Random Matrices and Robust Estimation

Random Matrices and Their Application Workshop.

Romain COUILLET

The University of HongKong

January 7, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

 \longrightarrow Many statistical inference techniques rely on the sample covariance matrix (SCM) taken from i.i.d. observations x_1, \ldots, x_n of a r.v. $x \in \mathbb{C}^N$.

 \longrightarrow Many statistical inference techniques rely on the sample covariance matrix (SCM) taken from i.i.d. observations x_1, \ldots, x_n of a r.v. $x \in \mathbb{C}^N$.

► The main reasons are:

Assuming
$$E[x] = 0$$
, $E[xx^*] = C_N$, with $X = [x_1, \ldots, x_n]$, by the LLN

$$\hat{S}_N \triangleq rac{1}{n} X X^* \stackrel{\mathrm{a.s.}}{\longrightarrow} C_N ext{ as } n o \infty$$

 \rightarrow Hence, if $\theta = f(C_N)$, we often use the *n*-consistent estimate $\hat{\theta} = f(\hat{S}_N)$.

 \longrightarrow Many statistical inference techniques rely on the sample covariance matrix (SCM) taken from i.i.d. observations x_1, \ldots, x_n of a r.v. $x \in \mathbb{C}^N$.

The main reasons are:

Assuming
$$E[x] = 0$$
, $E[xx^*] = C_N$, with $X = [x_1, \ldots, x_n]$, by the LLN

$$\hat{S}_N \triangleq rac{1}{n} X X^* \stackrel{\mathrm{a.s.}}{\longrightarrow} C_N \text{ as } n o \infty$$

 \rightarrow Hence, if $\theta = f(C_N)$, we often use the *n*-consistent estimate $\hat{\theta} = f(\hat{S}_N)$.

► The SCM \hat{S}_N is the ML estimate of C_N for Gaussian x \rightarrow One therefore expects $\hat{\theta}$ to closely approximate θ for all finite n.

 \rightarrow Many statistical inference techniques rely on the sample covariance matrix (SCM) taken from i.i.d. observations x_1, \ldots, x_n of a r.v. $x \in \mathbb{C}^N$.

The main reasons are:

Assuming
$$E[x] = 0$$
, $E[xx^*] = C_N$, with $X = [x_1, \ldots, x_n]$, by the LLN

$$\hat{S}_N \triangleq \frac{1}{n} X X^* \xrightarrow{\text{a.s.}} C_N \text{ as } n \to \infty$$

 \rightarrow Hence, if $\theta = f(C_N)$, we often use the *n*-consistent estimate $\hat{\theta} = f(\hat{S}_N)$.

- ▶ The SCM \hat{S}_N is the ML estimate of C_N for Gaussian x→ One therefore expects $\hat{\theta}$ to closely approximate θ for all finite n.
- This approach however has two limitations:
 - if N, n are of the same order of magnitude,

$$\|\hat{S}_N - C_N\| \not\to 0$$
 as $N, n \to \infty, N/n \to c > 0$, so that in general $|\hat{\theta} - \theta| \not\to 0$

- \rightarrow This motivated the introduction of G-estimators.
- if x is not Gaussian, but has heavier tails, \hat{S}_N is a poor estimator for C_N .
 - \rightarrow This motivated the introduction of robust estimators.

 $\rightarrow\,$ The objectives of robust estimators:

- Replace the SCM \hat{S}_N by another estimate \hat{C}_N of C_N which:
 - rejects (or downscales) observations deterministically
 - or rejects observations inconsistent with the full set of observations
 - \rightarrow **Example**: Huber estimator (Huber'67), \hat{C}_N defined as solution of

$$\hat{C}_N = \frac{1}{n}\sum_{i=1}^n \alpha \min\left\{1, \frac{k^2}{\frac{1}{N}x_i^*\hat{C}_N^{-1}x_i}\right\} x_i x_i^* \text{ for some } \alpha > 1, k^2 > 0.$$

(日) (同) (三) (三) (三) (○) (○)

- \rightarrow The objectives of robust estimators:
 - Replace the SCM \hat{S}_N by another estimate \hat{C}_N of C_N which:
 - rejects (or downscales) observations deterministically
 - or rejects observations inconsistent with the full set of observations
 - \rightarrow **Example**: Huber estimator (Huber'67), \hat{C}_N defined as solution of

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n \alpha \min\left\{1, \frac{k^2}{\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i}\right\} x_i x_i^* \text{ for some } \alpha > 1, k^2 > 0.$$

- Provide scale-free estimators of C_N:
 - \rightarrow **Example**: Tyler's estimator (Tyler'81): if one observes $x_i = \tau_i z_i$ for unknown scalars τ_i ,

$$\hat{C}_N = rac{1}{n} \sum_{i=1}^n rac{1}{rac{1}{N} x_i^* \hat{C}_N^{-1} x_i} x_i x_i^*$$

- existence and uniqueness of \hat{C}_N defined up to a constant.
- few constraints on x_1, \ldots, x_n (N + 1 of them must be linearly independent)

- \rightarrow The objectives of robust estimators:
 - replace the SCM \hat{S}_N by the ML estimate for C_N .
 - \rightarrow **Example**: Maronna's estimator (Maronna'76) for elliptical x

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

with u(s) such that

- (i) u(s) is continuous and non-increasing on $[0, \infty)$
- (ii) $\phi(s) = su(s)$ is non-decreasing, bounded by $\phi_{\infty} > 1$. Moreover, $\phi(s)$ increases where $\phi(s) < \phi_{\infty}$.

(note that Huber's estimator is compliant with Maronna's estimators)

- \rightarrow The objectives of robust estimators:
 - replace the SCM \hat{S}_N by the ML estimate for C_N .
 - \rightarrow **Example**: Maronna's estimator (Maronna'76) for elliptical x

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

with u(s) such that

(i) u(s) is continuous and non-increasing on $[0,\infty)$

(ii) $\phi(s) = su(s)$ is non-decreasing, bounded by $\phi_{\infty} > 1$. Moreover, $\phi(s)$ increases where $\phi(s) < \phi_{\infty}$.

(note that Huber's estimator is compliant with Maronna's estimators)

- existence is not too demanding
- uniqueness imposes strictly increasing u(s) (inconsistent with Huber's estimate)
- consistency result: $\hat{C}_N \to C_N$ if u(s) meets the ML estimator for C_N .

- \rightarrow The objectives of robust estimators:
 - replace the SCM \hat{S}_N by the ML estimate for C_N .
 - \rightarrow **Example**: Maronna's estimator (Maronna'76) for elliptical x

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

with u(s) such that

(i) u(s) is continuous and non-increasing on $[0, \infty)$

(ii) $\phi(s) = su(s)$ is non-decreasing, bounded by $\phi_{\infty} > 1$. Moreover, $\phi(s)$ increases where $\phi(s) < \phi_{\infty}$.

(note that Huber's estimator is compliant with Maronna's estimators)

- existence is not too demanding
- uniqueness imposes strictly increasing u(s) (inconsistent with Huber's estimate)
- consistency result: $\hat{C}_N \to C_N$ if u(s) meets the ML estimator for C_N .

Robust RMT estimation

Can we study the performance of estimators based on the \hat{C}_N ?

- what are the spectral properties of \hat{C}_N ?
- can we generate RMT-based estimators relying on C_N?

Setting and assumptions

Assumptions:

- ▶ Take $x_1, ..., x_n \in \mathbb{C}^N$ "elliptical-like" random vectors, i.e. $x_i = \sqrt{\tau_i} C_N^{\frac{1}{2}} w_i$ where
 - $\tau_1, \ldots, \tau_n \in \mathbb{R}^+$ random or deterministic with $\frac{1}{n} \sum_{i=1}^n \tau_i \xrightarrow{\text{a.s.}} 1$
 - $w_1, \ldots, w_n \in \mathbb{C}^N$ random independent with w_i / \sqrt{N} uniformly distributed over the unit-sphere
 - $C_N \in \mathbb{C}^{N \times N}$ deterministic, with $C_N \succ 0$ and $\limsup_N ||C_N|| < \infty$

As
$$n \to \infty$$
, $c_N \triangleq N/n \to c \in (0, 1)$.

Setting and assumptions

Assumptions:

- ► Take $x_1, ..., x_n \in \mathbb{C}^N$ "elliptical-like" random vectors, i.e. $x_i = \sqrt{\tau_i} C_{x_i}^{\frac{1}{2}} w_i$ where
 - $\tau_1, \ldots, \tau_n \in \mathbb{R}^+$ random or deterministic with $\frac{1}{n} \sum_{i=1}^n \tau_i \xrightarrow{\text{a.s.}} 1$
 - $w_1 \dots w_n \in \mathbb{C}^N$ random independent with w_i / \sqrt{N} uniformly distributed over the unit-sphere $C_N \in \mathbb{C}^{N \times N}$ deterministic, with $C_N \succ 0$ and $\lim \sup_N ||C_N|| < \infty$

As
$$n \to \infty$$
, $c_N \triangleq N/n \to c \in (0, 1)$.

Maronna's estimator of scatter: (almost sure) unique solution to

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

(i) $u: [0,\infty) \to (0,\infty)$ nonnegative continuous and non-increasing (ii) $\phi: x \mapsto xu(x)$ increasing and bounded with $\lim_{x\to\infty} \phi(x) \triangleq \phi_{\infty} > 1$ (iii) $\phi_{\infty} < c_{\perp}^{-1}$.

Setting and assumptions

Assumptions:

- ► Take $x_1, ..., x_n \in \mathbb{C}^N$ "elliptical-like" random vectors, i.e. $x_i = \sqrt{\tau_i} C_{x_i}^{\frac{1}{2}} w_i$ where
 - $\tau_1, \ldots, \tau_n \in \mathbb{R}^+$ random or deterministic with $\frac{1}{n} \sum_{i=1}^n \tau_i \xrightarrow{\text{a.s.}} 1$
 - $w_1, \ldots, w_n \in \mathbb{C}^N$ random independent with w_1 / \sqrt{N} uniformly distributed over the unit-sphere $C_N \in \mathbb{C}^{N \times N}$ deterministic, with $C_N \succ 0$ and $\limsup_N ||C_N|| < \infty$

As
$$n \to \infty$$
, $c_N \triangleq N/n \to c \in (0, 1)$.

Maronna's estimator of scatter: (almost sure) unique solution to

$$\hat{C}_N = \frac{1}{n} \sum_{i=1}^n u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

- (i) $u: [0,\infty) \to (0,\infty)$ nonnegative continuous and non-increasing
- (ii) $\phi: x \mapsto xu(x)$ increasing and bounded with $\lim_{x\to\infty} \phi(x) \triangleq \phi_{\infty} > 1$ (iii) $\phi_{\infty} < c_{\perp}^{-1}$.
- Additional technical assumption: Let $v_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\tau_i}$. For each a > b > 0, a.s.

$$\limsup_{t\to\infty}\frac{\limsup_n\nu_n((t,\infty))}{\phi(at)-\phi(bt)}=0.$$

Examples:

- $\tau_i < M$ for each *i*. In this case, $\nu_n((t, \infty)) = 0$ a.s. for t > M.
- For $u(t) = (1 + \alpha)/(\alpha + t)$, $\alpha > 0$, and τ_i i.i.d., it is sufficient to have $E[\tau_1^{1+\varepsilon}] < \infty$. ent to have $E[\tau_1^{++}] < \infty$. $< \Box > < \Box > < \Box > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < < = > < < = > < < = > < < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < < = > < < = > < < < = > < < < = > < < < = > < < = > < < < = > < < = > < < < = > < < < = > < < = > < < = > < < < = > < < < = > < < = > < < < = > < < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < < = > < = > < < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = = < = = < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = <$

• First remark: we can work with $C_N = I_N$ without generality restriction.

