
Large complex correlated Wishart matrices:
Fluctuations and asymptotic independence

at the edges

Joint work with W. Hachem and J. Najim.

Adrien Hardy

Royal Institute of Technology KTH, Stockholm

Random matrices and their application, Hong Kong, January 7, 2015

Adrien Hardy, KTH Large complex correlated Wishart matrices



Plan

1 Introduction and statement of the results

2 More precisions

3 Beyond universality

Adrien Hardy, KTH Large complex correlated Wishart matrices



1) The matrix model

Complex correlated Wishart matrix:

MN =
1

N
XNΣNX∗N

where

XN is an N × n matrix with independent NC(0, 1) entries

ΣN is an n × n symmetric positive definite matrix

Let x1 6 · · · 6 xN be the eigenvalues of MN (main characters),

and λ1 6 · · · 6 λn be the eigenvalues of ΣN (parameters).
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1) Global behavior

Asymptotic regime:

N, n→∞, n
N → γ ∈ (0,∞),

νN :=
1

n

n∑
j=1

δλj
∗−−−−→

N→∞
ν with compact support.

Global behavior (Marčenko-Pastur,67):

There exists µ(ν,γ) only depending on ν,γ such that

1

N

N∑
j=1

δxj
∗−−−−→

N→∞
µ(ν,γ) a.s.

[The Stieltjes transform of µ(ν,γ) satisfies a fixed-point equation]
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1) Global behavior

Remark (to keep in mind for later):

At fixed finite N,

a good approximation for the distribution of x1, . . . , xN

is the deterministic equivalent µ(νN ,
n
N

).

Adrien Hardy, KTH Large complex correlated Wishart matrices



1) Global behavior

Examples: ν = 1
3 (δ1 + δ3 + δ7) and γ = 1
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1) Local behavior

Question: Fluctuations of the extremal eigenvalues at each edge ?

More precisely,

Can we identify the extremal eigenvalues ?

Law of the fluctuations ?

Given several extremal eigenvalues,
asymptotic independence of the fluctuations ?
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1) Local behavior, ΣN = IN

Example: The non-correlated case ΣN = IN =⇒ ν = δ1

Limiting support (ignoring the Dirac mass at zero):

Supp µ(δ1,γ) = [a, b],

{
a = (1−√γ)2

b = (1 +
√
γ)2

(Geman, 80/Bai-Yin,93)

xmin
a.s.−−−−→

N→∞
a, xmax

a.s.−−−−→
N→∞

b
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1) Local behavior, ΣN = IN

Fluctuations:

Consider the support of the deterministic equivalent

Supp µ(δ1,
n
N

) = [aN , bN ],

{
aN = (1−

√
n
N )2

bN = (1 +
√

n
N )2

.

Then, for some bounded sequence (σN) [varying from line to line],

(Johansson,00),

N2/3σN
(
xmax − bN

) L−−−−→
N→∞

Tracy-Widom

(Borodin-Forrester,03),

If γ 6= 1, N2/3σN
(
aN − xmin

) L−−−−→
N→∞

Tracy-Widom
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1) Local behavior, ΣN = IN

Assume now n = N + α with α ∈ N fixed.

Thus
n

N
→ γ = 1, xmin

a.s.−−−−→
N→∞

a = 0 (hard edge)

(Forrester,93),

N2σN xmin
L−−−−→

N→∞
Bessel(α)
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1) Local behavior, ΣN = IN + finite rank

Finite rank perturbation (Baik-Ben Arous-Péché,05):

ΣN = diag( 1 + ε, . . . , 1 + ε︸ ︷︷ ︸
k

, 1, . . . , 1), k fixed.

Fact: νN → δ1 =⇒ same global behavior.

But,

If ε < εc ,

xmax
a.s.−−−−→

N→∞
b, Tracy-Widom fluctuations

If ε = εc ,

xmax
a.s.−−−−→

N→∞
b, k-deformed Tracy-Widom

If ε > εc ,

xmax
a.s.−−−−→

N→∞
bjump > b, GUE(k) behavior
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1) Local behavior, ΣN = IN + finite rank

Conclusion: Local behaviors are sensitive to the convergence

νN =
1

n

n∑
j=1

δλj
∗−−−−→

N→∞
ν
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1) Local behavior, General ΣN

General ΣN , with eigenvalues λ1 6 · · · 6 λn

Assume

νN =
1

n

n∑
j=1

δλj
∗−−−−→

N→∞
ν with compact support

and
0 < lim inf

N→∞
λ1, lim sup

N→∞
λn < +∞

Fact: The limiting support Suppµ(ν,γ) is compact,
but not necessarily connected.

