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The GUE : topological expansion

Let XN = (XN
1 , . . . ,X

N
d ) be independent GUE matrices. Then if q

is a monomial

E[
1

N
Tr(q(XN

1 , . . . ,X
N
d ))] =

∑
g≥0

1

N2g
M(q, g)

with M(q, g) the number of maps with genus g build over a star of
type q.
Proof. Gaussian computation.
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Maps

A map is a connected graph which is properly embedded into a
surface, that is so that its edges do not cross and the faces
(obtained by cutting the surface along the edges of the graph) are
homeomorphic to disks. The genus of a map is the genus of this
surface.

By Euler formula,

2− 2g = #{vertices}

−#{edges}+ #{faces} .

= 2 + 3− 3

1
2

3
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Enumeration of colored maps

Consider vertices with colored half-edges and enumerate maps
build by matching half-edges of the same color.
Let q(X1, . . . ,Xd) = Xi1Xi2 · · ·Xip . A “star of type q” is the vertex
with first half-edge of color i1, the second color i2 etc until the last
which has color ip.

M((qi , ki )1≤i≤m; g) denotes the number of maps with genus g
build on ki stars of type qi , 1 ≤ i ≤ m.
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Matrix models (’t Hooft ; Brézin, Itzykson, Parisi and
Zuber )

Let Vt = 1
2

∑
X 2
i −

∑`
i=1 tiqi be a polynomial in d

non-commutative indeterminates.

dPVt
N (XN

1 , . . . ,X
N
d ) =

1

ZN
Vt

e−NTr(Vt(XN
1 ,...,X

N
d ))dXN

i

Then for any monomial P in d non-commuting variables, we have
the formal expansion

EPVt
N

[
1

N
Tr(q(XN

1 , . . . ,X
N
d ))] =

∞∑
g=0

1

N2g
τ tg (q),

1

N2
log

ZN
Vt

ZN
V0

=
∞∑
g=0

F t
g

where

τ tg (q) =
∑∏

i

tkii
ki !

M((ki , qi )1≤i≤`, (1, q); g)

if M((ki , qi )1≤i≤`, (1, q); g) is the number of maps with genus g
build over ki stars of type qi , 1 ≤ i ≤ ` and one of type q.
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This talk : Obtain such expansions asymptotically
Why care ?

• CLT : Expansion of the partition function up to o(1) gives
estimation of :

PV
N (e

∑
f (λi )) =

ZN
V− 1

N
f

ZN
V

for smooth enough f .
• Universality : Would like to do double scale limits to get

universality at the edge. Does not work yet. But can use
similar arguments based on transport maps (Shcherbina 13’,
Bekerman-Figalli-G 13’).

• Beyond universality : Edelman-G-Peche 14’ : Let W be
N × (N + ν) with i.i.d centered entries with covariance a and
fourth cumulant κ4, G be i.i.d standard Gaussian N × (N + ν)

P(λmin((W + G )(W + G )∗) ≥ s/n) = Fn(s) +
sF ′n(s)κ4

(a2 + 1)2n
+ o(

1

n
)

where Fn(s) = P((1 + a2)λmin(GG ∗) ≥ s/n).
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Asymptotic topological expansion
Let V be a polynomial in d non-commutative indeterminates, put

dPV
N (XN

1 , . . . ,X
N
d ) =

1

ZN
V

e−
N
2
Tr(V (XN

1 ,...,X
N
d ))
∏
i

1‖XN
i ‖≤R

dXN
i

Theorem
R ∈ (2,+∞) and k ∈ N. V = V ∗ = 1

2

∑
X 2
i −

∑
tiqi , ti small.

• 1

N2
logZN

V =
k∑

g=0

1

N2g
F g (t) + o(

1

N2k
) ,

•EPV
N

[
1

N
Tr(q(XN

1 , . . . ,X
N
d ))] =

k∑
g=0

1

N2g
τ tg (q) + o(

1

N2k
)

with τ tg the generating function for maps with genus g .

