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Basic equation of classical multivariate statistics

det(H — xE) =0

with p X p matrices

n
mH = Zx,,xf/ ‘hypothesis’ SS
v=1

m
nE = E 2,2, ‘error’ SS
v=1

(Invariant) methods use (generalized) eigenvalues {x;}/_,

& eigenvalues of “F-ratio” E~'H.
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Textbook topics using E~'H

» Canonical correlation analysis

» Discriminant analysis

» Factor analysis*

» Multidimensional scaling*

» Multivariate Analysis of Variance — MANOVA
» Multivarate regression analysis

» Principal Component analysis*

» Signal detection (equality of covariance matrices)

* use limiting form det(H — x/) = 0 with E = I,, (n2 — o0)

3/36



100-75-50-25 years ago

1915 Fisher publishes distribution of correlation coefficient

1939 Fisher, Girshick, Hsu, Roy, Mood independently obtain null
distribution of roots of E-1H

1964 James classifies non-null distributions of E~1H

1987 Bootstrap era: Efron publishes BCa paper
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100-75-50-25 years ago

1915 Fisher publishes distribution of correlation coefficient

1939 Fisher, Girshick, Hsu, Roy, Mood independently obtain null
distribution of roots of E~1H

1964 James classifies non-null distributions of E~1H
1987 Bootstrap era: Efron publishes BCa paper

Hamlet: “The time is out of joint ..."
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A.T. James (1924 - 2013)
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Ann. Math. Stat. (1964)

DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS
DERIVED FROM NORMAL SAMPLES'

By Avan T. James

Yale University

1. Summary. The paper is largely expository, but some new results are in-
cluded to round out the paper and bring it up to date.

The following distributions are quoted in Section 7.

1. Type oF , exponential: (i) x°, (ii) Wishart, (iii) latent roots of the covari-
ance matrix.

2. Type 1Fo , binomial series: (i) variance ratio, F, (ii) latent roots with un-
equal population covariance matrices.

3. Type of1, Bessel: (i) noncentral x*, (ii) noncentral Wishart, (iii) non-
central means with known covariance.

4. Type 1F,, confluent hypergeometric: (i) noncentral F, (ii) noncentral
multivariate F, (iii) noncentral latent roots.

5. Type oF1, Gaussian hypergeometric: (i) multiple correlation coefficient,

(ii) canonical correlation coefficients.
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Some questions suggested by James (1964)

v

remarkable systematization of distributions

» focus on zonal polynomials — hard to compute

v

what about approximations, guided by James' framework?

> current interest: p large

» consider approximations with p o n
» connections to random matrix theory

» focus on low rank alternatives, a.k.a. “spiked models”
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Our talks:

> explore likelihood ratios, phase transitions in James’ setting

» behavior above transition:
» Gaussian limits,
» Limiting experiments for likelihood ratios,

» Confidence intervals
» behavior below transition:

» Limiting experiments for likelihood ratios,
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Aside: why not just resample??
X, n x p with independent rows N,(0,1). H=n"1X'X.
Largest eigenvalue A1(H) ~ (scaled) Tracy-Widom.

Resample rows of X — histogram for ] [n = p = 100]

Density
15 2.0 25 3.0
I

1.0

05

0.0

lambda_1
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Outline

James’ Five Fold Way: review classical examples,
(plus a limiting case), focus on

> eigenvalue equations

» low rank alternatives

Common structure in joint density of eigenvalues
» null case: random matrix connection
> alternatives: matrix hypergeometric functions

> integral representations for low rank cases
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Principal Components Analysis (PCA) [oFo]

Data
X =[x %] pXxn

Covariance structure:
Y =Cov(x,) =Xo+ ¢

Low rank:

¢ = Z Ok Yk Yk
k=1

Sample covariance matrix:
S=n"lH, H= XX’

Eigenvalues:
det(n™*H — \jl) =0
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Regression - Known Covariance (REGy) [oF1]

p-variate response:

y, =B'x, +z,, Yo = Cov(z,)
Hy :CB=0 C = contrast matrix
> o known:
H=YPyY’ n hypothesis d.f.
Eigenvalues:

det(n™*H — ;1) = 0.

