1,
N = 200, n = 1000, Sudent-t impulsions.
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Eigenvalues

Figure: Histogram of the eigenvalues of CN against the limiting spectral measure, for u(x) = (1 + «)/(x + x)
with « =0.2, L=2, p; = po =1, N =200, n= 1000, Student-t impulsions.
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Comments

> SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of
scatter.

> Largest eigenvalues:
> A;[@N) > S+ = Presence of a source!
> A;(Cpy) € (sup(Support), ST™) = May be due to a source or to a noise impulse.
> A (Cy) < sup(Support) = As usual, nothing can be said.

= Induces a natural source detection algorithm.
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Eigenvalue and eigenvector projection estimates

» Two scenarios:
> known v =lim, 1y 7 S+,
> unknown v

Theorem (Estimation under known v)
1. Power estimation. For each p; > p_,

—1
€ (5(}\1)J1+5(5\j)Tvc(TY)V(dT)> oY

2. Bilinear form estimation. For each a, b € CN with ||a|| = ||b|| = 1, and pj > p—
Z a‘ugughb — Z wya* by g b 250
k.pk=p; k.p=p;

where

Wy =

ve(ty) 1 8(Ak)2Pve(ty)?
Jm—v(dt) 1[( S v(dt)

(k) tve(ty) V(14 sRtve(en))



Eigenvalue and eigenvector projection estimates

Theorem (Estimation under unknown v)
1. Purely empirical power estimation. For each p; > p_,

2. Purely empirical bilinear form estimation. For each a, b € CN with ||a|| = ||b|| = 1, and each
Pj > P—,
> atwupb— Y Weatdedph 220

k.pk=p; k.pk=p;

where

1 2 V('fl'?) 1
P LT e | NS 0 ’
-1 k)TivVITiY i=1 (1+5()\k)%/v(%lf/)>
ala 1l A N Rry-- 2 £, 9
oL ;Z Zy ley“ % 2 §Ny,- C(i)ly,-, 5(x) as 6(x) but for (t;,v) — (t;, V).



e e S
Application to G-MUSIC
> Assume the model a; = a(0;) with

a(0) = N2 [exp(2mdjsin(0))] V5.



e
Application to G-MUSIC
> Assume the model a; = a(0;) with

Corollary (Robust G-MUSIC)

a(8) = N~ % [exp(2midjsin(0))]1V-L
Define firg (0) and A%

j=0 "
MRra (0) as

1U.pj>p—1}I
firg(0) =1—

>

wka(e]*ﬁkﬁka(e)
k=1

1U.pj>p—1}I
ARa (0)=1— )  Wa(0) dxb,a(o)
k=1
Then, for each p; > p_,
0; 2% 0;
A a.s.
Sj?mp — 0
where

6,2 argmineem; {ira(0)}
semp A
9]- =

argmineeRjK {ﬁeR'gp(G)}

o




Simulations: Single-shot in elliptical noise

1
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Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20,
n =100, two sources at 10° and 12°, Student-t impulsions with parameter 3 = 100, u(x) = (1 + «)/ (o + x)
with o = 0.2. Powers p; = p, = 10%5 =5 dB.



Simulations: Elliptical noise
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Figure: Means square error performance of the estimation of 8; = 10°, with N =20, n = 100, two sources at
10° and 12°, Student-t impulsions with parameter 3 = 10, u(x) = (1 + «)/ (o + x) with o« = 0.2, p; = p2.



Simulations: Spurious impulses
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Figure: Means square error performance of the estimation of 8; = 10°, with N =20, n = 100, two sources at
10° and 12°, sample outlier scenario T; =1, i < n, T, =100, u(x) = (1 + «)/(x + x) with « = 0.2, p; = p>.
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Robust shrinkage and application to mathematical finance



Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator — Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

> Shrinkage covariance estimation: For N > n or N ~ n, shrinkage estimator

1 n
(1— p); Zx,—x,-* + ply, for some p € [0, 1].
i=1

> allows for invertibility, better conditioning
> p may be chosen to minimize an expected error metric
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Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices.
Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator — Application to STAP data.
Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

> Shrinkage covariance estimation: For N > n or N ~ n, shrinkage estimator

1 n
(1— p); Zx,—x,-* + ply, for some p € [0, 1].
i=1

> allows for invertibility, better conditioning
> p may be chosen to minimize an expected error metric

> Limitation of Maronna’s estimator:
> Maronna and Tyler estimators limited to N < n, otherwise do not exist
> introducing shrinkage in robust estimator cannot do much harm anyhow...