-m = 1 : Ambjórn (95), Albeverio-Pastur-Shcherbina (01),
Ercolani-McLaughlin (03)

-m = 2 : G.-Maurel-Segala (g ≤ 1 (05)(06)),Maurel-Segala (∀g (06))
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Corollary : CLT

Let V be a polynomial in d non-commutative indeterminates so
that

dPV
N (XN

1 , . . . ,X
N
d ) =

1

ZN
V

e−
N
2
Tr(V (XN

1 ,...,X
N
d ))
∏
i

1‖XN
i ‖≤R

dXN
i

Theorem
R ∈ (2,+∞) and k ∈ N. Assume V = V ∗ = 1

2

∑
X 2
i −

∑
tiqi

with ti small. The law of Tr(P(XN
1 , . . . ,X

N
d ))− Nτ t0(P) converges

towards a centered Gaussian variable with covariance C (P,Q)
given by the generating function for the enumeration of planar
maps with two fixed stars of type P and Q.
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Away from perturbative results : β-ensembles

dPN
β,V =

1

ZN
β,V

∏
|λi − λj |βe−N

∑N
i=1 V (λi )

∏
dλi

LN = 1
N

∑
δλi converges weakly towards µV .

Theorem
Assume that V is off-critical. If µV has connected support then,

τNβ,V (q) := EPN
β,V

[LN(q)] =
k∑

g=0

1

Ng
τgβ,V (q) + o(

1

N2k
) ,

A CLT holds for linear statistics.

- Albeverio, Pastur et Shcherbina (01), Ercolani-Mc Laughlin (03),
Borot-G (11)
- CLT : Johansson (98)
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β-ensembles with several cuts

dPN
β,V =

1

ZN
β,V

∏
|λi − λj |βe−N

∑N
i=1 V (λi )

∏
dλi

LN = 1
N

∑
δλi converges weakly towards µV .

Theorem ( Deift, Kriecherbauer, McLaughlin, Venakides, and
Zhou (99), Eynard (11), Borot-G (13) )

Assume that V is off-critical but the support of µV has p > 1
connected components. Then,

• If condition on number of particles in each connected
component, the same expansion as for 1 cut holds,

• There is an optimal feeling fraction ε1, . . . , εp so that

ZN
β,V =

∑
∑

ni=N

Z
n1,...,np
β,V =

∑
eN

2F0(
ni
N
)+NF1(

ni
N
)+···

= eN
2F∗

0 +NF∗
1

∑
∑

ni=N

e
∑

Di,jF0(ni−εiN,nj−εjN)+
∑

DiF1(ni−εiN)+...
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β,V =

∑
eN

2F0(
ni
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∑
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∑
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β-ensembles with several cuts

dPN
β,V =

1

ZN
β,V

∏
|λi − λj |βe−N

∑N
i=1 V (λi )

∏
dλi

LN = 1
N

∑
δλi converges weakly towards µV .

Theorem
Assume that V is off-critical but the support of µV has p > 1
connected components then, take φ smooth.

PN
β,V (e is(

∑
φ(λi )−N

∫
φdµeq)) ' e iM(φ)− 1

2
Q∗(φ)F (u(φ))

where F (0) = 1 and oscillating otherwise,

u(φ) =
β

2

(
(∂εh − ∂ε0)

∫
φ(x)dµeq,ε

)
1≤h≤p

-Cf Pastur (06), Kriecherbauer-Shcherbina (11).
-Generalization to non-linear V [Borot-Kozlowski-G (14’)]
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The sinsh-model

In quantum integrable models, quantities such as :

zN =

∫
RN

∏
a<b

{
sinh[πω1(ya−yb)] sinh[πω2(ya−yb)]

}β
·
N∏

a=1

e−W (ya)·dNy .

or

ZN [V ] =

∫
RN

∏
a<b

{ ∏
i=1,2

sinh[πωiTN(λa−λb)]
}β
·
N∏

a=1

e−NTNVN(λa)·dNλ .

show up (with e.g. V (x) = w cosh(x), TN = logN). The
interaction presents the same singularity as β-models. Can we
study their large N expansions, in particular derive the term of
order 1 ?
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Results on the Sinsh-model

ZN [V ] =

∫
RN

∏
a<b

{ ∏
i=1,2

sinh[πωiTN(λa−λb)]
}β
·
N∏

a=1

e−NTNV (λa)·dNλ .

Theorem ( Borot-Kozlowski-G (14))

Assume TN = Nα, α < 1/6, V strictly convex and smooth (not
analytic), (β = 1)

ln

(
ZN [V ]

ZN [VG ;N ]

)
= −N2+α

b2/αc+1∑
p=0

Zp[V ]

Nαp
+ NαA[V ] + B[V ] + o(1) .