- First remark: we can work with $C_N = I_N$ without generality restriction.
- Intuition:
 - Denote

$$\hat{C}_{(j)} = \frac{1}{n} \sum_{i \neq j}^{n} u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

 \longrightarrow Intuitively, $\hat{C}_{(j)}$ and x_j are only "weakly" dependent.

- First remark: we can work with $C_N = I_N$ without generality restriction.
- Intuition:
 - Denote

$$\hat{C}_{(j)} = \frac{1}{n} \sum_{i \neq j}^{n} u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

 \rightarrow Intuitively, $\hat{C}_{(i)}$ and x_i are only "weakly" dependent.

We expect in particular:

$$\frac{1}{N} x_i^* \hat{\mathcal{C}}_{(i)}^{-1} x_i \simeq \tau_i \frac{1}{N} \operatorname{tr} \hat{\mathcal{C}}_{(i)}^{-1} \simeq \tau_i \frac{1}{N} \operatorname{tr} \hat{\mathcal{C}}_N^{-1} \simeq \tau_i \gamma_N$$

for some deterministic equivalent γ_N .

- First remark: we can work with $C_N = I_N$ without generality restriction.
- Intuition:
 - Denote

$$\hat{C}_{(j)} = \frac{1}{n} \sum_{i \neq j}^{n} u\left(\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i\right) x_i x_i^*$$

 \longrightarrow Intuitively, $\hat{C}_{(j)}$ and x_j are only "weakly" dependent.

We expect in particular:

$$\frac{1}{N} x_i^* \hat{\mathcal{C}}_{(i)}^{-1} x_i \simeq \tau_i \frac{1}{N} \operatorname{tr} \hat{\mathcal{C}}_{(i)}^{-1} \simeq \tau_i \frac{1}{N} \operatorname{tr} \hat{\mathcal{C}}_N^{-1} \simeq \tau_i \gamma_N$$

for some deterministic equivalent γ_N .

- Assuming this is correct, we then proceed as follows:
 - Algebraic manipulation: For some function f (later called g^{-1}), write

$$\hat{C}_{N} = \frac{1}{n} \sum_{i=1}^{n} (u \circ f) \left(\frac{1}{N} x_{i}^{*} \hat{C}_{(i)}^{-1} x_{i} \right) x_{i} x_{i}^{*}$$

• Use conjecture $\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i \simeq \tau_i\gamma_N$ to get

$$\hat{C}_N \simeq \frac{1}{n} \sum_{i=1}^n (u \circ f) (\tau_i \gamma_N) x_i x_i^*$$

• Use random matrix results to find a deterministic equivalent γ_N from $\gamma_N \simeq \frac{1}{N} \operatorname{tr} \hat{C}_N^{-1}$.

RMT analysis of \hat{C}_N : f and γ_N

• Determination of f: Recall the identity $(A + tvv^*)^{-1}v = A^{-1}/(1 + tv^*A^{-1}v)$. Then

$$\frac{1}{N}x_i^*\hat{C}_N^{-1}x_i = \frac{\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i}{1 + c_N u(\frac{1}{N}x_i^*\hat{C}_N^{-1}x_i)\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i}$$

so that

$$\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i = \frac{\frac{1}{N}x_i^*\hat{C}_N^{-1}x_i}{1 - c_N\phi(\frac{1}{N}x_i^*\hat{C}_N^{-1}x_i)}.$$

Now the function $g: x \mapsto x/(1 - c_N \phi(x))$ is monotonous increasing (we use the assumption $\phi_{\infty} < c^{-1}$!), hence, with $f = g^{-1}$,

$$\frac{1}{N} x_i^* \hat{C}_N^{-1} x_i = g^{-1} \left(\frac{1}{N} x_i^* \hat{C}_{(i)}^{-1} x_i \right).$$

RMT analysis of \hat{C}_N : f and γ_N

Determination of γ_N : From previous calculus, we expect

$$\hat{C}_N \simeq \frac{1}{n} \sum_{i=1}^n (u \circ g^{-1}) \left(\tau_i \frac{1}{N} \operatorname{tr} \hat{C}_N^{-1} \right) x_i x_i^* \simeq \frac{1}{n} \sum_{i=1}^n (u \circ g^{-1}) \left(\tau_i \gamma_N \right) x_i x_i^*.$$

Hence

$$\gamma_N \simeq \frac{1}{N} \operatorname{tr} \hat{C}_N^{-1} \simeq \frac{1}{N} \operatorname{tr} \left(\frac{1}{n} \sum_{i=1}^n (u \circ g^{-1}) (\tau_i \gamma_N) \tau_i w_i w_i^* \right)^{-1}$$

Since τ_i are independent of w_i and γ_N deterministic, this is a Bai-Silverstein model

$$\frac{1}{n}WDW^*, W = [w_1, \dots, w_n], D = \operatorname{diag}(D_{ii}) = \tau_i(u \circ g^{-1})(\tau_i \gamma_N)$$

And we have:

$$\begin{split} \gamma_{N} \simeq \frac{1}{N} \mathrm{tr} \, \left(\frac{1}{n} W D W^{*}\right)^{-1} &= m_{\frac{1}{n} W D W^{*}}(0) \simeq \left(\int \frac{t(u \circ g^{-1})(t \gamma_{N})}{1 + c(u \circ g^{-1})(t \gamma_{N}) m_{\frac{1}{n} W D W^{*}}(0)} v_{N}(dt) \right)^{-1} \\ &= \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\tau_{i}(u \circ g^{-1})(\tau_{i} \gamma_{N})}{1 + c \tau_{i}(u \circ g^{-1})(\tau_{i} \gamma_{N}) m_{\frac{1}{n} W D W^{*}}(0)} \right)^{-1} \end{split}$$

Since $\gamma_N \simeq m_{\frac{1}{2}WDW^*}(0)$, this defines γ_N as a solution of a fixed-point equation:

$$\gamma_N = \left(\frac{1}{n} \sum_{i=1}^n \frac{\tau_i(u \circ g^{-1})(\tau_i \gamma_N)}{1 + c\tau_i(u \circ g^{-1})(\tau_i \gamma_N)\gamma_N}\right)^{-1}.$$

Main result

R. Couillet, F. Pascal, J. W. Silverstein, "The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples", (in Press) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)

Under the assumptions defined earlier, we have

$$\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text{a.s.}} 0, \text{ where } \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v(\tau_{i}\gamma_{N}) x_{i} x_{i}^{*} = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_{i}\gamma_{N})}{\gamma_{N}} w_{i} w_{i}^{*}$$

 $v(x)=(u\circ g^{-1})(x), \ \psi(x)=xv(x), \ g(x)=x/(1-c\varphi(x)) \ \text{and} \ \gamma_N>0 \ \text{unique solution of}$

$$1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_i \gamma_N)}{1 + c \psi(\tau_i \gamma_N)}$$

Main result

R. Couillet, F. Pascal, J. W. Silverstein, "The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples", (in Press) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)

Under the assumptions defined earlier, we have

$$\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text{a.s.}} 0, \text{ where } \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v(\tau_{i}\gamma_{N}) x_{i} x_{i}^{*} = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_{i}\gamma_{N})}{\gamma_{N}} w_{i} w_{i}^{*}$$

 $v(x)=(u\circ g^{-1})(x), \ \psi(x)=xv(x), \ g(x)=x/(1-c\varphi(x)) \ \text{and} \ \gamma_N>0 \ \text{unique solution of}$

$$1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_i \gamma_N)}{1 + c \psi(\tau_i \gamma_N)}$$

Remarks:

Corollary:

$$\max_{1 \leq i \leq n} \left| \lambda_i(\hat{S}_N) - \lambda_i(\hat{C}_N) \right| \xrightarrow{\text{a.s.}} 0$$

 \longrightarrow Important feature for detection and estimation.

Main result

R. Couillet, F. Pascal, J. W. Silverstein, "The Random Matrix Regime of Maronna's M-estimator with elliptically distributed samples", (in Press) Elsevier Journal of Multivariate Analysis.

Theorem (Asymptotic Equivalence)

Under the assumptions defined earlier, we have

$$\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text{a.s.}} 0, \text{ where } \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v(\tau_{i}\gamma_{N}) x_{i} x_{i}^{*} = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_{i}\gamma_{N})}{\gamma_{N}} w_{i} w_{i}^{*}$$

 $v(x)=(u\circ g^{-1})(x), \ \psi(x)=xv(x), \ g(x)=x/(1-c\varphi(x)) \ \text{and} \ \gamma_N>0 \ \text{unique solution of}$

$$1 = \frac{1}{n} \sum_{i=1}^{n} \frac{\psi(\tau_i \gamma_N)}{1 + c \psi(\tau_i \gamma_N)}$$

Remarks:

Corollary:

$$\max_{1 \leq i \leq n} \left| \lambda_i(\hat{S}_N) - \lambda_i(\hat{C}_N) \right| \xrightarrow{\text{a.s.}} 0$$

 \rightarrow Important feature for detection and estimation.

Proof: So far, we do not have a rigorous proof!

Proof of the "conjecture"

◆□> <圖> < E> < E> E のQ@

Proof of the "conjecture"

► Technical trick: Denote

$$e_i \triangleq \frac{v\left(\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i\right)}{v(\tau_i\gamma)}$$

and relabel terms such that

$$e_1 \leqslant \ldots \leqslant e_n$$

We shall prove that, for each $\ell > 0$,

 $e_1 > 1 - \ell$ and $e_n < 1 + \ell$ for all large n a.s.

Proof of the "conjecture"

▶ Technical trick: Denote

$$e_i \triangleq \frac{v\left(\frac{1}{N}x_i^*\hat{C}_{(i)}^{-1}x_i\right)}{v(\tau_i\gamma)}$$

and relabel terms such that

$$e_1 \leqslant \ldots \leqslant e_n$$

We shall prove that, for each $\ell > 0$,

 $e_1 > 1 - \ell$ and $e_n < 1 + \ell$ for all large n a.s.

