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Basic equation of classical multivariate statistics

det(H − xE ) = 0

with p × p matrices

n1H =

n1∑
ν=1

xνx′ν ‘hypothesis’ SS

n2E =

n2∑
ν=1

zνz′ν ‘error’ SS

(Invariant) methods use (generalized) eigenvalues {xi}pi=1

⇔ eigenvalues of “F -ratio” E−1H.
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Textbook topics using E−1H

I Canonical correlation analysis

I Discriminant analysis

I Factor analysis*

I Multidimensional scaling*

I Multivariate Analysis of Variance – MANOVA

I Multivarate regression analysis

I Principal Component analysis*

I Signal detection (equality of covariance matrices)

* use limiting form det(H − xI ) = 0 with E = Ip, (n2 →∞)
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100–75–50–25 years ago

1915 Fisher publishes distribution of correlation coefficient

1939 Fisher, Girshick, Hsu, Roy, Mood independently obtain null
distribution of roots of E−1H

1964 James classifies non-null distributions of E−1H

1987 Bootstrap era: Efron publishes BCa paper
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100–75–50–25 years ago

1915 Fisher publishes distribution of correlation coefficient

1939 Fisher, Girshick, Hsu, Roy, Mood independently obtain null
distribution of roots of E−1H

1964 James classifies non-null distributions of E−1H

1987 Bootstrap era: Efron publishes BCa paper

Hamlet: “The time is out of joint ...”
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A.T. James (1924 - 2013)
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Ann. Math. Stat. (1964)
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Some questions suggested by James (1964)

I remarkable systematization of distributions

I focus on zonal polynomials – hard to compute

I what about approximations, guided by James’ framework?

I current interest: p large

I consider approximations with p ∝ n

I connections to random matrix theory

I focus on low rank alternatives, a.k.a. “spiked models”

8 / 36



Our talks:

I explore likelihood ratios, phase transitions in James’ setting

I behavior above transition:

I Gaussian limits,

I Limiting experiments for likelihood ratios,

I Confidence intervals

I behavior below transition:

I Limiting experiments for likelihood ratios,
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Aside: why not just resample??

X , n × p with independent rows Np(0, I ). H = n−1X ′X .

Largest eigenvalue λ1(H) ≈ (scaled) Tracy-Widom.

Resample rows of X → histogram for λ∗1 [n = p = 100]
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Outline

James’ Five Fold Way: review classical examples,
(plus a limiting case), focus on

I eigenvalue equations

I low rank alternatives

Common structure in joint density of eigenvalues

I null case: random matrix connection

I alternatives: matrix hypergeometric functions

I integral representations for low rank cases
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Principal Components Analysis (PCA) [0F0]
Data

X = [x1 · · · xn] p × n

Covariance structure:

Σ = Cov(xν) = Σ0 + Φ

Low rank:

Φ =
r∑

k=1

θkγkγ
′
k

Sample covariance matrix:

S = n−1H, H = XX ′

Eigenvalues:
det(n−1H − λi I ) = 0
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Regression - Known Covariance (REG0) [0F1]

p-variate response:

yν =B ′xν + zν , Σ0 = Cov(zν)

H0 :CB = 0 C = contrast matrix

Σ0 known:
H = YPHY

′ n hypothesis d.f.

Eigenvalues:
det(n−1H − λi I ) = 0.

Low rank: noncentrality (e.g. some MANOVA)

Φ = Σ−1
0 MM ′/n1 = Σ−1

0

r∑
k=1

θkγkγ
′
k
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Signal Detection (SigDet) [1F0]

Data: xν =
∑r

1

√
θkuν,kγk + zν

uνk
ind∼ (0, 1), Cov(zν) = Σ

Low rank structure: test H0 : θ = 0

Cov(xν) = Φ + Σ Φ =
r∑
1

θkγkγ
′
k

Eigenvalues: H =
∑n1

1 xνx′ν E =
∑n1+n2

n1
zνz′ν

det(n−1
1 H − λ̃in−1

2 E ) = 0

⇔ det(H − λi (E + H)) = 0
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Regression - Multiple Response (REG) [1F1]

yν = B ′xν + zν , Σ = Cov(zν)

Sums of squares matrices:

H = YPHY
′ n1 hypothesis d.f.