> Introducing the robust-shrinkage estimator: The literature proposes two such estimators

N— 7y 1) (Pascal)

~ 1< XX
Cn(p)=(1-p)= ] + ply, p € (max{0, ~
T axCy ()X
v B « 1< xjx*
i) = oM (o) = (1-p)3 Y % 4 oly, pE(0,1) (Chen)
i Nx Gy (p)x;
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Main theoretical result

» Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the
other, but the arguments we received were quite vague...
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> Our result: In the random matrix regime, both estimators tend to be one and the same!



Main theoretical result

> Which estimator is better?
Having asked to authors of both papers, their estimator was much better than the

other, but the arguments we received were quite vague...

> Our result: In the random matrix regime, both estimators tend to be one and the same!

» Assumptions: As before, “elliptical-like” model

1
xi =1 CEw;

— This time, Cy cannot be taken Iy (due to +ply)!
—— Maronna-based shrinkage is possible but more involved...



Pascal’s estimator

Theorem (Pascal’s estimator)
For € € (0, min{1,c™1}), define 9A2£ = [e + max{0,1 — c1},1]. Then, as N, n — oo,
N/n— c € (0,0),

sup | Culp) = Suip)| 2 0
pER
where
a 18 Xix*
Culp) =(1—p) o ply

1Y Ai(Cy)
L= N 3o A pIN Gy

Moreover, p — vy (p) is continuous on (0, 1].



Chen's estimator

Theorem (Chen's estimator)
For e € (0,1), define R, = [e,1]. Then, as N,n — co, N/n — c € (0, 00),

sup HCN H 2590
peR,
where
By (p) « i< X
Culp) = —— By(p)=(1—p)= ' +ply
L trBu(p) "5 Cnle) T
. 1-p 1 = 1 5 Ty
Swie) 1fp+Tp;;CNW‘W'C"’+1—p+ToIN

in which Ty = pY(p)F(V(p); p) with, for all x > 0,

Flxip) = 2 (p—c1— o))+ /5 (o—cl—p)2+ (1 - p) 2

2

and YV (p) is the unique positive solution to the equation in y

Ai(Cn)
S Ye+ Wxi(cm)

I\’lz

Moreover, p — v (p) is continuous on (0,1].



Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

o 1< 1 1
15— =5vP) =(1— p];ZCE,W,‘Wi*C,?I + ply.
7P T-1-pic P =1

Besides, (0,1] — (max{0,1—c1},1], p— p and (0,1] — (0,1], p — @ are increasing and onto
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Theorem (Model Equivalence)
For each p € (0,1], there exist unique p € (max{0,1— c1},1] and ¢ € (0, 1] such that

5 1< 1 1
—=5y(p) = (1 — D);ZC,\Z, wiwi Cg + ply.
76 1I=(1—p)c P i=1

Besides, (0,1] — (max{0,1—c1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.

» Up to normalization, both estimators behave the same!

» Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator



Asymptotic Model Equivalence

Theorem (Model Equivalence)
For each p € (0, 1], there exist unique p € (max{0,1 —c~1},1] and § € (0, 1] such that

5 1< 1 1
—=5y(p) = (1 — D);ZC,\Z, wiwi Cg + ply.
76 1I=(1—p)c P i=1

Besides, (0,1] — (max{0,1—c1},1], p+— p and (0,1] — (0,1], p — @ are increasing and onto.

» Up to normalization, both estimators behave the same!
» Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator

> About uniformity: Uniformity over p in the theorems is essential to find optimal values of p.
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» Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cy(p)
> Our results allow for a simplification of the problem for large N, n!
> Model equivalence says only one problem needs be solved.




Optimal Shrinkage parameter

> Chen sought for a Frobenius norm minimizing p but got stuck by implicit nature of Cnl(p)
> Our results allow for a simplification of the problem for large N, n!

> Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)
For each p € (0, 1], define

A 2
A1 Culp) NS B 2
Du(p) = tr ((m—cN> ) DN(p)fntr<<CN(p)—CN) >

N
Denote D* = cci/’,f,,;il, p* = C+,\jz_1, M, = limy ﬁ Z,N:l A?(CN) and p*, p* unique solutions to
p* _ T+ — o
1 7*5’ 6  1—p*+ Tyge =
) T=(1-p7)c T P Prr T

Then, letting ¢ small enough,

inf Dy(p) 2% D*, |nf Dy(p) 25 D*
pERe



Estimating p* and p*
> Theorem only useful if p* and p* can be estimated!
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» Careful control of the proofs provide many ways to estimate these.
» Proposition below provides one example.
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Estimating p* and p*

> Theorem only useful if p* and p* can be estimated!
» Careful control of the proofs provide many ways to estimate these.

» Proposition below provides one example.

Optimal Shrinkage Estimate
Let py € (max{0,1—c1},1] and py € (0,1] be solutions (not necessarily unique) to

PN N

%tl‘ Cn(pn) i 150 xix* 2 1
N L 1

X/ *Cy(Bn) iy
BNy SO 1Wl _ i
Culon) 1 [ 7]
1— X Cn(Bn) X
pN+i5N > %112 %tr PR 1Hx H2 -1

defined arbitrarily when no such solutions exist. Then
N a.s. A a.s.,
v —> 0, By —> p*

Dy (pn) 23 D*, Dy(pn) =% D*.



Simulations

3 T [ T T
—@— inf,c(01) Oy (p)}
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—B— Dy (80)
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Figure: Performance of optimal shrinkage averaged over 10000 Monte Carlo simulations, for N = 32, various
values of n, [Cyl; = rl"=I with r = 0.7; §y as above; Ppo the clairvoyant estimator proposed in (Chen'11).
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Simulations

Shrinkage parameter

0 I I I | | |
1 2 4 8 16 32 64 128

n [logy scale]

Figure: Shrinkage parameter p averaged over 10000 Monte Carlo simulations, for N = 32, various values of n,
[Cnlij = rli=il with r = 0.7; py and Py as above; o the clairvoyant estimator proposed in (Chen’11);
= ABMIN ¢ (maxo1—cyrty DN (P)} and 5% = argming, ¢ 0.1 {Dn(p)}-

A0

P



Connection to Power Control
> Power control problem results in solving, for each j=1,...,n

-1

2 P S B R VP '
Aj=o? | (L+v ) gh Nzéh;h, +1Inv|

i=1
with
> h; € CN channel modeled as h; = Vrixi, Xi ~ CN(0, Iy)

> o2 power of additive noise
> v, target SINR for user i




Connection to Power Control

> Power control problem results in solving, for each j=1,...,n
=il

=il
2 1 (TN,
Aj=o? | (L+v ) gh Nzﬁh,h,w,v h;
i=1

with
> h; € CN channel modeled as h; = Vrixi, Xi ~ CN(0, Iy)
> o2 power of additive noise
> v, target SINR for user i
» Can be rewritten as

—1 =i

1 (1<«
VAN @ +in] %
iz



Connection to Power Control

> Power control problem results in solving, for each j=1,...,n
=il

-1
1
Aj=o? (1+y;)NJ<NZ ’hh*+IN> h;

with
> h; € CN channel modeled as h; = Vrixi, Xi ~ CN(0, Iy)
> o2 power of additive noise
> v, target SINR for user i

» Can be rewritten as

1 -1
oly; [ 1 1« Air
— J * *
?\j—T e NZ#X,‘X; + Iy 55
g ij
Py
> With d; = , this is
=il
1 (1
dj = N5\ 7 Z’IX'X + Iy 530



Connection to Power Control

> Power control problem results in solving, for each j=1,...,n

1o\ L
1
Aj=o? (1+y;)NJ<NZ ’hh*+IN> h;

with

> h; € CN channel modeled as h; = Vrixi, Xi ~ CN(0, Iy)
> o2 power of additive noise
> v, target SINR for user i

> Can be rewritten as

—1 =i
24,

Pt Airi
Aj= — | 5% NZ #X,‘Xi + Iy 55
g ij

Py
> With d; = , this is

1, (1
dj = N\~ Z’IX'X + Iy 530
i#

> Under assumption limsup, & > 7_; % < 1 we then have
1




Outline

Optimal robust GLRT detectors



Context
> Hypothesis testing problem: Two sets of data

1
> Initial pure-noise data: xi,...,Xn, X; = \/'r,-C,E w; as before
> New incoming data y given by:

_ [ x . Ho
Y= ap+ x
1
with x = ﬁC,g w, p € CN deterministic known, & unknown.
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> New incoming data y given by:

_ [ x . Ho
Y= ap+x , Hy
1
with x = \/?C,g w, p € CN deterministic known, o« unknown.