► Some basic inequalities: Denoting $d_i \triangleq \frac{1}{\tau_i} \frac{1}{N} x_i^* \hat{C}_{(i)}^{-1} x_i = \frac{1}{N} w_i^* \hat{C}_{(i)}^{-1} w_i$, we have

$$e_{j} = \frac{v\left(\tau_{j}\frac{1}{N}w_{j}^{*}\left(\frac{1}{n}\sum_{i\neq j}\tau_{i}v(\tau_{i}d_{i})w_{i}w_{i}^{*}\right)^{-1}w_{j}\right)}{v(\tau_{j}\gamma)} = \frac{v\left(\tau_{j}\frac{1}{N}w_{j}^{*}\left(\frac{1}{n}\sum_{i\neq j}\tau_{i}v(\tau_{i}\gamma)e_{i}w_{i}w_{i}^{*}\right)^{-1}w_{j}\right)}{v(\tau_{j}\gamma)}$$

$$\leq \frac{v\left(\tau_{j}\frac{1}{N}w_{j}^{*}\left(\frac{1}{n}\sum_{i\neq j}\tau_{i}v(\tau_{i}\gamma)e_{n}w_{i}w_{i}^{*}\right)^{-1}w_{j}\right)}{v(\tau_{j}\gamma)} = \frac{v\left(\frac{\tau_{j}}{e_{n}}\frac{1}{N}w_{j}^{*}\left(\frac{1}{n}\sum_{i\neq j}\tau_{i}v(\tau_{i}\gamma)w_{i}w_{i}^{*}\right)^{-1}w_{j}\right)}{v(\tau_{j}\gamma)}$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Proof

▶ Specialization to *e_n*:

$$e_n \leqslant \frac{\nu\left(\frac{\tau_n}{e_n}\frac{1}{N}w_n^*\left(\frac{1}{n}\sum_{i\neq n}\tau_i\nu(\tau_i\gamma)w_iw_i^*\right)^{-1}w_n\right)}{\nu(\tau_n\gamma)}$$

or equivalently, recalling $\psi(x) = xv(x)$,

$$\frac{\frac{1}{N}w_{n}^{*}\left(\frac{1}{n}\sum_{i\neq n}\tau_{i}v(\tau_{i}\gamma)w_{i}w_{i}^{*}\right)^{-1}w_{n}}{\gamma} \leq \frac{\Psi\left(\frac{\tau_{n}}{e_{n}}\frac{1}{N}w_{n}^{*}\left(\frac{1}{n}\sum_{i\neq n}\tau_{i}v(\tau_{i}\gamma)w_{i}w_{i}^{*}\right)^{-1}w_{n}\right)}{\Psi(\tau_{n}\gamma)}$$

<ロト 4 目 ト 4 目 ト 4 目 ト 1 目 9 Q Q</p>

Proof

▶ Specialization to *e_n*:

$$e_n \leqslant \frac{v\left(\frac{\tau_n}{e_n}\frac{1}{N}w_n^*\left(\frac{1}{n}\sum_{i\neq n}\tau_iv(\tau_i\gamma)w_iw_i^*\right)^{-1}w_n\right)}{v(\tau_n\gamma)}$$

or equivalently, recalling $\psi(x) = xv(x)$,

$$\frac{\frac{1}{N}w_{n}^{*}\left(\frac{1}{n}\sum_{i\neq n}\tau_{i}v(\tau_{i}\gamma)w_{i}w_{i}^{*}\right)^{-1}w_{n}}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_{n}}{e_{n}}\frac{1}{N}w_{n}^{*}\left(\frac{1}{n}\sum_{i\neq n}\tau_{i}v(\tau_{i}\gamma)w_{i}w_{i}^{*}\right)^{-1}w_{n}\right)}{\psi(\tau_{n}\gamma)}$$

• Random Matrix result: We can prove precisely that:

$$\max_{1 \leq j \leq n} \left| \frac{1}{N} w_j^* \left(\frac{1}{n} \sum_{i \neq j} \tau_i v(\tau_i \gamma_N) w_i w_i^* \right)^{-1} w_j - \gamma \right| \xrightarrow{\text{a.s.}} 0$$

(uniformity fundamental after relabeling)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof

• For all large *n* a.s., we then have (using growth of ψ)

$$\frac{\gamma-\varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{e_n}(\gamma+\varepsilon)\right)}{\psi(\tau_n\gamma)}$$

Proof

• For all large *n* a.s., we then have (using growth of ψ)

$$\frac{\gamma-\varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{e_n}(\gamma+\varepsilon)\right)}{\psi(\tau_n\gamma)}$$

▶ **Proof by contradiction**: Assume $e_n > 1 + \ell$ i.o., then on a subsequence

$$\frac{\gamma-\varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{1+\ell}(\gamma+\varepsilon)\right)}{\psi(\tau_n\gamma)}$$

Proof

• For all large *n* a.s., we then have (using growth of ψ)

$$\frac{\gamma-\varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{e_n}(\gamma+\varepsilon)\right)}{\psi(\tau_n\gamma)}$$

• **Proof by contradiction**: Assume $e_n > 1 + \ell$ i.o., then on a subsequence

$$\frac{\gamma - \varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{1 + \ell} \left(\gamma + \varepsilon\right)\right)}{\psi(\tau_n \gamma)}$$

▶ Bounded τ_i : If $0 < \tau_- < \tau_i < \tau_+ < \infty$ for all *i*, *n*, then on a subsequence where $\tau_n \rightarrow \tau_0$,

$$\underbrace{\frac{\gamma - \varepsilon}{\gamma}}_{\rightarrow 1 \text{ as } \varepsilon \rightarrow 0} \leqslant \underbrace{\frac{\psi \left(\frac{\tau}{1 + \ell} \left(\gamma + \varepsilon\right)\right)}{\psi(\tau_0 \gamma)}}_{\rightarrow \frac{\psi \left(\frac{\tau}{1 + \ell} \gamma\right)}{\psi(\tau_0 \gamma)} < 1 \text{ as } \varepsilon \rightarrow 0}$$
CONTRADICTION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• For all large *n* a.s., we then have (using growth of ψ)

$$\frac{\gamma-\varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{e_n}(\gamma+\varepsilon)\right)}{\psi(\tau_n\gamma)}$$

• **Proof by contradiction**: Assume $e_n > 1 + \ell$ i.o., then on a subsequence

$$\frac{\gamma - \varepsilon}{\gamma} \leqslant \frac{\psi\left(\frac{\tau_n}{1 + \ell} \left(\gamma + \varepsilon\right)\right)}{\psi(\tau_n \gamma)}$$

b Bounded τ_i : If $0 < \tau_- < \tau_i < \tau_+ < \infty$ for all *i*, *n*, then on a subsequence where $\tau_n \rightarrow \tau_0$,

$$\underbrace{\frac{\gamma - \varepsilon}{\gamma}}_{\rightarrow 1 \text{ as } \varepsilon \rightarrow 0} \leqslant \underbrace{\frac{\psi\left(\frac{\tau}{1+\ell}\left(\gamma + \varepsilon\right)\right)}{\psi(\tau_{0}\gamma)}}_{\rightarrow \frac{\psi\left(\frac{\tau}{1+\ell}\left(\gamma\right) < 1 \text{ as } \varepsilon \rightarrow 0\right)}{\psi(\tau_{0}\gamma)}}$$
CONTRADICTION!

Unbounded τ_i: Importance of relative growth of τ_n versus convergence of ψ to ψ_∞. Proof consists in dividing {τ_i} in two groups: few large ones versus all others. Sufficient condition:

$$\limsup_{t \to \infty} \frac{\limsup_{n \to \infty} \nu_n((t,\infty))}{\Phi(at) - \Phi(bt)} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simulations

Figure: Histogram of the eigenvalues of $\frac{1}{n}\sum_{i=1}^{n} x_i x_i^*$ for n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, τ_1 with $\Gamma(.5, 2)$ -distribution.

(日)

э.

・ロット (雪) (日) (日)

3

Simulations

Figure: Histogram of the eigenvalues of \hat{C}_N (left) and \hat{S}_N (right) for n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, τ_1 with $\Gamma(.5, 2)$ -distribution.

Simulations

Figure: Histogram of the eigenvalues of \hat{C}_N (left) and \hat{S}_N (right) for n = 2500, N = 500, $C_N = \text{diag}(I_{125}, 3I_{125}, 10I_{250})$, τ_1 with $\Gamma(.5, 2)$ -distribution.

Remark/Corollary: Spectrum of \hat{C}_N a.s. bounded uniformly on *n*.

Hint on potential applications

Spectrum boundedness: for impulsive noise scenarios,

- SCM spectrum grows unbounded
- robust scatter estimator spectrum remains bounded

 \Rightarrow Robust estimators improve spectrum separability (important for many statistical inference techniques seen previously)
Hint on potential applications

- Spectrum boundedness: for impulsive noise scenarios,
 - SCM spectrum grows unbounded
 - robust scatter estimator spectrum remains bounded

 \Rightarrow Robust estimators improve spectrum separability (important for many statistical inference techniques seen previously)

- > Spiked model generalization: we may expect a generalization to spiked models
 - spikes are swallowed by the bulk in SCM context
 - we expect spikes to re-emerge in robust scatter context

 \Rightarrow We shall see that we get **even better** than this...

Hint on potential applications

Spectrum boundedness: for impulsive noise scenarios,

- SCM spectrum grows unbounded
- robust scatter estimator spectrum remains bounded

 \Rightarrow Robust estimators improve spectrum separability (important for many statistical inference techniques seen previously)

- > Spiked model generalization: we may expect a generalization to spiked models
 - spikes are swallowed by the bulk in SCM context
 - we expect spikes to re-emerge in robust scatter context

 \Rightarrow We shall see that we get **even better** than this...

Application scenarios:

- Radar detection in impulsive noise (non-Gaussian noise, possibly clutter)
- Financial data analytics
- Any application where Gaussianity is too strong an assumption...

Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers

System Setting

Signal model:

$$y_i = \sum_{l=1}^{L} \sqrt{p_l} a_l s_{li} + \sqrt{\tau_i} w_i = A_i \bar{w}_i$$
$$A_i \triangleq \left[\sqrt{p_1} a_1 \quad \dots \quad \sqrt{p_L} a_L \quad \sqrt{\tau_i} I_N \right], \quad \bar{w}_i \triangleq \left[s_{1i}, \dots, s_{Li}, w_i \right]^{\mathsf{T}}.$$

with $y_1, \ldots, y_n \in \mathbb{C}^N$ satisfying:

- 1. $\tau_1, \ldots, \tau_n > 0$ random such that $\nu_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\tau_i} \to \nu$ weakly and $\int t \nu(dt) = 1$;
- 2. $w_1, \ldots, w_n \in \mathbb{C}^N$ random independent unitarily invariant \sqrt{N} -norm;
- 3. $L \in \mathbb{N}, p_1 \ge \ldots \ge p_L \ge 0$ deterministic;
- 4. $a_1, \ldots, a_L \in \mathbb{C}^N$ deterministic or random with $A^*A \xrightarrow{\text{a.s.}} \text{diag}(p_1, \ldots, p_L)$ as $N \to \infty$, with $A \triangleq [\sqrt{p_1}a_1, \ldots, \sqrt{p_L}a_L] \in \mathbb{C}^{N \times L}$.
- 5. $s_{1,1}, \ldots, s_{Ln} \in \mathbb{C}$ independent with zero mean, unit variance.

System Setting

Signal model:

$$y_i = \sum_{l=1}^{L} \sqrt{p_l} a_l s_{li} + \sqrt{\tau_i} w_i = A_i \bar{w}_i$$
$$A_i \triangleq \left[\sqrt{p_1} a_1 \quad \dots \quad \sqrt{p_L} a_L \quad \sqrt{\tau_i} I_N \right], \quad \bar{w}_i \triangleq \left[s_{1i}, \dots, s_{Li}, w_i \right]^{\mathsf{T}}.$$

with $y_1, \ldots, y_n \in \mathbb{C}^N$ satisfying:

- 1. $\tau_1, \ldots, \tau_n > 0$ random such that $\nu_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\tau_i} \to \nu$ weakly and $\int t \nu(dt) = 1$;
- 2. $w_1, \ldots, w_n \in \mathbb{C}^N$ random independent unitarily invariant \sqrt{N} -norm;
- 3. $L \in \mathbb{N}$, $p_1 \ge \ldots \ge p_L \ge 0$ deterministic;
- 4. $a_1, \ldots, a_L \in \mathbb{C}^N$ deterministic or random with $A^*A \xrightarrow{\text{a.s.}} \text{diag}(p_1, \ldots, p_L)$ as $N \to \infty$, with $A \triangleq [\sqrt{p_1}a_1, \ldots, \sqrt{p_L}a_L] \in \mathbb{C}^{N \times L}$.
- 5. $s_{1,1}, \ldots, s_{Ln} \in \mathbb{C}$ independent with zero mean, unit variance.
- Relation to previous model: If L = 0, $y_i = \sqrt{\tau_i} w_i$.
 - \Rightarrow Elliptical model with covariance a low-rank (L) perturbation of I_N .
 - \Rightarrow We expect a spiked version of previous results.