E = YPEY
′ n2 error d.f.

Eigenvalues:

det(n−1
1 H − λ̃in−1

2 E ) = 0 multivariate F

⇔ det(H − λi (E + H)) = 0 multivariate Beta

Low rank: noncentrality

Φ = Σ−1MM ′/n1 = Σ−1
r∑

k=1

θkγkγ
′
k
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Canonical Correlation Analysis (CCA) [2F1]

xν ∈ Rp yν ∈ Rn1 ν = 1, . . . , n1 + n2 + 1

Look for maximally correlated a′xν , b′yν

Cov

(
xν
yν

)
=

(
Σ11 Σ12

Σ21 Σ22

)
sample

(
S11 S12

S21 S22

)

Eigenvalues:
det(S−1

11 S12S
−1
22 S21 − λi Ip) = 0

Low rank:

Σ
−1/2
11 Σ12Σ

−1/2
22 = Φ1/2 =

r∑
1

√
θkγkη

′
k

e.g .
=

[
diag(

√
θ1, . . . ,

√
θr ) 0

0 0

]
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Hyperspectral image example: Cuprite, Nevada
(224  AVIRIS images, [370, 2507] nm, ~ 9.6 nm apart, 614 x 512 (= 314,368) pixels,

atmospherically corrected)
Kaolin

White 
Mica

Water absorption bands

Most mineral diagnostic 
information for minerals
in [2000, 2500]

Noisy bands
6 | MNF Asymptotics | Mark Berman
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Gaussian assumptions

Assume xν , resp zν are (zero-mean) Gaussian (⇒ formulas)

Why eigenvalues?
Group structure =⇒ (λi ) are maximal invariants.

O.K. for low rank alternatives if subspaces are unknown.

[Wishart definition: If Z
n×p
∼ N(M, I ⊗ Σ) is a normal data matrix,

then

A = Z ′Z =
n∑
1

zνz′ν ∼Wp(n,Σ,Ω),

with degrees of freedom n , and non-centrality Ω = Σ−1/2M ′MΣ−1/2]
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Five Fold Way - Gaussian assumptions

PCA [0F0] REG0 [0F1]
H ∼Wp(n,Σ0 + Φ) H ∼Wp(n,Σ0, nΦ)

SigDet [1F0] REG [1F1]
H ∼Wp(n1,Σ + Φ) H ∼Wp(n1,Σ, n1Φ)

E ∼Wp(n2,Σ) E ∼Wp(n2,Σ)

CCA [2F1]
H ∼Wp(n1, I − Φ,Ω(Φ))

E ∼Wp(n2, I − Φ)
Ω(Φ) random
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Symmetric Matrix Denoising (SMD)

G = Φ + Z Z symmetric p × p

Zij
ind∼ N(0, 1 + δij) GOEp

Low rank: Φ =
∑r

1 θkγkγ
′
k

Eigenvalues: det(G − λi Ip) = 0

Limiting Case: Hn ∼Wp(n,Σn) Σn = Ip + Φ/
√
n.

For p fixed, as n→∞ PCA → SMD:

√
n(n−1Hn − Ip)

D⇒ Φ + Z , Z ∼ GOEp
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SMD as the limiting “simple” case

G = Φ + Z

Wp(n,Σ0 + n−1/2Φ)

-

Wp(n,Σ0, n
1/2Φ)

�

Wp(n1,Σ + n
−1/2
1 Φ)

Wp(n2,Σ)

6

Wp(n1,Σ, n
1/2
1 Φ)

Wp(n2,Σ)

6

Wp(n1, I − Φn,Ω(Φn))
Wp(n2, I − Φn)

Φn = n
−1/2
2 Φ

6
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SMD as the limiting “simple” case

G = Φ + Z

n→∞ n→∞

Wp(n,Σ0 + n−1/2Φ)

-

Wp(n,Σ0, n
1/2Φ)

�

Wp(n1,Σ + n
−1/2
1 Φ)