Low rank: noncentrality (e.g. some MANOVA)

,
O =5 MM /ny =5 Oevievi
k=1
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Signal Detection (SigDet) [1 Fol
Data: Xy =1 Vo Uy kYk + Zu
u % (0,1), Cov(z,) =X

Low rank structure: test Hy: 0 =20

r
Cov(x,) =+ X ¢ = Zek’)’k’ﬂ
1
Eigenvalues: H=>T1xx, E= Zn1+n2

det(n;*H — X\iny 'E) = 0
< det(H—-MN(E+H))=0
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Regression - Multiple Response (REG) [1F]

y, = B'x, +z,, Y = Cov(z,)
Sums of squares matrices:

H=YPyY' ny hypothesis d.f.
E=YPeY’ no error d.f.

Eigenvalues:

det(n;*H — X\iny *E) multivariate F

=0
& det(H—-MN(E+H))=0 multivariate Beta

Low rank: noncentrality

®=3"MM/n =31 Zek’ywlk
k=1
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Canonical Correlation Analysis (CCA) [2F1]

x, € RP y, € R™ v=1,....nm+m+1
Look for maximally correlated a’x,, b'y,
x i Z12> <511 512)
Cov|( ") = sample
()hz) <Z21 22 PelSn Sx

Eigenvalues:
det(51_1151252_21521 — )\,'/p) =0

Low rank:
-172 ~1/2 _ 412 _ , eg. [diag(v01,...,v0,) 0
YT, =0 kawk £ [ 5 0
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Hyperspectral image example: Cuprite, Nevada
(224 AVIRIS images, [370, 2507] nm, ~ 9.6 nm apart, 614 x 512 (= 314,368) pixels,
atmospherically corrected)

6 Spectra from Cuprite Image

Kaglin

hite
ica

specira

Most mlneral diagnostic
f mformatlon for minerals

Water absorption bands

6 | MNF Asymptotics | Mark Berman



Gaussian assumptions

Assume x,, resp z, are (zero-mean) Gaussian (= formulas)

Why eigenvalues?
Group structure = (\;) are maximal invariants.

O.K. for low rank alternatives if subspaces are unknown.

[Wishart definition: If Z ~ N(M,/® X) is a normal data matrix,

nxp

then .
A=2'7=Y 2,7, ~ Wy(nX,Q),
1

with degrees of freedom n, and non-centrality Q = ¥~ Y/2M'M¥L~1/2]
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Five Fold Way - Gaussian assumptions

PCA [oFo] REGo [of1]
H ~ Wy(n, o + ®) H ~ W,(n, To, n ®)
SigDet [1 Fo] REG [1 F1]
H ~ Wy(ny, = + ®) H ~ Wy(ny, %, m o)
E ~ Wy(np, ) E ~ Wy(np, )
CCA [>F]

H ~ Wy(ny, | — &, Q(0))
E ~ Wy(na, | — &)
Q(®) random
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Symmetric Matrix Denoising (SMD)

G=0o+Z7 Z symmetric p X p
Z; "¢ N0, 1+ 6;) GOE,

Low rank: S =37 Oy

Eigenvalues: det(G — \ilp) =0

Limiting Case:  Hp ~ Wy(n, X,) Y,=1lL+®//n.
For p fixed, as n — oo PCA — SMD:

Vn(ntH,— 1) 2 o+2Z,  Z~GOE,
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SMD as the limiting “simple” case

G=0+7

W, (n, Xo + n~1/20) W,(n, Lo, n*/2d)

W,(n1, ¥ + ny /?0) W, (ny, X, ni/? o)
WP(n27 Z) Wp(n27 Z)