System Setting

Signal model:

$$y_i = \sum_{l=1}^{L} \sqrt{p_l} a_l s_{li} + \sqrt{\tau_i} w_i = A_i \bar{w}_i$$
$$A_i \triangleq \left[\sqrt{p_1} a_1 \quad \dots \quad \sqrt{p_L} a_L \quad \sqrt{\tau_i} I_N \right], \quad \bar{w}_i \triangleq \left[s_{1i}, \dots, s_{Li}, w_i \right]^{\mathsf{T}}.$$

with $y_1, \ldots, y_n \in \mathbb{C}^N$ satisfying:

- 1. $\tau_1, \ldots, \tau_n > 0$ random such that $\nu_n \triangleq \frac{1}{n} \sum_{i=1}^n \delta_{\tau_i} \to \nu$ weakly and $\int t \nu(dt) = 1$;
- 2. $w_1, \ldots, w_n \in \mathbb{C}^N$ random independent unitarily invariant \sqrt{N} -norm;
- 3. $L \in \mathbb{N}$, $p_1 \ge \ldots \ge p_L \ge 0$ deterministic;
- 4. $a_1, \ldots, a_L \in \mathbb{C}^N$ deterministic or random with $A^*A \xrightarrow{\text{a.s.}} \text{diag}(p_1, \ldots, p_L)$ as $N \to \infty$, with $A \triangleq [\sqrt{p_1}a_1, \ldots, \sqrt{p_L}a_L] \in \mathbb{C}^{N \times L}$.
- 5. $s_{1,1}, \ldots, s_{Ln} \in \mathbb{C}$ independent with zero mean, unit variance.
- Relation to previous model: If L = 0, $y_i = \sqrt{\tau_i} w_i$.
 - \Rightarrow Elliptical model with covariance a low-rank (L) perturbation of I_N .
 - \Rightarrow We expect a spiked version of previous results.
- Application contexts:
 - wireless communications: signals s_{li} from L transmitters, N-antenna receiver; a_l random i.i.d. channels (a_l^{*} a_l' → δ_{1-l'}, e.g. a_l ~ CN(0, I_N/N));
 - ▶ array processing: L sources emit signals s_{li} at steering angle $a_l = a(\theta_l)$. For ULA,

$$[a(\theta)]_j = N^{-\frac{1}{2}} \exp(2\pi \iota dj \sin(\theta))$$

Some intuition

Signal detection/estimation in impulsive environments: Two scenarios

- heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
- Gaussian noise with spurious impulsions

Some intuition

Signal detection/estimation in impulsive environments: Two scenarios

- heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
- Gaussian noise with spurious impulsions

Problems expected with SCM: Respectively,

- unbounded limiting spectrum, no source separation!
 invalidates G-MUSIC
- isolated eigenvalues due to spikes in time direction
 - \Rightarrow False alarms induced by noise impulses!

Some intuition

Signal detection/estimation in impulsive environments: Two scenarios

- heavy-tailed noise (elliptical, Gaussian mixtures, etc.)
- Gaussian noise with spurious impulsions

Problems expected with SCM: Respectively,

- unbounded limiting spectrum, no source separation!
 invalidates G-MUSIC
- ► isolated eigenvalues due to spikes in *time direction* ⇒ False alarms induced by noise impulses!

Our results: In a spiked model with noise impulsions,

- whatever noise impulsion type, spectrum of \hat{C}_N remains bounded
- isolated largest eigenvalues may appear, two classes:
 - isolated eigenvalues due to noise impulses CANNOT exceed a threshold!
 - all isolated eigenvalues beyond this threshold are due to signal
 - \Rightarrow Detection criterion: everything above threshold is signal.

Theoretical results

Theorem (Extension to spiked robust model)

Under the same assumptions as in previous section,

$$\|\hat{C}_N - \hat{S}_N\| \xrightarrow{\mathrm{a.s.}} 0$$

where

$$\hat{S}_N \triangleq rac{1}{n} \sum_{i=1}^n v(\tau_i \gamma) A_i \bar{w}_i \bar{w}_i^* A_i^*$$

with γ the unique solution to

$$1 = \int \frac{\psi(t\gamma)}{1 + c\psi(t\gamma)} v(dt)$$

and we recall

$$A_i \triangleq \begin{bmatrix} \sqrt{p_1} a_1 & \dots & \sqrt{p_L} a_L & \sqrt{\tau_i} I_N \end{bmatrix}$$

$$\bar{w}_i = [s_{1i}, \dots, s_{Li}, w_i]^{\mathsf{T}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theoretical results

Theorem (Extension to spiked robust model)

Under the same assumptions as in previous section,

$$\|\hat{C}_N - \hat{S}_N\| \xrightarrow{\mathrm{a.s.}} 0$$

where

$$\hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{n} v(\tau_{i}\gamma) A_{i} \bar{w}_{i} \bar{w}_{i}^{*} A_{i}^{*}$$

with γ the unique solution to

$$1 = \int \frac{\psi(t\gamma)}{1 + c\psi(t\gamma)} v(dt)$$

and we recall

$$A_i \triangleq \begin{bmatrix} \sqrt{p_1} a_1 & \dots & \sqrt{p_L} a_L & \sqrt{\tau_i} I_N \end{bmatrix}$$

$$\bar{w}_i = [s_{1i}, \dots, s_{Li}, w_i]^{\mathsf{T}}.$$

▶ **Remark:** For L = 0, $A_i = [0, ..., 0, I_N]$. ⇒ Recover previous result $A_i \bar{w}_i$ becomes w_i .

Localization of eigenvalues

Theorem (Eigenvalue localization)

Denote

- u_k eigenvector of k-th largest eigenvalue of $AA^* = \sum_{i=1}^{L} p_i a_i a_i^*$
- \hat{u}_k eigenvector of k-th largest eigenvalue of \hat{C}_N

Also define $\delta(\boldsymbol{x})$ unique positive solution to

$$\delta(x) = c \left(-x + \int \frac{tv_c(t\gamma)}{1 + \delta(x)tv_c(t\gamma)} v(dt) \right)^{-1}.$$

Further denote

$$p_{-} \triangleq \lim_{x \downarrow S^{+}} -c \left(\int \frac{\delta(x)v_{c}(t\gamma)}{1 + \delta(x)tv_{c}(t\gamma)} v(dt) \right)^{-1}, \quad S^{+} \triangleq \frac{\phi_{\infty}(1 + \sqrt{c})^{2}}{\gamma(1 - c\phi_{\infty})}.$$

Localization of eigenvalues

Theorem (Eigenvalue localization)

Denote

- u_k eigenvector of k-th largest eigenvalue of $AA^* = \sum_{i=1}^{L} p_i a_i a_i^*$
- \hat{u}_k eigenvector of k-th largest eigenvalue of \hat{C}_N

Also define $\delta(x)$ unique positive solution to

$$\delta(x) = c \left(-x + \int \frac{t v_c(t\gamma)}{1 + \delta(x) t v_c(t\gamma)} v(dt) \right)^{-1}.$$

Further denote

$$p_{-} \triangleq \lim_{x \downarrow S^{+}} -c \left(\int \frac{\delta(x) v_{c}(t\gamma)}{1 + \delta(x) t v_{c}(t\gamma)} v(dt) \right)^{-1}, \quad S^{+} \triangleq \frac{\varphi_{\infty}(1 + \sqrt{c})^{2}}{\gamma(1 - c\varphi_{\infty})}.$$

Then, if $p_j > p_-$, $\hat{\lambda}_j \xrightarrow{\text{a.s.}} \Lambda_j > S^+$, otherwise $\limsup_n \hat{\lambda}_j \leq S^+$ a.s., with Λ_j unique positive solution to

$$-c\left(\delta(\Lambda_j)\int \frac{v_c(\tau\gamma)}{1+\delta(\Lambda_j)\tau v_c(\tau\gamma)}\nu(d\tau)\right)^{-1}=p_j.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Simulation

Figure: Histogram of the eigenvalues of $\frac{1}{n}\sum_{i} y_i y_i^*$ against the limiting spectral measure, L = 2, $p_1 = p_2 = 1$, N = 200, n = 1000, Sudent-t impulsions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Simulation

Figure: Histogram of the eigenvalues of \hat{C}_N against the limiting spectral measure, for $u(x) = (1 + \alpha)/(\alpha + x)$ with $\alpha = 0.2$, L = 2, $p_1 = p_2 = 1$, N = 200, n = 1000, Student-t impulsions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Comments

 SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of scatter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Comments

- SCM vs robust: Spikes invisible in SCM in impulsive noise, reborn in robust estimate of scatter.
- Largest eigenvalues:
 - $\lambda_i(\hat{C}_N) > S^+ \Rightarrow$ Presence of a source!
 - $\lambda_i(\hat{C}_N) \in (\sup(\text{Support}), S^+) \Rightarrow May \text{ be due to a source or to a noise impulse.}$
 - ▶ $\lambda_i(\hat{C}_N) < \sup(\text{Support}) \Rightarrow As usual, nothing can be said.$
 - \Rightarrow Induces a natural source detection algorithm.