Wp(n2,Σ)

n2 →∞
6

Wp(n1,Σ, n
1/2
1 Φ)

Wp(n2,Σ)

n2 →∞
6

Wp(n1, I − Φn,Ω(Φn))
Wp(n2, I − Φn)

Φn = n
−1/2
2 Φ

n2 →∞

6
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Outline

James’ Five Fold Way: review classical examples, focus on

I eigenvalue equations

I low rank alternatives

Common structure in joint density of eigenvalues

I null case: random matrix connection

I alternatives: matrix hypergeometric functions

I integral representations for low rank cases
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Links to RMT: Null Hypothesis
SMD

PCA REG0

SigDet REG
CCA

Φ=0−→

Gaussian λ(G/
√
p)

Laguerre λ(H/n)

Jacobi λ((E + H)−1H)

H0 : θ = 0 → classical matrix ensembles. Joint eigenvalue density

p0(λ)= π(λ)∆(λ)

π(λ) =

p∏
i=1

π(λi ), ∆(λ) =
∏
i>j

(λi − λj)

Empirical spectral distributions converge:

Fn(λ) = p−1#{i : λi ≤ λ}
a.s.→ F (λ)
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Links to RMT - Three Fold Way

weight π(λ) Spectral Law F (λ)

Gaussian e−λ
2/2 Semi-circle ∝

√
4− λ2

Laguerre λαe−λ/2 Marcenko-Pastur ∝
√

(b+−λ)(λ−b−)

λ

α = 1
2
(n − p − 1) b± = (1±

√
c)2

Jacobi λa(1− λ)b Wachter ∝
√

(b+−λ)(λ−b−)

λ(1−λ)

a = (n1 − p − 1)/2 b± = c2(1± r)2/(r ± c2)2

b = (n2 − p − 1)/2 r =
√
c1 + c2 − c1c2
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Warmup: Bulk Distribution (Wachter)

Spectral density of limit F (dλ) = lim p−1
∑

i δ(n2/n1)λi (E−1H):

f (λ) =
1− c2

2π

√
(b+ − λ)(λ− b−)

λ(c1 + c2λ)

Let r =
√
c1 + c2 − c1c2.

Support limits:

b± =

(
1± r

1− c2

)2

→ (1±
√
c1)2

as c2 → 0. [Marčenko-Pastur]
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Outline

James’ Five Fold Way: review classical examples, focus on

I eigenvalue equations

I low rank alternatives

Common structure in joint density of eigenvalues

I null case: random matrix connection

I alternatives: matrix hypergeometric functions

I integral representations for low rank cases
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Hypergeometric functions

Scalar: pFq(a, b; x) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (aq)k

xk

k!

Single matrix argument: S symmetric, usually diagonal

pFq(a, b; S) =
∞∑
k=0

∑
κ

(a1)κ · · · (ap)κ
(b1)κ · · · (aq)κ

Cκ(S)

k!

0F0(S) = etrS , 1F0(a, S) = |I − S |−a

Two matrix arguments: S ,T symmetric

pFq(a, b;S ,T ) =

∫
O(p)

pFq(a, b; SUTU ′)(dU)
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Joint density: rewriting James

Λ = diag(λi ) eigenvalues of p−1/2G , n−1H or (E + H)−1H.

Φ = ΓΘΓ′ low rank alternative, Θ = diag(θ1, . . . , θr ).

General structure for joint density of eigenvalues:

p(λ; Θ) = ρ(α; Ψ) · pFq(a, b; cΨ,Λ)π(λ)∆(λ)

Ψ(Θ) =

{
Θ(I + Θ)−1 q = 0

Θ q = 1,SMD

Under H0 : Θ = 0, have Ψ = 0 and ρ · pFq = 1.