Wp(nla I — (Dn, Q((D”))
Wp(no, | — ®,)
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SMD as the limiting “simple” case

G=0+27
n— oo n— oo
W,(n, To + n~1/20) W, (n, o, n'/?0)
nyp — o0 ny — 00 Ny — o0
Wo(n1, X + ny /20) W, (m, %, n¥/?0)
Wp(n2, X) Wp(n2, ¥)
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Outline

James' Five Fold Way: review classical examples, focus on
» eigenvalue equations

» low rank alternatives

Common structure in joint density of eigenvalues
» null case: random matrix connection
> alternatives: matrix hypergeometric functions

> integral representations for low rank cases
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Links to RMT: Null Hypothesis

SMD Gaussian XNG/\/P)
PCA REGo ®=0 Laguerre A(H/n)
SigDet REG Jacobi  A((E + H)™'H)
CCA

Hp : 6 = 0 — classical matrix ensembles. Joint eigenvalue density

i=1 i>j
Empirical spectral distributions converge:

Fa(N) =p M#{i s N <A 33 F())

24 /36



Links to RMT - Three Fold Way

weight () ‘ Spectral Law F(\)

Gaussian e /2 Semi-circle x Va4 — )2

Laguerre \¥e /2 Marcenko-Pastur M
a=3%in-p-1) by = (14 /c)?

Jacobi  A%(1—A)P Wachter o Vb —NO—b-)

PYEEDY!

by = (14 r)?/(r+ c)?
r=4y/ct+c—cac
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Warmup: Bulk Distribution (Wachter)

Spectral density of limit F(d)\) =limp~1 3", O(ny/m)M(E-1H):

1—c/(by —A)(A—b_)

f(A) =

27 Ac+ @A)
0120.25
Let r =+/c1 + & — 6. ! —-005
—c2=0
Support limits: 08
( 14+ r >2 A0.6
by = S
- 0.4
= (14 ey)? 0.2
as ¢ — 0. [Mar&enko-Pastur| S N E

26 /36



Outline

James' Five Fold Way: review classical examples, focus on
» eigenvalue equations

» low rank alternatives

Common structure in joint density of eigenvalues
» null case: random matrix connection
» alternatives: matrix hypergeometric functions

> integral representations for low rank cases
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Hypergeometric functions

Scalar: (a, b;x) = ZML
= ( !

Single matrix argument: S symmetric, usually diagonal

« Co(S
+(a,b; S) ZZ k(!)

k=0 &k (aq
()F()(S) = etrS’ 1F0(a, 5) = ’/ — S|7a

Two matrix arguments: S, T symmetric

Fo(a,b: 5, T) = / S Fq(a, b; SUTU')(dU)
O(p)
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Joint density: rewriting James
A = diag()\;) eigenvalues of p~/2G, n"1H or (E 4+ H)H.

o =ror low rank alternative, © = diag(6s,...,6,).

General structure for joint density of eigenvalues:

P(X; ©) = p(a; V) - pFq(a, by cW, A) m(A)A(X)

_[e(l+e)t g=0
v(©) = {e g=1,SMD

Under Hyp : © =0, have W =0 and p- ,Fy; = 1.

p(a, V) = exp{—a > ] Bpq(0i)} has product structure.
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Joint Density - parameter table

p(A; ©) = p(a; V) Fq(a, b; cW, \) m(A)A(N)

2a 2b 2c 2c
SMD  oFp p p/4
PCA oFo n n
REGy oF1 | . n n?/2 | n
SigDet 1Fg | n + o : 2 m
REG 1FL | ni+m pVon | m n
CCA oF1 | mi+n,ni+n m 2 ni + no

P
I —V¥|* p>qorp=q=0
pla, V) = { e=atr¥® gD

e—atr\ll

o/w
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Contour Integral Representation - Rank 1

Suppose A = diag(A1,...,A,), and let m= 5 — 1.
Assume W = diag(?,0,...,0) has rank one. Then DJ (14)

r

/ pFq(a—m, b—m;)s) H(s—)\;)_l/2ds

i=1

1

oFo(a, b; W, A) = wm%l

Univariate integral and ,Fq!