Eigenvalue and eigenvector projection estimates

- Two scenarios:
 - known $v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\tau_i}$ unknown v

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eigenvalue and eigenvector projection estimates

- Two scenarios:
 - known $v = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{\tau_i}$
 - unknown ν

Theorem (Estimation under known v)

1. Power estimation. For each $p_j > p_-$,

$$-c\left(\delta(\hat{\lambda}_j)\int \frac{v_c(\tau\gamma)}{1+\delta(\hat{\lambda}_j)\tau v_c(\tau\gamma)}\nu(d\tau)\right)^{-1} \xrightarrow{\text{a.s.}} p_j.$$

2. Bilinear form estimation. For each a, $b \in \mathbb{C}^N$ with ||a|| = ||b|| = 1, and $p_j > p_-$

$$\sum_{k,p_k=p_j} a^* u_k u_k^* b - \sum_{k,p_k=p_j} w_k a^* \hat{u}_k \hat{u}_k^* b \xrightarrow{\text{a.s.}} 0$$

where

$$w_{k} = \frac{\int \frac{v_{c}(t\gamma)}{\left(1 + \delta(\hat{\lambda}_{k})tv_{c}(t\gamma)\right)^{2}}v(dt)}{\int \frac{v_{c}(t\gamma)}{1 + \delta(\hat{\lambda}_{k})tv_{c}(t\gamma)}v(dt)\left(1 - \frac{1}{c}\int \frac{\delta(\hat{\lambda}_{k})^{2}t^{2}v_{c}(t\gamma)^{2}}{\left(1 + \delta(\hat{\lambda}_{k})tv_{c}(t\gamma)\right)^{2}}v(dt)\right)}.$$

Eigenvalue and eigenvector projection estimates Theorem (Estimation under unknown ν)

1. Purely empirical power estimation. For each $p_j > p_-$,

$$-\left(\hat{\delta}(\hat{\lambda}_j)\frac{1}{N}\sum_{i=1}^n\frac{\nu(\hat{\tau}_i\hat{\gamma}_n)}{1+\hat{\delta}(\hat{\lambda}_j)\hat{\tau}_i\nu(\hat{\tau}_i\hat{\gamma}_n)}\right)^{-1}\xrightarrow{\text{a.s.}}p_j.$$

2. Purely empirical bilinear form estimation. For each a, $b \in \mathbb{C}^N$ with ||a|| = ||b|| = 1, and each $p_j > p_-$,

$$\sum_{k,p_k=p_j} a^* u_k u_k^* b - \sum_{k,p_k=p_j} \hat{w}_k a^* \hat{u}_k \hat{u}_k^* b \xrightarrow{\text{a.s.}} 0$$

where

$$\hat{w}_{k} = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{v(\hat{\tau}_{i}\hat{\gamma})}{\left(1 + \hat{\delta}(\hat{\lambda}_{k})\hat{\tau}_{i}v(\hat{\tau}_{i}\hat{\gamma})\right)^{2}}}{\frac{1}{n} \sum_{i=1}^{n} \frac{v(\hat{\tau}_{i}\hat{\gamma})}{1 + \hat{\delta}(\hat{\lambda}_{k})\hat{\tau}_{i}v(\hat{\tau}_{i}\hat{\gamma})} \left(1 - \frac{1}{N} \sum_{i=1}^{n} \frac{\hat{\delta}(\hat{\lambda}_{k})^{2}\hat{\tau}_{i}^{2}v(\hat{\tau}_{i}\hat{\gamma})^{2}}{\left(1 + \hat{\delta}(\hat{\lambda}_{k})\hat{\tau}_{i}v(\hat{\tau}_{i}\hat{\gamma})\right)^{2}}\right)}$$
$$\hat{\gamma} \triangleq \frac{1}{n} \sum_{i=1}^{n} \frac{1}{N} y_{i}^{*} \hat{C}_{(i)}^{-1} y_{i}, \quad \hat{\tau}_{i} \triangleq \frac{1}{\hat{\gamma}} \frac{1}{N} y_{i}^{*} \hat{C}_{(i)}^{-1} y_{i}, \quad \hat{\delta}(x) \text{ as } \delta(x) \text{ but for } (\tau_{i}, \gamma) \to (\hat{\tau}_{i}, \hat{\gamma}).$$

Application to G-MUSIC

• Assume the model $a_i = a(\theta_i)$ with

$$a(\theta) = N^{-\frac{1}{2}} [\exp(2\pi \iota dj \sin(\theta))]_{j=0}^{N-1}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application to G-MUSIC

• Assume the model $a_i = a(\theta_i)$ with

$$a(\theta) = N^{-\frac{1}{2}} [\exp(2\pi \iota dj \sin(\theta))]_{j=0}^{N-1}.$$

Corollary (Robust G-MUSIC)

Define $\hat{\eta}_{RG}(\theta)$ and $\hat{\eta}_{RG}^{emp}(\theta)$ as

$$\begin{split} \hat{\eta}_{\mathrm{RG}}(\theta) &= 1 - \sum_{k=1}^{|\{j,p_j > p_-\}|} w_k a(\theta)^* \hat{u}_k \hat{u}_k a(\theta) \\ \hat{\eta}_{\mathrm{RG}}^{\mathrm{emp}}(\theta) &= 1 - \sum_{k=1}^{|\{j,p_j > p_-\}|} \hat{w}_k a(\theta)^* \hat{u}_k \hat{u}_k a(\theta). \end{split}$$

Then, for each $p_i > p_-$,

$$\hat{\theta}_j \xrightarrow{\text{a.s.}} \theta \\ \hat{\theta}_j^{\text{emp}} \xrightarrow{\text{a.s.}} \theta$$

where

$$\hat{\theta}_{j} \triangleq \operatorname{argmin}_{\theta \in \mathcal{R}_{j}^{\kappa}} \{ \hat{\eta}_{\mathrm{RG}}(\theta) \}$$

$$\hat{\theta}_{j}^{\mathrm{emp}} \triangleq \operatorname{argmin}_{\theta \in \mathcal{R}_{j}^{\kappa}} \{ \hat{\eta}_{\mathrm{RG}}^{\mathrm{emp}}(\theta) \} .$$

Simulations: Single-shot in elliptical noise

Figure: Random realization of the localization functions for the various MUSIC estimators, with N = 20, n = 100, two sources at 10° and 12°. Student-t impulsions with parameter $\beta = 100$, $u(x) = (1 + \alpha)/(\alpha + x)$ with $\alpha = 0.2$. Powers $p_1 = p_2 = 10^{0.5} = 5$ dB.

Simulations: Elliptical noise

Figure: Means square error performance of the estimation of $\theta_1 = 10^\circ$, with N = 20, n = 100, two sources at 10° and 12° , Student-t impulsions with parameter $\beta = 10$, $u(x) = (1 + \alpha)/(\alpha + x)$ with $\alpha = 0.2$, $p_1 = p_2$.

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Simulations: Spurious impulses

Figure: Means square error performance of the estimation of $\theta_1 = 10^\circ$, with N = 20, n = 100, two sources at 10° and 12° , sample outlier scenario $\tau_i = 1$, i < n, $\tau_n = 100$, $u(x) = (1 + \alpha)/(\alpha + x)$ with $\alpha = 0.2$, $p_1 = p_2$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers

Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices. Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator – Application to STAP data. Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

Shrinkage covariance estimation: For N > n or $N \simeq n$, shrinkage estimator

$$(1-\rho)\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}^{*}+
ho I_{N}, ext{ for some } \rho\in[0,1].$$

- allows for invertibility, better conditioning
- ρ may be chosen to minimize an expected error metric

Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices. Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator – Application to STAP data. Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

• Shrinkage covariance estimation: For N > n or $N \simeq n$, shrinkage estimator

$$(1-\rho)\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}^{*}+
ho I_{N}, ext{ for some } \rho\in[0,1].$$

- allows for invertibility, better conditioning
- p may be chosen to minimize an expected error metric

Limitation of Maronna's estimator:

- Maronna and Tyler estimators limited to N < n, otherwise do not exist
- introducing shrinkage in robust estimator cannot do much harm anyhow...

Context

Ledoit and Wolf, 2004. A well-conditioned estimator for large-dimensional covariance matrices. Pascal, Chitour, Quek, 2013. Generalized robust shrinkage estimator – Application to STAP data. Chen, Wiesel, Hero, 2011. Robust shrinkage estimation of high-dimensional covariance matrices.

• Shrinkage covariance estimation: For N > n or $N \simeq n$, shrinkage estimator

$$(1-\rho)rac{1}{n}\sum_{i=1}^n x_i x_i^* + \rho I_N$$
, for some $\rho \in [0,1]$.

- allows for invertibility, better conditioning
- ρ may be chosen to minimize an expected error metric

Limitation of Maronna's estimator:

- ▶ Maronna and Tyler estimators limited to *N* < *n*, otherwise do not exist
- introducing shrinkage in robust estimator cannot do much harm anyhow...

Introducing the robust-shrinkage estimator: The literature proposes two such estimators

$$\hat{C}_{N}(\rho) = (1-\rho)\frac{1}{n}\sum_{i=1}^{n}\frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\hat{C}_{N}^{-1}(\rho)x_{i}} + \rho I_{N}, \ \rho \in (\max\{0, \frac{N-n}{N}\}, 1] \quad (\text{Pascal})$$

$$\check{C}_{N}(\rho) = \frac{\check{B}_{N}(\rho)}{\frac{1}{N}\text{tr}\,\check{B}_{N}(\rho)}, \ \check{B}_{N}(\rho) = (1-\rho)\frac{1}{n}\sum_{i=1}^{n}\frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\hat{C}_{N}^{-1}(\rho)x_{i}} + \rho I_{N}, \ \rho \in (0,1] \quad (\text{Chen})$$

Main theoretical result

Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the other, but the arguments we received were quite vague...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Main theoretical result

Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the other, but the arguments we received were quite vague...

Our result: In the random matrix regime, both estimators tend to be one and the same!

Main theoretical result

Which estimator is better?

Having asked to authors of both papers, their estimator was much better than the other, but the arguments we received were quite vague...

- Our result: In the random matrix regime, both estimators tend to be one and the same!
- Assumptions: As before, "elliptical-like" model

$$x_i = \tau_i C_N^{\frac{1}{2}} w_i$$

 \rightarrow This time, C_N cannot be taken I_N (due to $+\rho I_N$)!

 \longrightarrow Maronna-based shrinkage is possible but more involved...

Pascal's estimator

Theorem (Pascal's estimator)

For $\varepsilon \in (0, \min\{1, c^{-1}\})$, define $\hat{\mathcal{R}}_{\varepsilon} = [\varepsilon + \max\{0, 1 - c^{-1}\}, 1]$. Then, as $N, n \to \infty$, $N/n \to c \in (0, \infty)$,

$$\sup_{\mathbf{p}\in\hat{\mathfrak{R}}_{\varepsilon}}\left\|\hat{\mathcal{C}}_{N}(\boldsymbol{\rho})-\hat{\mathcal{S}}_{N}(\boldsymbol{\rho})\right\|\xrightarrow{\mathrm{a.s.}}0$$

where

$$\hat{C}_{N}(\rho) = (1-\rho)\frac{1}{n}\sum_{i=1}^{n}\frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\hat{C}_{N}(\rho)^{-1}x_{i}} + \rho I_{N}$$
$$\hat{S}_{N}(\rho) = \frac{1}{\hat{\gamma}(\rho)}\frac{1-\rho}{1-(1-\rho)c}\frac{1}{n}\sum_{i=1}^{n}C_{N}^{\frac{1}{2}}w_{i}w_{i}^{*}C_{N}^{\frac{1}{2}} + \rho I_{N}$$

and $\hat{\gamma}(\rho)$ is the unique positive solution to the equation in $\hat{\gamma}$

$$1 = \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_i(C_N)}{\hat{\gamma}\rho + (1-\rho)\lambda_i(C_N)}$$

Moreover, $\rho \mapsto \hat{\gamma}(\rho)$ is continuous on (0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Chen's estimator

Theorem (Chen's estimator)

For $\varepsilon \in (0,1)$, define $\check{\mathbb{R}}_{\varepsilon} = [\varepsilon,1]$. Then, as $N, n \to \infty, N/n \to c \in (0,\infty)$,

$$\sup_{\boldsymbol{\rho}\in\check{\mathcal{X}}_{\varepsilon}}\left\|\check{\boldsymbol{C}}_{\boldsymbol{N}}(\boldsymbol{\rho})-\check{\boldsymbol{S}}_{\boldsymbol{N}}(\boldsymbol{\rho})\right\|\stackrel{\mathrm{a.s.}}{\longrightarrow}0$$

where

$$\begin{split} \check{C}_{N}(\rho) &= \frac{\check{B}_{N}(\rho)}{\frac{1}{N} \operatorname{tr}\check{B}_{N}(\rho)}, \ \check{B}_{N}(\rho) = (1-\rho) \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}x_{i}^{*}}{\frac{1}{N}x_{i}^{*}\check{C}_{N}(\rho)^{-1}x_{i}} + \rho I_{N} \\ \check{S}_{N}(\rho) &= \frac{1-\rho}{1-\rho+T_{\rho}} \frac{1}{n} \sum_{i=1}^{n} C_{N}^{\frac{1}{2}} w_{i} w_{i}^{*} C_{N}^{\frac{1}{2}} + \frac{T_{\rho}}{1-\rho+T_{\rho}} I_{N} \end{split}$$

in which $T_{\rho} = \rho \check{\gamma}(\rho) F(\check{\gamma}(\rho); \rho)$ with, for all x > 0,

$$F(x;\rho) = \frac{1}{2} \left(\rho - c(1-\rho) \right) + \sqrt{\frac{1}{4}} \left(\rho - c(1-\rho) \right)^2 + (1-\rho) \frac{1}{x}$$

and $\check{\gamma}(\rho)$ is the unique positive solution to the equation in $\check{\gamma}$

$$1 = \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_i(C_N)}{\check{\gamma}\rho + \frac{1-\rho}{(1-\rho)c + F(\check{\gamma};\rho)}\lambda_i(C_N)}$$

Moreover, $\rho \mapsto \check{\gamma}(\rho)$ is continuous on (0, 1].