ρ(α,Ψ) = exp{−α
∑r

1 βp,q(θi )} has product structure.
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Joint Density - parameter table

p(λ; Θ) = ρ(α; Ψ) pFq(a, b; cΨ,Λ)π(λ)∆(λ)

2a 2b 2c 2α

SMD 0F0 . . p p/4

PCA 0F0 . . n n
REG0 0F1 . n n2/2 n

SigDet 1F0 n1 + n2 . 2 n1

REG 1F1 n1 + n2 p ∨ n1 n1 n1

CCA 2F1 n1 + n2, n1 + n2 n1 2 n1 + n2

p

ρ(α,Ψ) =


|I −Ψ|α p > q or p = q = 0

e−αtrΨ2
SMD

e−αtrΨ o/w
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Contour Integral Representation - Rank 1

Suppose Λ = diag(λ1, . . . , λr ), and let m = r
2 − 1.

Assume Ψ = diag(ψ, 0, . . . , 0) has rank one. Then DJ (14)

pFq(a, b; Ψ,Λ) =
cm
ψm

1

2πi

∫
K

pFq(a−m, b−m;ψs)
r∏

i=1

(s−λi )−1/2ds

Univariate integral and pFq!

cm =
Γ(m + 1)

ρm(a−m, b −m)

ρk(a, b) =
(a1)k · · · (ap)k
(b1)k · · · (aq)k

r¸ 1¸

K

rank(Ψ) = r : r -fold contour integral Passemier-McKay-Chen (14).
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Double Scaling

p/n1 → c1 > 0, p/n2 → c2 ∈ [0, 1)

I today: c1, c2 < 1, [but c1 ≥ 1 is relevant]

I c2 = 0 ↔ single Wishart H

I c2 ≥ 1 is a singular case – E not invertible

Remarks for statisticians:

I high dimensional statistics ...

I new perspectives on ‘small p’

I role of c2: even small c2 > 0 can have quite large effect:

I c2 = .03 ⇒ κ(E ) = λ1(E )/λp(E )
.

= 2.0

I c2 = .10 ⇒ κ(E )
.

= 3.7

32 / 36



Double Scaling and small p

log detH ≈

{
N( 0, 2p/n ) p fixed

N( pdc , `c ) p/n→ c (Bai-Silverstein)

[
`c = 2 log(1− c)−1 dc =

1− c

2c
`c − 1

]

Double scaling (pBaiS) gives better approximation for p = 2:

n p qtile pBaiS pFix

100 2 0.90 0.899 0.923
100 2 0.95 0.951 0.965

[10000 reps, 2SE ≤ 0.006]

33 / 36



Outline

James’ Five Fold Way: review classical examples, focus on

I eigenvalue equations

I low rank alternatives

Common structure in joint density of eigenvalues

I null case: random matrix connection

I alternatives: matrix hypergeometric functions

I integral representations for low rank cases

Some consequences: [Alexei]

I phase transition for largest eigenvalue

I likelihood ratios below & above the transition
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Conclusion

James’ (1964) representations ⇒

p(λ; Θ) = ρ(α; Ψ) pFq(a, b; cΨ,Λ)π(λ)∆(λ)

I powerful systematization for multivariate distributions

I leads to simple approximations in low rank cases via double
scaling limit

THANK YOU!
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Same year as James(1964)
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Higher Order Spacing Distributions for a Class of Unitary Ensembles*

DAvID Fox AND PETER 3 ~ KAHN

State VrIivers&y of ¹mYork at $torIy Brook, StorIy Brook, Snv York

(Received 22 January 1964)

We consider the eth-order spacing distribution, I'"(s), in the statistical theory of energy levels of complex
systems. Each I'" is written as a sum of multiple integrals over correlation functions. This procedure is used
to establish the identity of the spacing distributions for all members of a class of Hamiltonian unitary
ensembles. A power-series expansion of P"(s), valid for all a, is developed.

I. INTRODUCTION

STATISTICAL theory has been developed' '
which has been applied to the problem, of level

spacing in heavy nuclei in a region of the excitation
spectrum where the level density is approximately con-
stant over, say, a hundred levels. A suitably chosen
ensemble of T-dimensional Hamiltonian matrices is
introduced, and one studies the distribution of the eigen-
values of ensemble members.