K
_ rMm+1)
Cm—pm(a_myb_m) //_\

-G

rank(W) = r: r-fold contour integral Passemier-McKay-Chen (14).
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Double Scaling
p/m — ¢ >0, p/n — ¢ € [0,1)

» today: ¢, <1, [but c; > 1 is relevant]

» =0 < single Wishart H

» ¢ > 1is a singular case — E not invertible

Remarks for statisticians:
> high dimensional statistics ...

> new perspectives on ‘small p’

> role of ¢: even small c; > 0 can have quite large effect:
» =03 = K(E)=A(E)/A(E) =20
=10 = kK(E)=37
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Double Scaling and small p

N(0,2 fixed
logdet H ~ (0,2p/n) piixe o _
N( pdc, 2. ) p/n — ¢ (Bai-Silverstein)
, R B 1—c, B
{ Le =2log(l—c) d. = 5 leo—1 }

Double scaling (pBaiS) gives better approximation for p = 2:

n p qtile pBaiS pFix

100 2 0.90 0.899 0.923
100 2 0.95 0.951 0.965

[10000 reps, 2SE < 0.006]
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Outline

James' Five Fold Way: review classical examples, focus on
» eigenvalue equations

» low rank alternatives

Common structure in joint density of eigenvalues
» null case: random matrix connection
» alternatives: matrix hypergeometric functions

» integral representations for low rank cases

Some consequences: [Alexei]
» phase transition for largest eigenvalue

» likelihood ratios below & above the transition
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Conclusion

James’ (1964) representations =

p(A; ©) = p(a; W) Fq(a, b; cW, \) m(A)A(N)

» powerful systematization for multivariate distributions

> leads to simple approximations in low rank cases via double
scaling limit

THANK YOU!
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Same year as James(1964)

PHYSICAL REVIEW VOLUME 134, NUMBER 5B 8 JUNE 1964

Higher Order Spacing Distributions for a Class of Unitary Ensembles*

Davip Fox anp PETER B. KAHN
State University of New York at Stony Brook, Stony Brook, New York
(Received 22 January 1964)

We consider the nth-order spacing distribution, P*(s), in the statistical theory of energy levels of complex
systems. Each P" is written as a sum of multiple integrals over correlation functions. This procedure is used
to establish the identity of the spacing distributions for all members of a class of Hamiltonian unitary
ensembles. A power-series expansion of P*(s), valid for all », is developed.

I. INTRODUCTION determine the distribution of elements in the Hamil-

STATISTICAL th has b developed—5 tonian matrix ensembles. . . .
A which has been ap;fﬁ;ﬁ toaihec;:loblecl‘rlxe gfp ievel Members of the class of Hamiltonian ensembles in
spacing in heavy nuclei in a region of the excitation which f(x,-- ':;'{n)dlls_?spsrgduct, IL [gl(x.-z}:lz, h}?\{e been
spectrum where the level density is approximately con- eXtensively studied.'=.%% For example, the choices

stant over, say, a hundred levels. A suitably chosen [g(x) P=exp(—a?) —o <y o,
ensemble of N-dimensional Hamiltonian matrices is =(1—x)(142)" u,v>—1; |2|<1,
introduced, and one studies the distribution of the eigen- =% * a>—1; 0<a< o,
values of ensemble members. =1 x=e', 0<6<L2r,

We are interested in developing approximation pro-
cedures for the calculation of energy level spacing dis-
tributions for a class of Hamiltonian matrix ensembles.
To date, nearest-neighbor spacing distributions, P°(s)

lead to the so-called Gaussian, Jacobi, Laguerre, and
circular ensembles, respectively.® The circular® and
Gaussian*~ ensembles have been shown to have identi-
cal nearect-neichhar enacine dictrihntione far =1 2 4
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