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ の ・

Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each $\rho\in(0,1],$ there exist unique $\hat{\rho}\in(\text{max}\{0,1-c^{-1}\},1]$ and $\check{\rho}\in(0,1]$ such that

$$\frac{\hat{S}_{N}(\hat{\rho})}{\frac{1}{\hat{\gamma}(\hat{\rho})}\frac{1-\hat{\rho}}{1-(1-\hat{\rho})c}+\hat{\rho}}=\check{S}_{N}(\check{\rho})=(1-\rho)\frac{1}{n}\sum_{i=1}^{n}C_{N}^{\frac{1}{2}}w_{i}w_{i}^{*}C_{N}^{\frac{1}{2}}+\rho I_{N}.$$

 $\textit{Besides, } (0,1] \rightarrow (\max\{0,1-c^{-1}\},1], \ \rho \mapsto \hat{\rho} \textit{ and } (0,1] \rightarrow (0,1], \ \rho \mapsto \check{\rho} \textit{ are increasing and onto.}$

Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each $\rho \in (0,1]$, there exist unique $\hat{\rho} \in (max\{0,1-c^{-1}\},1]$ and $\check{\rho} \in (0,1]$ such that

$$\frac{\hat{S}_{N}(\hat{\rho})}{\frac{1}{\hat{\gamma}(\hat{\rho})}\frac{1-\hat{\rho}}{1-(1-\hat{\rho})c}+\hat{\rho}}=\check{S}_{N}(\check{\rho})=(1-\rho)\frac{1}{n}\sum_{i=1}^{n}C_{N}^{\frac{1}{2}}w_{i}w_{i}^{*}C_{N}^{\frac{1}{2}}+\rho I_{N}.$$

 $\textit{Besides, } (0,1] \rightarrow (\text{max}\{0,1-c^{-1}\},1], \ \rho \mapsto \hat{\rho} \textit{ and } (0,1] \rightarrow (0,1], \ \rho \mapsto \check{\rho} \textit{ are increasing and onto.}$

- Up to normalization, both estimators behave the same!
- Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator
Asymptotic Model Equivalence

Theorem (Model Equivalence)

For each $\rho\in(0,1],$ there exist unique $\hat{\rho}\in(\text{max}\{0,1-c^{-1}\},1]$ and $\check{\rho}\in(0,1]$ such that

$$\frac{\hat{S}_{N}(\hat{\rho})}{\frac{1}{\hat{\gamma}(\hat{\rho})}\frac{1-\hat{\rho}}{1-(1-\hat{\rho})c}+\hat{\rho}}=\check{S}_{N}(\check{\rho})=(1-\rho)\frac{1}{n}\sum_{i=1}^{n}C_{N}^{\frac{1}{2}}w_{i}w_{i}^{*}C_{N}^{\frac{1}{2}}+\rho I_{N}.$$

 $\textit{Besides, } (0,1] \rightarrow (\text{max}\{0,1-c^{-1}\},1], \ \rho \mapsto \hat{\rho} \textit{ and } (0,1] \rightarrow (0,1], \ \rho \mapsto \check{\rho} \textit{ are increasing and onto.}$

- Up to normalization, both estimators behave the same!
- Both estimators behave the same as an impulsion-free Ledoit-Wolf estimator
- **b** About uniformity: Uniformity over ρ in the theorems is essential to find optimal values of ρ .

Optimal Shrinkage parameter

• Chen sought for a Frobenius norm minimizing ρ but got stuck by implicit nature of $\check{C}_N(\rho)$

Optimal Shrinkage parameter

- Chen sought for a Frobenius norm minimizing ρ but got stuck by implicit nature of $\check{C}_N(\rho)$
- Our results allow for a simplification of the problem for large N, n!
- Model equivalence says only one problem needs be solved.

Optimal Shrinkage parameter

- Chen sought for a Frobenius norm minimizing ρ but got stuck by implicit nature of $\check{C}_N(\rho)$
- Our results allow for a simplification of the problem for large N, n!
- Model equivalence says only one problem needs be solved.

Theorem (Optimal Shrinkage)

For each $\rho \in (0, 1]$, define

$$\hat{D}_{N}(\rho) = \frac{1}{N} tr\left(\left(\frac{\hat{C}_{N}(\rho)}{\frac{1}{N} tr \hat{C}_{N}(\rho)} - C_{N} \right)^{2} \right), \quad \check{D}_{N}(\rho) = \frac{1}{N} tr\left(\left(\check{C}_{N}(\rho) - C_{N} \right)^{2} \right).$$

Denote $D^{\star} = c \frac{M_2 - 1}{c + M_2 - 1}$, $\rho^{\star} = \frac{c}{c + M_2 - 1}$, $M_2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \lambda_i^2(C_N)$ and $\hat{\rho}^{\star}$, $\check{\rho}^{\star}$ unique solutions to

$$\frac{\hat{\rho}^{\star}}{\frac{1}{\hat{\gamma}(\hat{\rho}^{\star})}\frac{1-\hat{\rho}^{\star}}{1-(1-\hat{\rho}^{\star})c}+\hat{\rho}^{\star}}=\frac{\mathcal{T}_{\check{\rho}^{\star}}}{1-\check{\rho}^{\star}+\mathcal{T}_{\check{\rho}^{\star}}}=\rho^{\star}$$

Then, letting ε small enough,

$$\begin{split} &\inf_{\rho\in\hat{\mathcal{R}}_{\varepsilon}}\hat{D}_{N}(\rho) \xrightarrow{\text{a.s.}} D^{\star}, \quad \inf_{\rho\in\check{\mathcal{R}}_{\varepsilon}}\check{D}_{N}(\rho) \xrightarrow{\text{a.s.}} D \\ &\hat{D}_{N}(\hat{\rho}^{\star}) \xrightarrow{\text{a.s.}} D^{\star}, \quad \check{D}_{N}(\check{\rho}^{\star}) \xrightarrow{\text{a.s.}} D^{\star}. \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Estimating $\hat{\rho}^{\star}$ and $\check{\rho}^{\star}$

• Theorem only useful if $\hat{\rho}^*$ and $\check{\rho}^*$ can be estimated!

Estimating $\hat{\rho}^{\star}$ and $\check{\rho}^{\star}$

- Theorem only useful if $\hat{\rho}^*$ and $\check{\rho}^*$ can be estimated!
- Careful control of the proofs provide many ways to estimate these.
- Proposition below provides one example.

Estimating $\hat{\rho}^*$ and $\check{\rho}^*$

- Theorem only useful if $\hat{\rho}^*$ and $\check{\rho}^*$ can be estimated!
- Careful control of the proofs provide many ways to estimate these.
- Proposition below provides one example.

Optimal Shrinkage Estimate

Let $\hat{\rho}_N \in (\max\{0, 1 - c^{-1}\}, 1]$ and $\check{\rho}_N \in (0, 1]$ be solutions (not necessarily unique) to

$$\frac{\hat{\rho}_{N}}{\frac{1}{N} \operatorname{tr} \hat{C}_{N}(\hat{\rho}_{N})} = \frac{c_{N}}{\frac{1}{N} \operatorname{tr} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{N} ||x_{i}||^{2}} \right)^{2} \right] - 1}$$
$$\frac{\check{\rho}_{N} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}^{*} \check{C}_{N}(\check{\rho}_{N})^{-1} x_{i}}{||x_{i}||^{2}}}{1 - \check{\rho}_{N} + \check{\rho}_{N} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}^{*} \check{C}_{N}(\check{\rho}_{N})^{-1} x_{i}}{\frac{1}{N} \operatorname{tr} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}^{*}}{\frac{1}{N} ||x_{i}||^{2}} \right)^{2} \right] - 1}$$

defined arbitrarily when no such solutions exist. Then

$$\hat{\rho}_{N} \xrightarrow{\text{a.s.}} \hat{\rho}^{*}, \ \check{\rho}_{N} \xrightarrow{\text{a.s.}} \check{\rho}^{*}$$
$$\hat{D}_{N}(\hat{\rho}_{N}) \xrightarrow{\text{a.s.}} D^{*}, \ \check{D}_{N}(\check{\rho}_{N}) \xrightarrow{\text{a.s.}} D^{*}.$$

38/60

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Figure: Performance of optimal shrinkage averaged over 10000 Monte Carlo simulations, for N = 32, various values of n, $[C_N]_{ij} = r^{|i-j|}$ with r = 0.7; \check{p}_N as above; \check{p}_O the clairvoyant estimator proposed in (Chen'11).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Figure: Shrinkage parameter ρ averaged over 10000 Monte Carlo simulations, for N = 32, various values of n, $[C_N]_{ij} = r^{|i-j|}$ with r = 0.7; $\hat{\rho}_N$ and $\check{\rho}_N$ as above; $\check{\rho}_O$ the clairvoyant estimator proposed in (Chen'11); $\hat{\rho}^\circ = \operatorname{argmin}_{\{\rho \in (0,1]\}} \{ \tilde{D}_N(\rho) \}$.