» GLRT detection test:
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for some detection threshold T where

Tn(p) £

and éN(p) defined in previous section.



Context

> Hypothesis testing problem: Two sets of data
1
> Initial pure-noise data: xi,...,Xn, X; = «/T;C,& w; as before.
> New incoming data y given by:
J x , Ho
Y= ap+x , Hy
1
with x = \/?C,g w, p € CN deterministic known, o« unknown.
> GLRT detection test:
Hy
Tn(p) ST

Ho

for some detection threshold T where

Tn(p) 2

and éN(p) defined in previous section.

— In fact, originally found to be C'N(O) but

> only valid for N < n
> introducing p may bring improved for arbitrary N/n ratios.



Objectives and main results
> Initial observations:

» As N,n— co, N/n— ¢ > 0, under Ho,

Tn(p) 230
= Trivial result of little interest!
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Objectives and main results
> Initial observations:

» As N,n— oo, N/n — ¢ > 0, under Jo,

= Trivial result of little interest!

Tu(p) 25 0.
> Natural question: for finite N, n and given T, find p such that

P(Tn(p) >T) =min
> Turns out the correct non-trivial object is, for y > 0 fixed

P (WTN(p) > y) — min
» Objectives:

> for each p, develop central limit theorem to evaluate

lim P(\/NTN(p] >y)
N,n— o0
N/n—c
> determine limiting minimizing p
> empirically estimate minimizing p
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What do we need?

CLT over (,A'N statistics

» We know that ||€N(p) —§N(D)|| 2%0
— Key result so far!

» What about ||[v/N(Cy(p) — Sn(p))|| ?

N
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What do we need?

CLT over fN statistics
> We know that ||Cy(p) — Sy (p)|l 2350
— Key result so far!

> What about [|[VN(Cy(p) — Sn(p))] ?
—— Does not converge to zero!!!

> But there is hope...:

= This is our main result!

» This requires much more delicate treatment, not discussed in this tutorial.

u]

o)
I

i
it




Main results

Theorem (Fluctuation of bilinear forms)
every k € Z,

sup N1—¢
PERK

where Ry = [k +max{0,1—1/c}, 1].

Let a,b € CN with ||a|| = ||b]| = 1. Then, as N,n — oo with N/n — ¢ > 0, for any ¢ > 0 and

a*Cfi(p)b—a"Sf(p)b| 250




False alarm performance

Theorem (Asymptotic detector performance)
As N,n — oo with N/n — c € (0, ),

sup P<TN(p) > L) — exp —% —0
PERK \/N 20,\,((3)
where p — { is the aforementioned mapping and
1
2 ray A

on(P) =35 ~

N 2 p*Qu(p
with Qu(p) =

p*Cn Q3 (p)p

)P RtrCyQu(p) - (1 — c(1— p)2m(—p)2 % trC3 Q3 (p))




False alarm performance

Theorem (Asymptotic detector performance)
As N,n — oo with N/n — c € (0, ),

Y v?
P<TN(p) > ﬁ) — exp (—20%\[(@)>’ —0

where p — { is the aforementioned mapping and

1 P Cn QR (P)p
20" QuP)p - JtrCwQn () - (1—c(1— p)2m(—p)2 & trC3 Q3 (D))

sup
pPERK

with Qu(p) £ (Iv + (1 —p)m(—p)Cy) 2.
» Limiting Rayleigh distribution
= Weak convergence to Rayleigh variable Ry (p)

» Remark: oy and p not a function of y
= There exists a uniformly optimal p!



