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Let Ac C™"

We say that A € C is an eigenvalue of A when there exists
v € C™"\ {0} such that

Av = A\v.

In this case we say that v is an eigenvector.
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So the problem of devising an algorithm [for the eigenvalue
problem] that is numerically stable and globally (and quickly!)
convergent remains open. [p. 139]
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Current Algorithms

e Compute the characteristic polynomial x4 of A and then
compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]
e Variations of the QR algorithm.

» The unshifted QR algorithm terminates with probability 1 but
is probably infinite average cost if approximations to the
eigenvectors are to be output.

» The QR algorithm with Rayleigh Quotient shift fails for open
sets of real input matrices.

» It is unknown whether the Francis (double) shift algorithm
converges generally on real or complex matrices.

[*** No theoretical understanding ***]



Theorem We exhibit an algorithm which on input a matrix A
with complex Gaussian entries generates (with probability 1) an
“excellent” approximation to all the (eigenvalue, eigenvector) pairs
of A. Moreover, the running time of this algorithm is polynomial in
n on the average.

This algorithm is numerically stable.
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Three kinds of approximation (5 for A ():

» Backward approximation. 5is the solution of a datum A close
to A. Given ¢ > 0, we say that ( is an e-backward
approximation when ||A — A|| < e.

» Forward approximation. Z is close to (. Given € > 0, we say
that ¢ is an e-forward approximation when | — (| < e.

» Approximation a la Smale. An appropriate version of
Newton's iteration, starting at {, converges immediately,
quadratically fast, to (.
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Newton's method
We define a Newton map associated to A

Nj: C x (C"\ {0}) — C x (C"\ {0}).

Let V:= {(A,\,v) | (A— Ald)v = 0}.

Given (A, \,v) € V we say that ({,w) € C x (C"\ {0}) is an
approximate eigenpair of A with associated eigenpair (\, v) when
for all k > 1 the kth iterate NX(¢, w) of the Newton map at (¢, w)
is well defined and satisfies

2k—1
dist((NA(¢, w)), (A, v)) < G) dist((¢, w), (A, v)).



Well-posedness

A triple (A, A, v) is well-posed when A is a simple eigenvalue of A.
We write (A, A, v) € W. Otherwise, it is said to be ill-posed.

Proposition lll-posed eigenpairs have no approximate eigenpairs
a la Smale.

Proposition The set > of matrices A with multiple eigenvalues
has (real) codimension 2 in C"*",



Given (A, A, v) e C™" x C x P(C"), we let Ay, : T, — T, be
Avy =P, o (A= Ad)|7,.

We define the condition number of the triple (A, A, v) by
WA V) = [AlF AL

Theorem Let A e C™" with ||Al|f =1 and
(A, v), (Mo, o) € C x (C"\ {0}). If (A, v) is a well-posed eigenpair

of A and
o)

w(A, A, v)

then (Ao, vo) is an approximate eigenpair of A with associated
eigenpair (A, v). One may choose ¢y = 0.2881.

diSt((/\, V), (Ao, Vo)) <



The Algorithm

We are given A € C"™" and an initial triple (M, Ao, vp) in W .
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The Algorithm

We are given A € C"™" and an initial triple (M, Ao, vp) in W .
Consider the line segment [M, A] in C"™*" with endpoints M and A

[M,A] ={Q, e C™" | 7 €[0,1]}

with Q; being the only point in [M, A] such that ds(M, Q) = Ta.

When 7 moves from 0 to 1 the eigenpair (Ar, v;) of Q; moves
from (Ao, vp) to an eigenpair (A1, v1) of A= Q.



We want to “follow” the curve (A, v;).

A,
CxCn (o)

(ATH»I ’ VTH»I)

~ e (Gir1, wiga)

M = QO QT,- QT,‘+1 A= Ql



Path-follow

Input: A€ C"™" and (M, \o, vp) €W

a:=ds(M,A), r:=|Alg, s:=|M|r
7:=0, Q: =M, ((,w) := (Ao, W)

repeat
._ _0.001461
AT = SiAQCw)
7:=min{l, 7 + AT}
t:=

s+r(sina cof(Ta)fcos )
Q:=tA+(1-t)M
(€, w) = Ng(¢, w)
until 7 =1

return (¢, w)

Output: (¢,w) € C x C", approximate eigenpair of A.
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Complexity

Cost of Path-follow on input (A, M, o, w):

cost(A, M, Ao, vo) = Number of iterations x cost of each iteration

e N
K(A, /W7 )\o,VO) (’)(n3)

Path-follow terminates (i.e., K(A, M, Ao, vo) < 00) iff
(Qr, Ar,vr) € Wforall 7 € [0,1].



Theorem

1
K(A, M, X, vo) < C/ 12(Qry Ar, vy )dT.
0
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Given A € C"*" we ran Path-follow with:

» M a (particular) diagonal matrix
> \o the ith diagonal entry (i choosen at random)

> VO:ei

Theorem We have

E E  K(A M, X, vo) = O(n°)
A~N(0,Id) i~{1,...,n}

and, consequently,

E E  cost(A, M, \g, vo) = O(n®).
A~N(0,Id) i~{L,...,n}

One can also (deterministically) compute all the eigenpairs of A.
The average total cost is O(n°).



A finer randomization?

Theorem We have

1) E E  K(A M, )\, v) =O(n).
A~N(0,Id) M~N(0,Id) i~{1,...,n}



A finer randomization?

Theorem We have

1) E E  K(A M, )\, v) =O(n).
A~N(0,Id) M~N(0,Id) i~{1,...,n}

This result raises the need of an efficient algorithm to draw, given
n, a triple (M, \, v) satisfying:



A finer randomization?

Theorem We have

1) E E  K(A M, )\, v) =O(n).
A~N(0,Id) M~N(0,Id) i~{1,...,n}

This result raises the need of an efficient algorithm to draw, given
n, a triple (M, \, v) satisfying:

» M is drawn from N(0, Id);



A finer randomization?

Theorem We have

1) E E  K(A M, )\, v) =O(n).
A~N(0,Id) M~N(0,Id) i~{1,...,n}

This result raises the need of an efficient algorithm to draw, given
n, a triple (M, \, v) satisfying:
» M is drawn from N(0, Id);

» (A, v) is drawn from the (discrete) uniform distribution among
the n eigenpairs of M.



A finer randomization?

Theorem We have

1) E E  K(A M, )\, v) =O(n).
A~N(0,Id) M~N(0,Id) i~{1,...,n}

This result raises the need of an efficient algorithm to draw, given
n, a triple (M, \, v) satisfying:
» M is drawn from N(0, Id);

» (A, v) is drawn from the (discrete) uniform distribution among
the n eigenpairs of M.

To do so, it is enough to draw a diagonal matrix whose diagonal
elements (A1, ..., A,) follow the spectrum law of the Ginibre
ensemble.

Can we do this in O(n®) operations?