• Power control problem results in solving, for each j = 1, ..., n

$$\lambda_j = \sigma^2 \left((1 + \gamma_j^{-1}) \frac{1}{N} h_j^* \left(\frac{1}{N} \sum_{i=1}^n \frac{\lambda_i}{\sigma^2} h_i h_i^* + I_N \right)^{-1} h_j \right)^{-1}$$

with

•
$$h_i \in \mathbb{C}^N$$
 channel modeled as $h_i = \sqrt{r_i} x_i$, $x_i \sim \mathcal{CN}(0, I_N)$

- σ^2 power of additive noise
- $\triangleright \gamma_i$ target SINR for user *i*

• Power control problem results in solving, for each j = 1, ..., n

$$\lambda_j = \sigma^2 \left((1 + \gamma_j^{-1}) \frac{1}{N} h_j^* \left(\frac{1}{N} \sum_{i=1}^n \frac{\lambda_i}{\sigma^2} h_i h_i^* + I_N \right)^{-1} h_j \right)^{-1}$$

with

•
$$h_i \in \mathbb{C}^N$$
 channel modeled as $h_i = \sqrt{r_i} x_i, x_i \sim \mathcal{CN}(0, I_N)$

- σ^2 power of additive noise
- $\triangleright \gamma_i$ target SINR for user *i*
- Can be rewritten as

$$\lambda_j = \frac{\sigma^2 \gamma_j}{r_j} \left(\frac{1}{N} x_j^* \left(\frac{1}{N} \sum_{i \neq j} \frac{\lambda_i r_i}{\sigma^2} x_i x_i^* + I_N \right)^{-1} x_j \right)^{-1}$$

• Power control problem results in solving, for each j = 1, ..., n

$$\lambda_j = \sigma^2 \left((1 + \gamma_j^{-1}) \frac{1}{N} h_j^* \left(\frac{1}{N} \sum_{i=1}^n \frac{\lambda_i}{\sigma^2} h_i h_i^* + I_N \right)^{-1} h_j \right)^{-1}$$

with

•
$$h_i \in \mathbb{C}^N$$
 channel modeled as $h_i = \sqrt{r_i} x_i, x_i \sim \mathcal{CN}(0, I_N)$

- σ^2 power of additive noise
- $\triangleright \gamma_i$ target SINR for user *i*
- Can be rewritten as

$$\lambda_j = \frac{\sigma^2 \gamma_j}{r_j} \left(\frac{1}{N} x_j^* \left(\frac{1}{N} \sum_{i \neq j} \frac{\lambda_i r_i}{\sigma^2} x_i x_i^* + I_N \right)^{-1} x_j \right)^{-1}$$

• With $d_j = rac{\sigma^2 \gamma_j}{\lambda_j r_j}$, this is

$$d_j = \frac{1}{N} x_j^* \left(\frac{1}{N} \sum_{i \neq j} \frac{\gamma_i}{d_i} x_i x_i^* + I_N \right)^{-1} x_j$$

• Power control problem results in solving, for each j = 1, ..., n

$$\lambda_j = \sigma^2 \left((1 + \gamma_j^{-1}) \frac{1}{N} h_j^* \left(\frac{1}{N} \sum_{i=1}^n \frac{\lambda_i}{\sigma^2} h_i h_i^* + I_N \right)^{-1} h_j \right)^{-1}$$

with

•
$$h_i \in \mathbb{C}^N$$
 channel modeled as $h_i = \sqrt{r_i} x_i, x_i \sim \mathcal{CN}(0, I_N)$

- σ² power of additive noise
- $\triangleright \gamma_i$ target SINR for user *i*
- Can be rewritten as

$$\lambda_j = \frac{\sigma^2 \gamma_j}{r_j} \left(\frac{1}{N} x_j^* \left(\frac{1}{N} \sum_{i \neq j} \frac{\lambda_i r_i}{\sigma^2} x_i x_i^* + I_N \right)^{-1} x_j \right)^{-1}$$

• With $d_j = rac{\sigma^2 \gamma_j}{\lambda_j r_j}$, this is

$$d_j = \frac{1}{N} x_j^* \left(\frac{1}{N} \sum_{i \neq j} \frac{\gamma_i}{d_i} x_i x_i^* + I_N \right)^{-1} x_j$$

• Under assumption $\limsup_n \frac{1}{N} \sum_{i=1}^n \frac{\gamma_i}{1+\gamma_i} < 1$ we then have

$$\max_{|\leq j \leq n} \left| \lambda_j - \frac{\sigma^2 \gamma_j}{r_j} \left(1 - \frac{1}{N} \sum_{i=1}^n \frac{\gamma_i}{1 + \gamma_i} \right)^{-1} \right| \xrightarrow{\text{a.s.}} 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers

Context

- Hypothesis testing problem: Two sets of data
 - Initial pure-noise data: x₁,..., x_n, x_i = √τ_iC^{1/2}_N w_i as before.
 New incoming data y given by:

$$y = \begin{cases} x & , \mathcal{H}_0 \\ \alpha p + x & , \mathcal{H}_1 \end{cases}$$

with $x = \sqrt{\tau} C_N^{\frac{1}{2}} w$, $p \in \mathbb{C}^N$ deterministic known, α unknown.

Context

- Hypothesis testing problem: Two sets of data
 - ▶ Initial pure-noise data: $x_1, ..., x_n, x_i = \sqrt{\tau_i} C_N^{\frac{1}{2}} w_i$ as before.
 - New incoming data y given by:

$$y = \begin{cases} x & , \mathcal{H}_0 \\ \alpha p + x & , \mathcal{H}_1 \end{cases}$$

with $x = \sqrt{\tau} C_N^{\frac{1}{2}} w$, $p \in \mathbb{C}^N$ deterministic known, α unknown.

GLRT detection test:

$$T_N(\rho) \stackrel{\mathcal{H}_1}{\underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\lesssim}}} \Gamma$$

for some detection threshold Γ where

$$T_{N}(\rho) \triangleq \frac{|y^{*}\hat{C}_{N}^{-1}(\rho)p|}{\sqrt{y^{*}\hat{C}_{N}^{-1}(\rho)y}\sqrt{p^{*}\hat{C}_{N}^{-1}(\rho)p}}$$

and $\hat{C}_N(\rho)$ defined in previous section.

Context

- Hypothesis testing problem: Two sets of data
 - Initial pure-noise data: $x_1, \ldots, x_n, x_i = \sqrt{\tau_i} C_N^{\frac{1}{2}} w_i$ as before.
 - New incoming data y given by:

$$y = \begin{cases} x & , \mathcal{H}_0 \\ \alpha p + x & , \mathcal{H}_1 \end{cases}$$

with $x = \sqrt{\tau} C_N^{\frac{1}{2}}$ w, $p \in \mathbb{C}^N$ deterministic known, α unknown.

GLRT detection test:

$$T_N(\rho) \stackrel{\mathcal{H}_1}{\underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\lesssim}}} \Gamma$$

for some detection threshold Γ where

$$T_N(\rho) \triangleq \frac{|y^* \hat{C}_N^{-1}(\rho)p|}{\sqrt{y^* \hat{C}_N^{-1}(\rho)y} \sqrt{p^* \hat{C}_N^{-1}(\rho)p}}$$

and $\hat{C}_N(\rho)$ defined in previous section.

- \longrightarrow In fact, originally found to be $\hat{C}_N(0)$ but
 - only valid for N < n</p>
 - introducing ρ may bring improved for arbitrary N/n ratios.

Initial observations:

▶ As $N, n \rightarrow \infty$, $N/n \rightarrow c > 0$, under \mathcal{H}_0 ,

$$T_N(\rho) \xrightarrow{\text{a.s.}} 0.$$

 \Rightarrow Trivial result of little interest!

・ロト・日本・モン・モン・ ヨー うへぐ

Initial observations:

▶ As $N, n \rightarrow \infty$, $N/n \rightarrow c > 0$, under \mathcal{H}_0 ,

$$T_N(\rho) \xrightarrow{\text{a.s.}} 0.$$

\Rightarrow Trivial result of little interest!

Natural question: for finite N, n and given Γ, find ρ such that

 $P(T_N(\rho) > \Gamma) = \min$

Initial observations:

▶ As $N, n \rightarrow \infty$, $N/n \rightarrow c > 0$, under \mathcal{H}_0 ,

$$T_N(\rho) \xrightarrow{\text{a.s.}} 0.$$

\Rightarrow Trivial result of little interest!

Natural question: for finite N, n and given Γ, find ρ such that

 $P(T_N(\rho) > \Gamma) = \min$

• Turns out the correct non-trivial object is, for $\gamma > 0$ fixed

$$P\left(\sqrt{N}T_N(\rho) > \gamma\right) = \min$$

Initial observations:

▶ As $N, n \rightarrow \infty$, $N/n \rightarrow c > 0$, under \mathcal{H}_0 ,

$$T_N(\rho) \xrightarrow{\text{a.s.}} 0.$$

\Rightarrow Trivial result of little interest!

Natural question: for finite N, n and given Γ, find ρ such that

 $P(T_N(\rho) > \Gamma) = \min$

• Turns out the correct non-trivial object is, for $\gamma > 0$ fixed

$$P\left(\sqrt{N}T_N(\rho) > \gamma\right) = \min(\rho)$$

Objectives:

for each ρ, develop central limit theorem to evaluate

$$\lim_{\substack{N,n\to\infty\\N/n\to c}} P\left(\sqrt{N}T_N(\rho) > \gamma\right)$$

- determine limiting minimizing ρ
- empirically estimate minimizing ρ

CLT over \hat{C}_N statistics

- ▶ We know that $\|\hat{C}_N(\rho) \hat{S}_N(\rho)\| \xrightarrow{\text{a.s.}} 0$ \longrightarrow Key result so far!
- What about $\|\sqrt{N}(\hat{C}_N(\rho) \hat{S}_N(\rho))\|$?

・ロト・日本・モン・モン・ ヨー うへぐ

CLT over \hat{C}_N statistics

- We know that $\|\hat{C}_N(\rho) \hat{S}_N(\rho)\| \xrightarrow{\text{a.s.}} 0$ \longrightarrow Key result so far!
- ▶ What about $\|\sqrt{N}(\hat{C}_N(\rho) \hat{S}_N(\rho))\|$? → Does not converge to zero!!!

CLT over \hat{C}_N statistics

- We know that $\|\hat{C}_N(\rho) \hat{S}_N(\rho)\| \xrightarrow{\text{a.s.}} 0$ \longrightarrow Key result so far!
- ▶ What about $\|\sqrt{N}(\hat{C}_N(\rho) \hat{S}_N(\rho))\|$? → Does not converge to zero!!!
- But there is hope...:

$$\sqrt{N}(a^*\hat{C}_N^{-1}(\rho)b - a^*\hat{S}_N^{-1}(\rho)b) \xrightarrow{\text{a.s.}} 0$$

 \Rightarrow This is our main result!

CLT over \hat{C}_N statistics

- We know that $\|\hat{C}_N(\rho) \hat{S}_N(\rho)\| \xrightarrow{\text{a.s.}} 0$ \longrightarrow Key result so far!
- ▶ What about $\|\sqrt{N}(\hat{C}_N(\rho) \hat{S}_N(\rho))\|$? → Does not converge to zero!!!
- But there is hope...:

$$\sqrt{N}(a^*\hat{C}_N^{-1}(\rho)b - a^*\hat{S}_N^{-1}(\rho)b) \xrightarrow{\text{a.s.}} 0$$

 \Rightarrow This is our main result!

This requires much more delicate treatment, not discussed in this tutorial.