Ke are interested in developing approximation pro-
cedures for the calculation of energy level spacing dis-
tributions for a class of Hamiltonian matrix ensembles.
To date, nearest-neighbor spacing distributions, P'(s)
have been calculated, in the limit of large Hamiltonian
matrix dimension AT, for orthogonal, unitary, and
symplectic ensembles' '; the next-nearest-neighbor spac-
ing distribution P'(s) has been calculated only for the
orthogonal ensemble. ' ' One can start the calculations
by imposing restrictions on the matrix elements of
members of the Hamiltonian ensemble. For matrix dis-
tribution functions f(xt, ,x~) which depend only on
the eigenvalues xl to x~, one obtains for the joint dis-
tribution function for the eigenvalues'

P (. . .* )=f(*. . . )IIl '— l', (1)

where P = 1, 2, 4 for the orthogonal, unitary, and sym-
plectic ensembles, respectively. 'The product factor arises
from the Jacobian of the transformation from matrix
to eigenvalue space and represents the volume of the
former space associated with a given set of eigenvalues;
it is responsible for the "repulsion eGect."

Alternatively, one can immediately assume Eq. (1)
as a form of the joint probability distribution of eigen-
values. ' A particular f(xt, ,xs) does not uniquely

* Supported in part by the National Science Foundation.
' C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fennicae:

Ser. AVI No. 44 (1960); N. Rosenzweig and C. E. Porter, Phys.
Rev. 120, 1698 (1960).' E. P. Wigner, Ann. Math. S3, 36 (1951); SS, 7 (1952); 62,
548 (1955); 65, 203 (1957); 67, 325 (1958).

3 M. L Mehta, Nucl. Phys. 18, 395 (1960}.M. L. Mehta and
M. Gaudin, Nucl. Phys. 18, 420 (1960).' M. Gaudin, Nucl. Phys. 25, 447 (1961).

5 F. J. Dyson, J. Math. Phys. 3, 140, 157, 166, 1199 (1962).
M. L. Mehta and F. J. Dyson, J. Math. Phys. 4, 713 (1963).' P. B. Kahn, Nucl. Phys. 41, 159 (1963).
H. S. Leff, thesis, State University of Iowa SUI 63-23, 1963

(unpublished) ~

determine the distribution of elements in the Hamil-
tonian matrix ensembles.

Members of the class of Hamiltonian ensembles in
which f(xt, ,x„) is a product, g; Lg(x,)fs, have been
extensively studied. ' ' "'For example, the choices

[g(x)$s=exp( —x') —~ &x& ~,
= (1—x)&(1+x)" &, v) —1; I*I &1,
=x e a) —1; 0&x( ,
=1 x= e" 0&|II&2+

lead to the so-called Gaussian, Jacobi, Laguerre, and
circular ensembles, respectively. ' The circular' and
Gaussian' ' ensembles have been shown to have identi-
cal nearest-neighbor spacing distributions for P = 1, 2, 4.
Although the unitary ensembles, P= 2 are of less physi-
cal interest than the orthogonal ensembles, they have
been studied more extensively because the caluclations
are easier. One hopes that certain results established for
P= 2 will lead to generalizations valid also for P= 1.

In Sec. II, we discuss the eth-order spacing distribu-
tion, P"(s), which is the probability that between two
levels separated by a distance s there are found exactly
e levels. These distributions are, apart from their
mathematical interest, of importance because of the
availability of empirical data with which to investigate
the range of validity of the theoretical models. It is
shown that, in the Rat region of the level density, and in
the limit S—+~, the eth-order spacing distribution for
all unitary ensembles associated with the classical
orthogonal polynomials is identical with that of the
circular ensemble.

In Sec. III, power series expansions of P"(s) are
developed, valid for all e&(X. Auxiliary mathematical
results are derived in the Appendix.

II. EQUIVALENCE OF A CLASS OF
UNITARY ENSEMBLES

The nth-order spacing distribution corresponding to
the interval x to x+s is given by

XPsl(x, x+s, xs, , xtv)drs, tv (2).
' The nomenclature in this Geld leaves something to be desired.

The Gaussian ensemble is named for the weight function Lg(x) g',
"circular ensemble" describes the periodic property of the allowed
range of variables; most of the remaining names (Jacobi, Laguerre,
etc.) come from the orthogonal polynomials associated with the
weight function and the allowed range.
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