ZN [VG ;N ] can be computed exactly.
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Schwinger-Dyson equations

All proofs rely on equations, called Schwinger-Dyson (or loop)
equations, which are derived by integration by parts. Let us
consider the Coulomb gas interacting particles models :

dPN
V (λ1, . . . , λN) =

1

ZN
V

∏
i<j

|λi − λj |βe−N
∑

V (λi )
∏

dλi

The empirical measure LN = 1
N

∑N
i=1 δλi satisfies∫ (

β

2

∫∫
∂f (x , y)dLN(x)dLN(y)−

∫
V ′(x)f (x)dLN(x)

)
dPN

V

=
1

N
(
β

2
− 1)

∫ ∫
f ′(x)dLN(x)dPN

V .
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Analysis of Schwinger-Dyson equations

For β models,

• when V is analytic, one deduces from the Schwinger-Dyson’s
equations, equations for the correlators

W k(z1, . . . , zk) = ∂ε1 · · · ∂εk logZN
V+ 1

N

∑ εk
zk−.
|εi=0

These equations can be linearized around their limit and, up
to invert some linear operator and using a priori concentration
inequalities, solved asymptotically.

• For several matrix models, nor for the Sinsh model, this is not
possible. We detail the approach for the β-ensembles below :
It yields equations rather at the level of measures.
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Ideas of proofs : β-models

dPN
V (λ1, . . . , λN) =

1

ZN
V

∏
i<j

|λi − λj |βe−N
∑

V (λi )
∏

dλi

• By Large deviation (or saddle point) methods, there exists a
unique measure µV so that :

lim
N→∞

LN = µV a.s

• Rewrite the SD equation in terms of L̃N = N(LN − µV )

PN
V

(
L̃N(Ξf )

)
=

β

2N
PN
V

(∫
f (x)− f (y)

x − y
dL̃N(x)dL̃N(y)

)
+(
β

2
− 1)

∫ ∫
f ′(x)dLN(x)dPN

V

Ξf (x) = β

∫
f (x)− f (y)

x − y
dµV (y)− V ′(x)f (x)
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PN
V

(
L̃N(Ξf )

)
=

β

2N
PN
V

(∫
f (x)− f (y)

x − y
dL̃N(x)dL̃N(y)

)
+(
β

2
− 1)

∫ ∫
f ′(x)dLN(x)dPN

V

Show that Ξ is invertible. Then

• lim
N→∞

∫
f (x)dL̃N(x) = (

β

2
− 1)

∫
(Ξ−1f )′(x)dµV (x)

• δ2N(f ) = N[

∫
f (x)dL̃N(x)− (

β

2
− 1)

∫
(Ξ−1f )′(x)dµV (x)] =

PN
V

(
β

2

∫
Ξ−1f (x)− Ξ−1f (y)

x − y
dL̃N(x)dL̃N(y) + (

β

2
− 1)

∫
(Ξ−1f )′dL̃N

)
To get the limit of the right hand side, one needs to get the limit
of the correlator

CN(f , g) = E[L̃N(f )L̃N(g)].
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Asymptotic of the correlators

Making an infinitesimal change of variables V → V + εg in the SD
equation we get

PN
V

(
L̃N(Ξf )L̃N(g)

)
= E[LN(g ′f )] + (

β

2
− 1)E[

∫
(Ξ−1f )′(x)dL̃N(x)]

+
β

2N
PN
V

(
L̃N(g)

(∫
f (x)− f (y)

x − y
dL̃N(x)dL̃N(y)

))
Use concentration of measure to see the last term is neglectable,
and invert Ξ to conclude that

C (f , g) = lim
N→∞

CN(f , g) = µV (gΞ−1f )

and finally, plugging back into previous equation, get δ2N . Continue
to the next orders...
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New ideas for Sinsh model

ZN [V ] =

∫
RN

∏
a<b

{ ∏
i=1,2

sinh[πωiTN(λa−λb)]
}β
·
N∏

a=1

e−NTNV (λa)·dNλ .

• Deal with N-dependent equilibrium measure whose analysis is
based on a 2d Riemann-Hilbert problem (square root
vanishing compared with step boundary behavior)

• 2 scales N and Nα.

• The interaction possesses a tower of poles so that the
approach by correlators is not effective. Need to control
inverse of master operator Ξ in good spaces.
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Conclusion

• Systems asymptotically driven by the free difference quotient
can be shown to have topological expansions. The key point is
to invert a Master operator and use concentration of measure.

• This extend to Sinsh model : what else ? get expansion for the
cosh potential ?

• This approach can be generalized to prove topological
expansion for several matrix models and uniform measure on
the unitary or orthogonal groups [G-Novak 14’] in perturbative
settings.
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