For an edge b of Suppµ(ν,γ), we introduce a
regularity condition.
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1) Local behavior, General ΣN

Theorem (Right edges)

Consider a regular right edge b. Then,

(Existence of the extremal eigenvalue)

There exists a deterministic sequence (Φ(N)) such that

xΦ(N)
a.s−−−−→

N→∞
b, lim inf

N→∞
xΦ(N)+1 > b a.s.

(Tracy-Widom fluctuations)

There exists a right edge bN of µ(νN ,
n
N

) such that bN → b and

N2/3σN
(
xΦ(N) − bN

) L−−−−→
N→∞

Tracy-Widom,

for some explicit bounded sequence (σN).
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1) Local behavior, General ΣN

When b is the rightmost edge and there is no outliers,

the Tracy-Widom fluctuations have already been obtained

(El Karoui,07) when γ 6 1, and then extended

to general γ ∈ (0,∞) (Onatski,08)
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1) Local behavior, General ΣN

Theorem (Left soft edges)

Consider a positive regular left edge a. Then,

(Existence of the extremal eigenvalue)

There exists a deterministic sequence (Φ(N)) such that

xΦ(N)
a.s−−−−→

N→∞
a, lim inf

N→∞
xΦ(N)−1 < a a.s.

(Tracy-Widom fluctuations)

There exists a left edge aN of µ(νN ,
n
N

) such that aN → a and

N2/3σN
(
aN − xΦ(N)

) L−−−−→
N→∞

Tracy-Widom,

for some explicit bounded sequence (σN).
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1) Local behavior, General ΣN

Theorem (Asymptotic independence)

Given two finite families of positive regular left edges (ai )i∈I and
regular right edges (bj)j∈J , the associated fluctuations are
asymptotically independent.

Theorem (Hard edge)

Assume n = N + α with α ∈ Z fixed. Then

N2σN xmin
L−−−−→

N→∞
Bessel(α),

for some explicit bounded sequence (σN).
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1) Local behavior, General ΣN

Corollary (Study of the Condition number)

We obtain convergence and fluctuations for

κN =
xmax

xmin

in different regimes.
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1) Local behavior, General ΣN

Beyond the Gaussian case ?

Recall

MN =
1

N
XNΣNX∗N

where

XN is an N × n matrix with independent NC(0, 1) entries

ΣN is an n × n symmetric positive definite matrix

Local law (Knowles-Yin,14): One can drop the Gaussian
assumption and still have independent Tracy-Widom fluctuations.
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2) More precisions
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2) Regularity condition

Characterization of Suppµ(ν,γ) (Silverstein-Choi,95):

The Cauchy transform

m(z) =

∫
µ(ν,γ)(dx)

z − x
, z ∈ H,

has an inverse given by

g(m) =
1

m
+ γ

∫
x

1−mx
ν(dx)

and which analytically extends to

Dom =
{

m ∈ R : m 6= 0,
1

m
/∈ Supp(ν)

}
(and takes real values there).
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2) Regularity condition

Characterization of Suppµ(ν,γ) (Silverstein-Choi,95):

Consider every (maximal) intervals I ⊂ Dom where g decreases, and

delete the g(I )’s from R, what is left is Suppµ(ν,γ) (but zero).

Example: ν = 7
10δ1 + 3

10δ3 and γ = 1
10

.

b

d

−0.5 0 0.5 1 1.5 2
.

Adrien Hardy, KTH Large complex correlated Wishart matrices



2) Regularity condition

Characterization of Suppµ(ν,γ) (Silverstein-Choi,95):

Consider every (maximal) intervals I ⊂ Dom where g decreases, and

delete the g(I )’s from R, what is left is Suppµ(ν,γ) (but zero).

Example: ν = 7
10δ1 + 3

10δ3 and γ = 1
10

.

b

d

−0.5 0 0.5 1 1.5 2
.