Main results

Theorem (Fluctuation of bilinear forms)

Let $a, b \in \mathbb{C}^N$ with ||a|| = ||b|| = 1. Then, as $N, n \to \infty$ with $N/n \to c > 0$, for any $\varepsilon > 0$ and every $k \in \mathbb{Z}$,

$$\sup_{\rho \in \mathcal{R}_{\kappa}} N^{1-\varepsilon} \left| a^* \hat{C}_N^k(\rho) b - a^* \hat{S}_N^k(\rho) b \right| \xrightarrow{\text{a.s.}} 0$$

where $\Re_{\kappa} = [\kappa + \max\{0, 1 - 1/c\}, 1].$

・ロト・日本・モン・モン・ ヨー うへぐ

False alarm performance

Theorem (Asymptotic detector performance) As $N, n \to \infty$ with $N/n \to c \in (0, \infty)$,

$$\sup_{\rho \in \mathcal{R}_{\kappa}} \left| P\left(T_{N}(\rho) > \frac{\gamma}{\sqrt{N}} \right) - \exp\left(-\frac{\gamma^{2}}{2\sigma_{N}^{2}(\hat{\rho})} \right) \right| \to 0$$

where $\rho\mapsto\hat{\rho}$ is the aforementioned mapping and

$$\sigma_N^2(\hat{\rho}) \triangleq \frac{1}{2} \frac{p^* C_N Q_N^2(\hat{\rho}) p}{p^* Q_N(\hat{\rho}) p \cdot \frac{1}{N} \operatorname{tr} C_N Q_N(\hat{\rho}) \cdot (1 - c(1 - \rho)^2 m(-\hat{\rho})^2 \frac{1}{N} \operatorname{tr} C_N^2 Q_N^2(\hat{\rho}))}$$

with $Q_N(\hat{\rho}) \triangleq (I_N + (1 - \hat{\rho})m(-\hat{\rho})C_N)^{-1}$.

False alarm performance

Theorem (Asymptotic detector performance) As $N, n \to \infty$ with $N/n \to c \in (0, \infty)$,

$$\sup_{\rho \in \mathcal{R}_{\kappa}} \left| P\left(T_{N}(\rho) > \frac{\gamma}{\sqrt{N}} \right) - \exp\left(-\frac{\gamma^{2}}{2\sigma_{N}^{2}(\hat{\rho})} \right) \right| \to 0$$

where $\rho\mapsto\hat{\rho}$ is the aforementioned mapping and

$$\sigma_N^2(\hat{\rho}) \triangleq \frac{1}{2} \frac{p^* C_N Q_N^2(\hat{\rho}) p}{p^* Q_N(\hat{\rho}) p \cdot \frac{1}{N} \operatorname{tr} C_N Q_N(\hat{\rho}) \cdot (1 - c(1 - \rho)^2 m(-\hat{\rho})^2 \frac{1}{N} \operatorname{tr} C_N^2 Q_N^2(\hat{\rho}))}$$

with $Q_N(\hat{\rho}) \triangleq (I_N + (1 - \hat{\rho})m(-\hat{\rho})C_N)^{-1}$.

- ► Limiting Rayleigh distribution ⇒ Weak convergence to Rayleigh variable $R_N(\hat{\rho})$
- Remark: σ_N and ρ̂ not a function of γ ⇒ There exists a uniformly optimal ρ!

Simulation

Figure: Histogram distribution function of the $\sqrt{N}T_N(\rho)$ versus $R_N(\hat{\rho})$, N = 20, $p = N^{-\frac{1}{2}}[1, ..., 1]^{\mathsf{T}}$, C_N Toeplitz from AR of order 0.7, $c_N = 1/2$, $\rho = 0.2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulation

Figure: Histogram distribution function of the $\sqrt{N}T_N(\rho)$ versus $R_N(\hat{\rho})$, N = 100, $\rho = N^{-\frac{1}{2}}[1, ..., 1]^T$, C_N Toeplitz from AR of order 0.7, $c_N = 1/2$, $\rho = 0.2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Empirical estimation of optimal $\boldsymbol{\rho}$

- Optimal ρ can be found by line search... but C_N unknown!
- We shall successively:
 - empirical estimate σ_N(ρ̂)
 - minimize the estimate
 - prove by uniformity asymptotic optimality of estimate

Empirical estimation of optimal ρ

- Optimal ρ can be found by line search... but C_N unknown!
- We shall successively:
 - empirical estimate σ_N(ρ̂)
 - minimize the estimate
 - prove by uniformity asymptotic optimality of estimate

Theorem (Empirical performance estimation) For $\rho \in (\max\{0, 1 - c_N^{-1}\}, 1)$, let

$$\hat{\sigma}_{N}^{2}(\hat{\rho}) \triangleq \frac{1}{2} \frac{1 - \hat{\rho} \cdot \frac{p^{*}\hat{C}_{N}^{-2}(\rho)p}{p^{*}\hat{C}_{N}^{-1}(\rho)p} \cdot \frac{1}{N}tr\hat{C}_{N}(\rho)}{\left(1 - c + c\hat{\rho}\frac{1}{N}tr\hat{C}_{N}^{-1}(\rho) \cdot \frac{1}{N}tr\hat{C}_{N}(\rho)\right)\left(1 - \hat{\rho}\frac{1}{N}tr\hat{C}_{N}^{-1}(\rho) \cdot \frac{1}{N}tr\hat{C}_{N}(\rho)\right)}$$

Also let $\hat{\sigma}^2_N(1) \triangleq \lim_{\hat{\rho}\uparrow 1} \hat{\sigma}^2_N(\hat{\rho})$. Then

$$\sup_{\rho \in \mathcal{R}_{\kappa}} \left| \sigma_{N}^{2}(\hat{\rho}) - \hat{\sigma}_{N}^{2}(\hat{\rho}) \right| \xrightarrow{\text{a.s.}} 0.$$

Final result

Theorem (Optimality of empirical estimator) *Define*

$$\hat{\rho}_N^* = \operatorname{argmin}_{\{\rho \in \mathcal{R}_\kappa'\}} \left\{ \hat{\sigma}_N^2(\hat{\rho}) \right\}.$$

Then, for every $\gamma > 0$,

$$P\left(\sqrt{N}T_{N}(\hat{\rho}_{N}^{*}) > \gamma\right) - \inf_{\rho \in \mathcal{R}_{K}} \left\{ P\left(\sqrt{N}T_{N}(\rho) > \gamma\right) \right\} \to 0.$$

590

э

Simulations

Figure: False alarm rate $P(\sqrt{N}T_N(\rho) > \gamma)$, N = 20, $p = N^{-\frac{1}{2}}[1, ..., 1]^T$, C_N Toeplitz from AR of order 0.7, $c_N = 1/2$.

(日)、

Simulations

Figure: False alarm rate $P(\sqrt{N}T_N(\rho) > \gamma)$, N = 100, $p = N^{-\frac{1}{2}}[1, ..., 1]^T$, C_N Toeplitz from AR of order 0.7, $c_N = 1/2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Simulations

Figure: False alarm rate $P(T_N(\rho) > \Gamma)$ for N = 20 and N = 100, $p = N^{-\frac{1}{2}}[1, ..., 1]^{\mathsf{T}}$, $[C_N]_{ij} = 0.7^{|i-j|}$, $c_N = 1/2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Robust Estimation of Scatter

Spiked model extension and robust G-MUSIC

Robust shrinkage and application to mathematical finance

Optimal robust GLRT detectors

Robustness against outliers

Deterministic outliers

Observation matrix: $X = [x_1, \ldots, x_{(1-\varepsilon_n)n}, a_1, \ldots, a_{\varepsilon_n n}]$ with

- ► $x_1, ..., x_{(1-\varepsilon_n)n}$ i.i.d. Gaussian zero mean covariance C_N
- $a_1, \ldots, a_{\varepsilon_n n}$ deterministic such that $0 < \min_i \liminf_n N^{-\frac{1}{2}} ||a_i|| \le \max_i \limsup_n N^{-\frac{1}{2}} ||a_i|| < \infty.$

Theorem

Then, as N, $n \to \infty$,

$$\left\|\hat{C}_{N}-\hat{S}_{N}\right\| \xrightarrow{\text{a.s.}} 0, \ \hat{S}_{N} \triangleq \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_{n})n} v\left(\gamma_{n}\right) x_{i} x_{i}^{*} + \frac{1}{n} \sum_{i=1}^{\varepsilon_{n}n} v\left(\alpha_{i,n}\right) a_{i} a_{i}^{*}$$

with γ_n and $\alpha_{1,n}, \ldots, \alpha_{\varepsilon_n n,n}$ the unique positive solutions to the system of $\varepsilon_n n + 1$ equations $(i = 1, \ldots, \varepsilon_n n)$

$$\gamma_{n} = \frac{1}{N} \operatorname{tr} C_{N} \left(\frac{(1-\varepsilon) v_{c}(\gamma_{n})}{1+c v_{c}(\gamma_{n}) \gamma_{n}} C_{N} + \frac{1}{n} \sum_{i=1}^{\varepsilon_{n} n} v(\alpha_{i,n}) a_{i} a_{i}^{*} \right)^{-1}$$
$$\alpha_{i,n} = \frac{1}{N} a_{i}^{*} \left(\frac{(1-\varepsilon) v_{c}(\gamma_{n})}{1+c v_{c}(\gamma_{n}) \gamma_{n}} C_{N} + \frac{1}{n} \sum_{j \neq i}^{\varepsilon_{n} n} v(\alpha_{j,n}) a_{j} a_{j}^{*} \right)^{-1} a_{i}$$

and $v_c(x) = u(g^{-1}(x)), g(x) = x/(1 - c\varphi(x)).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Comments

• Say
$$\varepsilon_n = 1/n \to 0$$
, then $\gamma_n \to \gamma$ with $\gamma = \Phi^{-1}(1)/(1-c)$ and

$$\alpha_{1,n} = \left(\frac{\Phi^{-1}(1)}{1-c} + o(1)\right) \frac{1}{N} a_1^* C_N^{-1} a_1$$

• Rejection of outliers depends strongly on $\frac{1}{N}a_1^*C_N^{-1}a_1$ compared to 1.

Random outliers

Corollary

Assume now $a_i = D_N^{\frac{1}{2}} w_i$ with $\limsup_N ||D_N|| < \infty$. Then,

$$\left\| \hat{C}_{N} - \hat{S}_{N}^{\mathrm{rnd}} \right\| \stackrel{\mathrm{a.s.}}{\longrightarrow} 0$$

where

$$\hat{S}_{N}^{\mathrm{rnd}} \triangleq \frac{1}{n} \sum_{i=1}^{(1-\varepsilon_{n})n} v\left(\gamma_{n}\right) x_{i} x_{i}^{*} + \frac{1}{n} \sum_{i=1}^{\varepsilon_{n}n} v\left(\alpha_{n}\right) a_{i} a_{i}^{*}$$

with γ_n and α_n the unique positive solutions to

$$\gamma_{n} = \frac{1}{N} \operatorname{tr} C_{N} \left(\frac{(1-\varepsilon)v_{c}(\gamma_{n})}{1+cv_{c}(\gamma_{n})\gamma_{n}} C_{N} + \frac{\varepsilon v_{c}(\alpha_{n})}{1+cv_{c}(\alpha_{n})\alpha_{n}} D_{N} \right)^{-1}$$
$$\alpha_{n} = \frac{1}{N} \operatorname{tr} D_{N} \left(\frac{(1-\varepsilon)v_{c}(\gamma_{n})}{1+cv_{c}(\gamma_{n})\gamma_{n}} C_{N} + \frac{\varepsilon v_{c}(\alpha_{n})}{1+cv_{c}(\alpha_{n})\alpha_{n}} D_{N} \right)^{-1}$$

• Now, for ε small, rejection depends on $\frac{1}{N} \operatorname{tr} D_N C_N^{-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Simulation example

Figure: Limiting eigenvalue distributions. $[C_N]_{ij} = .9^{|i-j|}$, $D_N = I_N$, $\varepsilon = .05$.

(ロ)、(型)、(E)、(E)、(E)、(O)()

The End

Thank you.

(ロ)、(型)、(E)、(E)、 E) の(の)