Simulation
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Figure: Histogram distribution function of the /N Ty(p) versus Ry(p), N =20, p = N*% [1,...,1]7, Cy
Toeplitz from AR of order 0.7, cy =1/2, p =0.2.
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Simulation
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Figure: Histogram distribution function of the VN Ty (p) versus Ry(p), N =100, p = N*% [1,...,1]7, Cy
Toeplitz from AR of order 0.7, cy =1/2, p =0.2.
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Empirical estimation of optimal p

» Optimal p can be found by line search. . .but Cp unknown!
> We shall successively:

> empirical estimate oy (p)
> minimize the estimate

> prove by uniformity asymptotic optimality of estimate




Empirical estimation of optimal p

» Optimal p can be found by line search. . .but Cp unknown!
> We shall successively:

> empirical estimate oy (p)
> minimize the estimate
> prove by uniformity asymptotic optimality of estimate

Theorem (Empirical performance estimation)
For p € (max{0,1— ¢, 13 1), let

1
2 (17 c+cprtrCyl(p) - Atr AN(O)) (1 —phtréyt (o) ﬁtrfw(p)) '

Also let 63/(1) £ limpyy 63,(p). Then

sup |0y (p) — 87 (P)
pERK



Final result

Theorem (Optimality of empirical estimator)
Define

Then, for every y > 0,

By = argmingoeny {8%,(6)}

P(VNTu(py

) >y> ~ inf {P(\/NTN(p) >y)} -0

N



Simulations
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Figure: False alarm rate P(v/NTn(p) >v), N =20, p= Nf% [1,...,1]7, Cy Toeplitz from AR of order 0.7,
cy=1/2.
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Simulations
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Figure: False alarm rate P(v/NTy(p) >v), N =100, p = Nf% ..., 1]T, Cy Toeplitz from AR of order 0.7,
cy=1/2.
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Simulations
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Figure: False alarm rate P(Ty(p) > T') for N =20 and N = 100, p = N3 [1,....17, [Cyl; = 0.7,
v =1/2.
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Outline

Robustness against outliers



Deterministic outliers

Observation matrix: X = [X1,...,X(1—¢,)n L, - - -, 3epn] With
> Xi,...,X(1—¢,)n i-i.d. Gaussian zero mean covariance Cy
> aj,...,ac,n deterministic such that

L 1 . 1
0 < min; liminf, N™2 ||a;|| < max;limsup, N™2||a;|| < oco.
Theorem
Then, as N, n — oo,

epn

(1—en)n
N A . A 1
”CN_SNH Ei}Or SNé; Z ('Yn XIX + = Z ‘xln a;a i
i=1

with v, and &1, ..., Xe,nn the unique positive solutions to the system of ,n+ 1 equations
(i=1,...,enn)
1 (1— ) -
e)ve(vn)
=—trCy| ——— o
yo N N<1+CVC(Vn )Yn Zl In i )
=il

epn

1 [ (1—e)velvn)
K= —at | — el 2 E (xj.n) aja a;
TN T+ eve(va) vn n & Jin) 23 '

and ve(x) = u (g (x)), g(x) = x/(1— cdb(x)).



Comments

» Say e, =1/n— 0, then v, — v with y = ¢ 1(1)/(1 — c) and

-1 1
x1p = (d) (1) —l—o(l))
l1—c

> Rejection of outliers depends strongly on

—1
Na’l‘CN ai.
1

* ~—1
~ a1 Cy

a1 compared to 1.




Random outliers

Corollary

1
Assume now a; = DZ w; with limsupy || Dy|| < co. Then,

Jeu-si] 2
where
1 (1—en)n 1 Enn
Sipd & = v (vn)xixf + - v (n) a3
i i=1

with v, and «, the unique positive solutions to

(1—e)velvn) eve (o) -t
D
trCn (1 +cve(Yn)VYn Cn+ 1+ cve(on) oy N)

1

N
1 (1—&)ve(vn) eve(on) -
on = FytrOw (1+cvc(vn)vn Cn+ 1+ cvel(on)ex Pu) -

> Now, for ¢ small, rejection depends on %tr DNCA71.



Simulation example

10 |

Deterministic equivalent eigenvalue distribution

Eigenvalues

Figure: Limiting eigenvalue distributions. [Cyl; = .9/, Dy = Iy, £ = .05.



The End

Thank you.
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