Adrien Hardy, KTH Large complex correlated Wishart matrices



2) Regularity condition

Thus, if b is an edge of Suppµ(ν,γ), there exists d such that

b = g(d),

where either

d ∈ Dom is a local extremum for g

or d ∈ ∂(Dom)

Definition

We say b is regular if

lim inf
N→∞

n
min
j=1

∣∣∣d− 1

λj

∣∣∣ > 0.

Remark: If b = g(d) is regular, then necessarily d /∈ ∂(Dom).
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2) Existence for extremal eigenvalues

If b is a regular edge, then

Exact separation (Bai-Silverstein,98,99)

=⇒ Existence for the associated extremal eigenvalue

Complex analysis (Montel, Rouché,...)

=⇒ Existence of an edge bN of µ(νN ,
n
N

) such that bN → b
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2) Tracy-Widom fluctuations

Determinantal structure (Johansson/BBP,05)
=⇒ Repartition function ' Fredholm determinant, i.e.

P
[
N2/3σN

(
xΦ(N) − bN

)
6 s
]

= det
(
I −KN

)
L2(s,εN2/3)

+ o(1)

=⇒ Enough to prove the convergence

KN −→ KAi as N →∞

(in an appropriate sense)

Complex integral representation for KN (idem):

KN(x , y) =
1

(2iπ)2

∮
Γ
dz

∮
Θ
dw FN(x , y ; z ,w),

where FN is explicit.
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2) Tracy-Widom fluctuations

Asymptotic analysis as N →∞ for

KN(x , y) =
1

(2iπ)2

∮
Γ
dz

∮
Θ
dw FN(x , y ; z ,w)

Local analysis around d ⇒ Airy kernel
- Saddle point of order two, almost routine computation

The remaining of the integral is negligible
- Clever analytic deformation of Γ and Θ,
this is the HARD part
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2) Tracy-Widom fluctuations

Asymptotic analysis as N →∞ for

KN(x , y) =
1

(2iπ)2

∮
Γ
dz

∮
Θ
dw FN(x , y ; z ,w)

.

petit rayon

λ−1
i−1λ−1

n λ−1
i λ−1

1

2π/3

Γ1
res

Γ1
∗

Θres

Θ∗
Γ0

dN

.
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2) Tracy-Widom fluctuations

Existence of the steepest descent contours ?

Non-constructive proof using the

maximum principle for subharmonic functions
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2) Tracy-Widom fluctuations

“Right edge” analytic landscape:

.

∆1
∆2

∆−1
∆−2

Ω−Ω+

← radius η

Ω−
d

∆0

∆3

.
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∆1
∆2

∆−1
∆−2

Ω−

Ω+ Ω+

c

∆0
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2) Tracy-Widom fluctuations

“Left edge (singular)” analytic landscape:

.

c

∆1

∆2

∆−2
∆−1

Ω+

Ω−

∆0

∆3

.
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2) Asymptotic independence

The prove the asymptotic independence:

(Bornemann,10) Asymptotic independence ⇐⇒
Some matrix valued operator becomes asymptotically diagonal
in the trace-class norm.

Use regularized Fredholm determinant =⇒
“Trace-class norm” → “Hilbert-Schmidt norm”

Use the steepest descent paths from the TW analysis.

Use Bleher-Kuijlaars representation for KN(x , y)
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2) Bessel fluctuations

The prove the Bessel fluctuations at the hard edge:

Use the determinantal structure

Key: The critical point d is at infinity !

Appropriate complex integral representation for the Bessel
kernel

Asymptotic analysis (now easy)
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3) Beyond Universality

What is happening around an edge b which is not regular ?

(Easy case) If k of the 1/λj ’s equal d, but the rest satisfies the

regularity condition, then the fluctuations are described by the

k-deformed Tracy-Widom distribution of BBP.

(Mysterious case) What if d ∈ ∂(Dom) ?

Conjecture: Universality breaks down

i.e. strongly depends on ν and the way νN → ν.

Similar situations:

- Additive perturbations of Wigner matrices (Capitaine-Péché,14)

- Random paterns on the Gelfand-Tsetlin cone (Duse-Metcalfe,14)
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Thank you for your attention !
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